A NOTE ON THE JOINT DISTRIBUTION OF THE DURATION OF A BUSY PERIOD AND THE TOTAL QUEUEING TIME* Wa1ter L. Smith

Size: px
Start display at page:

Download "A NOTE ON THE JOINT DISTRIBUTION OF THE DURATION OF A BUSY PERIOD AND THE TOTAL QUEUEING TIME* Wa1ter L. Smith"

Transcription

1 A NOTE ON THE JOINT DISTRIBUTION OF THE DURATION OF A BUSY PERIOD AND THE TOTAL QUEUEING TIME* by Wa1ter L. Smith Depa1'tment o.f Statistics University of North CaroZina at ChapeZ Hill Institute of Statistics r4i~eo Series No June~ 1976 * Research supported by the Office of Naval Research under Grant No. N C-0550.

2 A NOTE ON THE JOINT DISTRIBUTION OF THE DURATION OF A BUSY PERIOD AND THE TOTAL QUEUEING TIME.* by Walter L. Smith University of North Carolina 1. IntrOduction Co~ter simulation of queueing models is becoming the parammmt method for their investigation; complexities of the model which present fonnidable difficulties to any analytical attack can often be dealt with in a trivial way in the computer program. Nonetheless the existence of exact mathematical formulae is useful, even when they refer to rather specific llddels. For one thing they can indicate t in a rough'. way t the effect of varying relevant parameters. For another thing, they can provide valuable checks on the correctness of a computer simulation for \'lhich, maybe, a subtle tmdetected flow in the program is yielding results which are wrong, but not so conspiciously so as to arouse suspicions. For a further thing, the exact fonnulae can possibly provide indication of the sanpling errors inherent in a proposed MJnte Carlo study of a queueing system. The present note is part of an attack on a number of analytical problems which arose from work being done by Andrew Seila of the Curriculum of Operations Research at the University of North Carolina, Chapel Hill. * Research supported by the Office of Naval Research tmder Grant No. NOOOI4-76-C-0550.

3 2 He is investigating1 mainly by computer methods 1 the estimation of quantiles of the waiting time distribution in various queues; his methods focus on the busy period as the basic sampling mit. One check on the correct operation of his methods is through a study of the joint distribution of the total time lost (2) by customers in queueing during a busy period and the length (U) of that period. This note tackles this problem for the M/r'1/l queue and shows that product moments of 2 and U are obtainable in analytic form. They are given later in this note up to order three. 2 Derivation of a Joint Generating Function Let a busy period begin by a customer Co ' say, with service-time X1 arriving to find the server free. Let U be the length of the busy period thus L'rlitiated and let Z be the stun of the queueing-times of all customers who are served in that busy period. Plainly the joint distribution of U and Z depends upon x. Let a > 0 and 13 > 0 be dur:1il1y transform-variables and set (2.1) M(a 1 13Ix) = E{e- az - 13U I x}, where the conditional expectation has the obvious meaning. For ease we shall write M(a 113Ix) simply as M(x). The distribution of the ti.rne from the arrival of Co to the next customer C l ' say1 has a p.d.f. of exponential form and this leads us to the integral equation (2.2) M(x) = e- Ax - 13x + f: Ae- AU -(3u-a(x-u) J: M(x+z-u)~e-~zdzdu. In this equation the constants A and ~ are the intensities of arrival and service, respectively.

4 3 If we provisionally set then a straightforward computation yields the fact that the Laplace transfonn~ denoted by the notation: and defined for real (2.3) s > 0, is given by o 0 oo(s) = M (~)-M ~ s+a-~ (s+~) If this result is used in (2.2) we obtain after a little computation (2.4) rrp( ) = {t,p (~) +1 (s+aj}. s S+A+S s+a+13 s+a-~. Since we are principally concerned with the unconditional expectation E{e- az - SU } =J: ~~(x)e-~ dx = w.p(~) ~ it follows that MO(~) is of special interest to us. From (2.4) we obtain by putting s = ~~ and hence (2.5) ~bre generally, if n is any positive integer, then putting s = ~ + na

5 4 in (2.4) yields (2.6) MO(~+na) = ~+A+~+na {I + a(~~l) [MO(~) - MO(~+n+la)]}. Let us set ~ = A~/a, and (2.7) K(~) = 1 ~ ~2 - Ai~~8 + 2(A+~+S)(A+v+B+a) ~2 + etc. It is not difficult to see that this infinite series is always convergent and that K(~) is actually an entire fu"1ction. Somewhat tedious and repetitive use of (2.6) in (2.5) will then show that (2.8) In obtaining this result it is helpful to note that I'P (na) -+ 0 as n -+ co. It is possible to express (2.7) as a certain Bessel function, and, indeed, if we temporarily set then (2.9) This result does not seem particularly tractable. The most we can hope

6 e to achieve is an expansion of (2.8) as a double Taylor expansion in powers of ex and 13 from which the joint moments (unconditional) of Z and U 5 can be extracted. 3 Expansion of Joint Generating Func~ion From a wel1-1mown property of the Bessel function (Watson~ 1958) we have that ~ for any argument y ~ say, from which one can derive J () J () = 2(a~1) JeeY). e-l y Y, and thus obtain a continued-fraction expansion of the ratio of Bessel functions in (2.9). we find that (3.1) Indeed if we now set a b = - ~ ~ 1 = :;----- a :;:.-..., (a+b) - la+2b)-etc. I 1 I I =a.: (a+b)- (a+2b)- (a+3b)-... Let us call this continued fraction C(a,b). Then~ evidently, (3.2) 1 C(a,b) = a - C(a+b,b).

7 e In particular we see 6 This quadratic equation gives us the equivocal result (3.4) C(a,O) = A+~+a ± I[(A-~)2+a2+2(A+~)a]. 2/fll 21(XiiJ However, the substitution Ct = and S = must make l-lf'ti 0 (~) = 1. Thus, from (2.9), we need = _A_+_~ ± _1-,(~A_-~=)_2_ 2/fii 2/fil and so we may conclude the plus sign to be correct, and hence C(a,O) = a+~ This result will be found to agree with the well-known formula (Cox and Smith, 1961) for the transfonn of the distribution of the duration of a busy period, for it yields from (2.9): (3.5) E(e-~) = (~~)~.{A~ +)(A+~~~)' - 4} = ~A {(A+~+B) + IrA+~+a)2-4A~. Let us adopt the nota-c.ion C for C(a,b) and ai + j. C (a,b) = C(a,b), 1J aa 1 abj and be prepared to contract C ij (a,b) even further to C ij. Then

8 7 (3.2) gives (3.6) C IO { -cz- = 1 - C 10 If we set y = yea) = C(a,O) and then (3.6) gives (a+b sb) -:z- =- C10(a+bsb) - COI(a+b,b) COl. C y.. =y.. (a) = C CasO), 1J 1J 1) (3.7) and (3.8) Y01 = - (..1:-). ~ y2_ l. Since the function y2j(yz_l) occurs frequently we shall denote it by cp. Thus (3.9) { YlO = _ 4> Z YOI - -4> If we return to (3.6) and perform further partial differentiations then we find 2 ze lo C Zo C C ZC C C (3.10) _ 11 = -C (a+b b) C3 CZ ZO ~ T = - CZO(a+bsb) Z ZC OI C ---r- -._- O2 = -CZO(a+b,b) C' C 2 Computation then yields the equations:

9 (3.11) It is plain that, Z 3 YZO = - ~ Y _ 4 Yll - 3" 4 Y _ 2 <b4 10 A,5 Y02 - ~. - ~ 'I' Y Y at the expense of greater and greater complication, one can continue to obtain equations of higher order. the following results: _ Y30 -:jf y Y21 = - y4 - y6 We merely list (3.12). 6 A, A,6 + 4 A, A,7 Y12 - '4."" 'I' ""4 'I' -0 'I' 6' 'I' Y Y Y Y _ 6 A,3 6 A, A,5 36 A,6 12 A, A,6 228 A,7 Y 'I' -"4 'I' ""4 'I' - '4."" 'I' - 6' 'I' 0" 'I' - -0 'I' y 4 y y y y y y Let y.. denote the value of y.. when we set S = o. Similarly for 1J 1J Y and (j). Then it is easy to see that y = (Vj1)~ and ep = :>,,/(A-j1). (Note that we assume 11 >:>.. for stability of the queue, so (j) < 0.) Then we have the expansion 8 and so (3.13) Wi\11) = (~) ~ C(a ~b) = C(a,b) y = {(1..)YIO + Y irdj We are now in a position to extract the requisite moments, for we see that

10 (3.14) ruiz j = (_l)i+j ;tj 'J (Al1)~ 1+J Y Thus the equations (3.9), (3.11), (3.12) will yield product moments up to those of the third order. and spare the reader the detailed calculations. We list our results in the next section, 9 4 The Product Moments The following results are obtained as outlined in the previous sections. (4.1) Ell = ~ h~p). (4.2) (4.3) (4.4) (4.5) EZ=l.(P)2 A FpJ. 2 Var U = 1 p (l+p). ~ (1_p) Var Z =1-. p (2+7p+p ) 1. 2 (1_p)5 Cov (U,Z) - 1 p3(3+p) - i2 (1_p)4 From the last three results we obtain for the correlation coefficient PU,z ' say, (4.6) (3+p){P" Thus, as p -)0 1, Pu,z + ~ = , and, as p + 0,

11 10 Puz...,L;p ~ IZ Actually~ the correlation of U and Z is high for looderately low values of p~ as this table displays: -- Traffic Intensity p Pu Z ~ (The arrows in the bottom line indicate limit values.) For product moments of order three we find:

12 11 References Cox~ D.R. and Smith, W.L. (1961), Queues, Methuen & Co. Ltd., London, England. Watson, G.N. (1958), A Treatise on the Theory of BesseZ Functions 3 2d. ed. Cambridge University Press, England.

Link Models for Circuit Switching

Link Models for Circuit Switching Link Models for Circuit Switching The basis of traffic engineering for telecommunication networks is the Erlang loss function. It basically allows us to determine the amount of telephone traffic that can

More information

Other properties of M M 1

Other properties of M M 1 Other properties of M M 1 Přemysl Bejda premyslbejda@gmail.com 2012 Contents 1 Reflected Lévy Process 2 Time dependent properties of M M 1 3 Waiting times and queue disciplines in M M 1 Contents 1 Reflected

More information

Multi-class, multi-server queues with non-preemptive priorities

Multi-class, multi-server queues with non-preemptive priorities Multi-class, multi-server queues with non-preemptive priorities Andrei Sleptcheno. EURANDOM, Eindhoven University of Technology, P.O. Box 53, 5600MB Eindhoven, The Netherlands. e-mail:sleptcheno@eurandom.tue.nl

More information

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction

THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES. 1. Introduction THE INTERCHANGEABILITY OF./M/1 QUEUES IN SERIES J. Appl. Prob. 16, 690-695 (1979) Printed in Israel? Applied Probability Trust 1979 RICHARD R. WEBER,* University of Cambridge Abstract A series of queues

More information

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS

Stochastic Processes. Theory for Applications. Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Stochastic Processes Theory for Applications Robert G. Gallager CAMBRIDGE UNIVERSITY PRESS Contents Preface page xv Swgg&sfzoMj ybr zmjfr%cforj owf fmdy xix Acknowledgements xxi 1 Introduction and review

More information

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA

THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA THE ROYAL STATISTICAL SOCIETY 4 EXAINATIONS SOLUTIONS GRADUATE DIPLOA PAPER I STATISTICAL THEORY & ETHODS The Societ provides these solutions to assist candidates preparing for the examinations in future

More information

IEOR 6711, HMWK 5, Professor Sigman

IEOR 6711, HMWK 5, Professor Sigman IEOR 6711, HMWK 5, Professor Sigman 1. Semi-Markov processes: Consider an irreducible positive recurrent discrete-time Markov chain {X n } with transition matrix P (P i,j ), i, j S, and finite state space.

More information

ACM 116: Lectures 3 4

ACM 116: Lectures 3 4 1 ACM 116: Lectures 3 4 Joint distributions The multivariate normal distribution Conditional distributions Independent random variables Conditional distributions and Monte Carlo: Rejection sampling Variance

More information

[313 ] A USE OF COMPLEX PROBABILITIES IN THE THEORY OF STOCHASTIC PROCESSES

[313 ] A USE OF COMPLEX PROBABILITIES IN THE THEORY OF STOCHASTIC PROCESSES [313 ] A USE OF COMPLEX PROBABILITIES IN THE THEORY OF STOCHASTIC PROCESSES BY D. R. COX Received 17 September 1954 ABSTRACT. The exponential distribution is very important in the theory of stochastic

More information

Birth-Death Processes

Birth-Death Processes Birth-Death Processes Birth-Death Processes: Transient Solution Poisson Process: State Distribution Poisson Process: Inter-arrival Times Dr Conor McArdle EE414 - Birth-Death Processes 1/17 Birth-Death

More information

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES

2905 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 295 Queueing Theory and Simulation PART III: HIGHER DIMENSIONAL AND NON-MARKOVIAN QUEUES 16 Queueing Systems with Two Types of Customers In this section, we discuss queueing systems with two types of customers.

More information

HITTING TIME IN AN ERLANG LOSS SYSTEM

HITTING TIME IN AN ERLANG LOSS SYSTEM Probability in the Engineering and Informational Sciences, 16, 2002, 167 184+ Printed in the U+S+A+ HITTING TIME IN AN ERLANG LOSS SYSTEM SHELDON M. ROSS Department of Industrial Engineering and Operations

More information

Queueing Theory and Simulation. Introduction

Queueing Theory and Simulation. Introduction Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University, Japan

More information

A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES

A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES Sankhyā : The Indian Journal of Statistics 1998, Volume 6, Series A, Pt. 2, pp. 171-175 A NOTE ON A DISTRIBUTION OF WEIGHTED SUMS OF I.I.D. RAYLEIGH RANDOM VARIABLES By P. HITCZENKO North Carolina State

More information

UNCLASSIFIED UNCLASSIFIED DEFENSE DOCUMENTATION CENTER SCIENTIFIC AND TECHNICAL INFORMATION FOR CAMERON STATION ALEXANDRIA VIRGINIA

UNCLASSIFIED UNCLASSIFIED DEFENSE DOCUMENTATION CENTER SCIENTIFIC AND TECHNICAL INFORMATION FOR CAMERON STATION ALEXANDRIA VIRGINIA UNCLASSIFIED AD DEFENSE DOCUMENTATION CENTER FOR SCIENTIFIC AND TECHNICAL INFORMATION CAMERON STATION ALEXANDRIA VIRGINIA DOWHGRADED AT 3 TOAR INTERVALS: DECLASSIFIED ATTER 12 YEARS DOD DIR 520010 UNCLASSIFIED

More information

Performance Evaluation of Queuing Systems

Performance Evaluation of Queuing Systems Performance Evaluation of Queuing Systems Introduction to Queuing Systems System Performance Measures & Little s Law Equilibrium Solution of Birth-Death Processes Analysis of Single-Station Queuing Systems

More information

G/G/1 Queueing Systems

G/G/1 Queueing Systems G/G/1 Queueing Systems John C.S. Lui Department of Computer Science & Engineering The Chinese University of Hong Kong www.cse.cuhk.edu.hk/ cslui John C.S. Lui (CUHK) Computer Systems Performance Evaluation

More information

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers

A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent Customers Int. J. Open Problems Compt. Math., Vol. 3, No. 2, June 21 ISSN 1998-6262; Copyright c ICSRS Publication, 21 www.i-csrs.org A Two Phase Service M/G/1 Vacation Queue With General Retrial Times and Non-persistent

More information

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan

Chapter 2. Poisson Processes. Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Chapter 2. Poisson Processes Prof. Shun-Ren Yang Department of Computer Science, National Tsing Hua University, Taiwan Outline Introduction to Poisson Processes Definition of arrival process Definition

More information

M. Matrices and Linear Algebra

M. Matrices and Linear Algebra M. Matrices and Linear Algebra. Matrix algebra. In section D we calculated the determinants of square arrays of numbers. Such arrays are important in mathematics and its applications; they are called matrices.

More information

2 tel

2   tel Us. Timeless, sophisticated wall decor that is classic yet modern. Our style has no limitations; from traditional to contemporar y, with global design inspiration. The attention to detail and hand- craf

More information

On the Pathwise Optimal Bernoulli Routing Policy for Homogeneous Parallel Servers

On the Pathwise Optimal Bernoulli Routing Policy for Homogeneous Parallel Servers On the Pathwise Optimal Bernoulli Routing Policy for Homogeneous Parallel Servers Ger Koole INRIA Sophia Antipolis B.P. 93, 06902 Sophia Antipolis Cedex France Mathematics of Operations Research 21:469

More information

) sm wl t. _.!!... e -pt sinh y t. Vo + mx" + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi

) sm wl t. _.!!... e -pt sinh y t. Vo + mx + cx' + kx = 0 (26) has a unique tions x(o) solution for t ;?; 0 satisfying given initial condi 1 48 Chapter 2 Linear Equations of Higher Order 28. (Overdamped) If Xo = 0, deduce from Problem 27 that x(t) Vo = e -pt sinh y t. Y 29. (Overdamped) Prove that in this case the mass can pass through its

More information

Synchronized Queues with Deterministic Arrivals

Synchronized Queues with Deterministic Arrivals Synchronized Queues with Deterministic Arrivals Dimitra Pinotsi and Michael A. Zazanis Department of Statistics Athens University of Economics and Business 76 Patission str., Athens 14 34, Greece Abstract

More information

P (L d k = n). P (L(t) = n),

P (L d k = n). P (L(t) = n), 4 M/G/1 queue In the M/G/1 queue customers arrive according to a Poisson process with rate λ and they are treated in order of arrival The service times are independent and identically distributed with

More information

V393.R46 T-L, I,,I I~1?WWI. :II ~~~~~~~~~~~~~~ ',,":~ '''L -.. '..- '"" b,, ...- s,'ic ",,, :.. Ag--,, "._- ":. .::.:: .:.!_.., ,..

V393.R46 T-L, I,,I I~1?WWI. :II ~~~~~~~~~~~~~~ ',,:~ '''L -.. '..- ' b,, ...- s,'ic ,,, :.. Ag--,, ._- :. .::.:: .:.!_.., ,.. ~'-: j~;~ ~~k 3 9080 02754 2551 ' V393 R46 T-L, ~?4 --,,j "" ~~~ r ~ r ~,,p _, ' ~ =L:" ~ --=4,, "" " X 4 77,,,,, ' - ~ : ~ r ' -" -"' ) ',', :': /'' ' :i -, 7 rl : - ", " : - " _-- ',',:i,/ "_- Ag--,,

More information

Link Models for Packet Switching

Link Models for Packet Switching Link Models for Packet Switching To begin our study of the performance of communications networks, we will study a model of a single link in a message switched network. The important feature of this model

More information

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions.

MAT SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. MAT 4371 - SYS 5120 (Winter 2012) Assignment 5 (not to be submitted) There are 4 questions. Question 1: Consider the following generator for a continuous time Markov chain. 4 1 3 Q = 2 5 3 5 2 7 (a) Give

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue.

Outline. Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue. Outline Finite source queue M/M/c//K Queues with impatience (balking, reneging, jockeying, retrial) Transient behavior Advanced Queue Batch queue Bulk input queue M [X] /M/1 Bulk service queue M/M [Y]

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenCourseWare http://ocw.mit.edu 18.02 Multivariable Calculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. M. Matrices and Linear Algebra

More information

Chapter 2 Queueing Theory and Simulation

Chapter 2 Queueing Theory and Simulation Chapter 2 Queueing Theory and Simulation Based on the slides of Dr. Dharma P. Agrawal, University of Cincinnati and Dr. Hiroyuki Ohsaki Graduate School of Information Science & Technology, Osaka University,

More information

COMP9334 Capacity Planning for Computer Systems and Networks

COMP9334 Capacity Planning for Computer Systems and Networks COMP9334 Capacity Planning for Computer Systems and Networks Week 2: Operational Analysis and Workload Characterisation COMP9334 1 Last lecture Modelling of computer systems using Queueing Networks Open

More information

Measurements made for web data, media (IP Radio and TV, BBC Iplayer: Port 80 TCP) and VoIP (Skype: Port UDP) traffic.

Measurements made for web data, media (IP Radio and TV, BBC Iplayer: Port 80 TCP) and VoIP (Skype: Port UDP) traffic. Real time statistical measurements of IPT(Inter-Packet time) of network traffic were done by designing and coding of efficient measurement tools based on the Libpcap package. Traditional Approach of measuring

More information

INFINITE SEQUENCES AND SERIES

INFINITE SEQUENCES AND SERIES 11 INFINITE SEQUENCES AND SERIES INFINITE SEQUENCES AND SERIES In section 11.9, we were able to find power series representations for a certain restricted class of functions. INFINITE SEQUENCES AND SERIES

More information

Networks: Lectures 9 & 10 Random graphs

Networks: Lectures 9 & 10 Random graphs Networks: Lectures 9 & 10 Random graphs Heather A Harrington Mathematical Institute University of Oxford HT 2017 What you re in for Week 1: Introduction and basic concepts Week 2: Small worlds Week 3:

More information

Paul Mullowney and Alex James. Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand

Paul Mullowney and Alex James. Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand REsONANCES IN COMPOUND PROCESSES Paul Mullowney and Alex James Department of Mathematics and Statistics University of Canterbury Private Bag 4800 Christchurch, New Zealand Report Number: UCDMS2006/14 DECEMBER

More information

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander

ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 PROBABILITY. Prof. Steven Waslander ME 597: AUTONOMOUS MOBILE ROBOTICS SECTION 2 Prof. Steven Waslander p(a): Probability that A is true 0 pa ( ) 1 p( True) 1, p( False) 0 p( A B) p( A) p( B) p( A B) A A B B 2 Discrete Random Variable X

More information

2905 Queueing Theory and Simulation PART IV: SIMULATION

2905 Queueing Theory and Simulation PART IV: SIMULATION 2905 Queueing Theory and Simulation PART IV: SIMULATION 22 Random Numbers A fundamental step in a simulation study is the generation of random numbers, where a random number represents the value of a random

More information

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential.

Math 180A. Lecture 16 Friday May 7 th. Expectation. Recall the three main probability density functions so far (1) Uniform (2) Exponential. Math 8A Lecture 6 Friday May 7 th Epectation Recall the three main probability density functions so far () Uniform () Eponential (3) Power Law e, ( ), Math 8A Lecture 6 Friday May 7 th Epectation Eample

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/25/17. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 26 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/25/17 2 / 26 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

GI/M/1 and GI/M/m queuing systems

GI/M/1 and GI/M/m queuing systems GI/M/1 and GI/M/m queuing systems Dmitri A. Moltchanov moltchan@cs.tut.fi http://www.cs.tut.fi/kurssit/tlt-2716/ OUTLINE: GI/M/1 queuing system; Methods of analysis; Imbedded Markov chain approach; Waiting

More information

Introduction to queuing theory

Introduction to queuing theory Introduction to queuing theory Claude Rigault ENST claude.rigault@enst.fr Introduction to Queuing theory 1 Outline The problem The number of clients in a system The client process Delay processes Loss

More information

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS

BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS BIRTH DEATH PROCESSES AND QUEUEING SYSTEMS Andrea Bobbio Anno Accademico 999-2000 Queueing Systems 2 Notation for Queueing Systems /λ mean time between arrivals S = /µ ρ = λ/µ N mean service time traffic

More information

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers

Stationary Analysis of a Multiserver queue with multiple working vacation and impatient customers Available at http://pvamu.edu/aam Appl. Appl. Math. ISSN: 932-9466 Vol. 2, Issue 2 (December 207), pp. 658 670 Applications and Applied Mathematics: An International Journal (AAM) Stationary Analysis of

More information

Calculation of Steady-State Probabilities of M/M Queues: Further Approaches. Queuing Theory and Applications (MA597)

Calculation of Steady-State Probabilities of M/M Queues: Further Approaches. Queuing Theory and Applications (MA597) Calculation of Steady-State Probabilities of M/M Queues: Further Approaches A assignment report submitted for the course Queuing Theory and Applications (MA597) by Ambati Narendar Reddy Roll No. 06212301

More information

We introduce methods that are useful in:

We introduce methods that are useful in: Instructor: Shengyu Zhang Content Derived Distributions Covariance and Correlation Conditional Expectation and Variance Revisited Transforms Sum of a Random Number of Independent Random Variables more

More information

Queues and Queueing Networks

Queues and Queueing Networks Queues and Queueing Networks Sanjay K. Bose Dept. of EEE, IITG Copyright 2015, Sanjay K. Bose 1 Introduction to Queueing Models and Queueing Analysis Copyright 2015, Sanjay K. Bose 2 Model of a Queue Arrivals

More information

NUMERICAL ANALYSIS PROBLEMS

NUMERICAL ANALYSIS PROBLEMS NUMERICAL ANALYSIS PROBLEMS JAMES KEESLING The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.. Solving Equations Problem.

More information

57:022 Principles of Design II Final Exam Solutions - Spring 1997

57:022 Principles of Design II Final Exam Solutions - Spring 1997 57:022 Principles of Design II Final Exam Solutions - Spring 1997 Part: I II III IV V VI Total Possible Pts: 52 10 12 16 13 12 115 PART ONE Indicate "+" if True and "o" if False: + a. If a component's

More information

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes

UC Berkeley Department of Electrical Engineering and Computer Sciences. EECS 126: Probability and Random Processes UC Berkeley Department of Electrical Engineering and Computer Sciences EECS 6: Probability and Random Processes Problem Set 3 Spring 9 Self-Graded Scores Due: February 8, 9 Submit your self-graded scores

More information

ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES

ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES Probability in the Engineering and Informational Sciences, 22, 2008, 75 80. Printed in the U.S.A. DOI: 10.1017/S0269964808000053 ON THE LAW OF THE i TH WAITING TIME INABUSYPERIODOFG/M/c QUEUES OPHER BARON

More information

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA

Queueing Review. Christos Alexopoulos and Dave Goldsman 10/6/16. (mostly from BCNN) Georgia Institute of Technology, Atlanta, GA, USA 1 / 24 Queueing Review (mostly from BCNN) Christos Alexopoulos and Dave Goldsman Georgia Institute of Technology, Atlanta, GA, USA 10/6/16 2 / 24 Outline 1 Introduction 2 Queueing Notation 3 Transient

More information

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH *

UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH * 4.4 UNDETERMINED COEFFICIENTS SUPERPOSITION APPROACH 19 Discussion Problems 59. Two roots of a cubic auxiliary equation with real coeffi cients are m 1 1 and m i. What is the corresponding homogeneous

More information

LqJ M: APR VISO. Western Management Science Institute University of California 0. Los Angeles

LqJ M: APR VISO. Western Management Science Institute University of California 0. Los Angeles LqJ M: APR VISO _ Western Management Science Institute University of California 0 Los Angeles UNIVERSITY OF CALIFORNIA Los Angeles Western Management Science Institute Working Paper No. 31 March 1963 A

More information

Lecturer: Olga Galinina

Lecturer: Olga Galinina Renewal models Lecturer: Olga Galinina E-mail: olga.galinina@tut.fi Outline Reminder. Exponential models definition of renewal processes exponential interval distribution Erlang distribution hyperexponential

More information

Chapter 2: Matrix Algebra

Chapter 2: Matrix Algebra Chapter 2: Matrix Algebra (Last Updated: October 12, 2016) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). Write A = 1. Matrix operations [a 1 a n. Then entry

More information

Appendix A Wirtinger Calculus

Appendix A Wirtinger Calculus Precoding and Signal Shaping for Digital Transmission. Robert F. H. Fischer Copyright 0 2002 John Wiley & Sons, Inc. ISBN: 0-471-22410-3 Appendix A Wirtinger Calculus T he optimization of system parameters

More information

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks

Recap. Probability, stochastic processes, Markov chains. ELEC-C7210 Modeling and analysis of communication networks Recap Probability, stochastic processes, Markov chains ELEC-C7210 Modeling and analysis of communication networks 1 Recap: Probability theory important distributions Discrete distributions Geometric distribution

More information

Gaussian processes and Feynman diagrams

Gaussian processes and Feynman diagrams Gaussian processes and Feynman diagrams William G. Faris April 25, 203 Introduction These talks are about expectations of non-linear functions of Gaussian random variables. The first talk presents the

More information

11 The M/G/1 system with priorities

11 The M/G/1 system with priorities 11 The M/G/1 system with priorities In this chapter we analyse queueing models with different types of customers, where one or more types of customers have priority over other types. More precisely we

More information

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017

CPSC 531: System Modeling and Simulation. Carey Williamson Department of Computer Science University of Calgary Fall 2017 CPSC 531: System Modeling and Simulation Carey Williamson Department of Computer Science University of Calgary Fall 2017 Motivating Quote for Queueing Models Good things come to those who wait - poet/writer

More information

Name of the Student:

Name of the Student: SUBJECT NAME : Probability & Queueing Theory SUBJECT CODE : MA 6453 MATERIAL NAME : Part A questions REGULATION : R2013 UPDATED ON : November 2017 (Upto N/D 2017 QP) (Scan the above QR code for the direct

More information

Poisson Approximation for Two Scan Statistics with Rates of Convergence

Poisson Approximation for Two Scan Statistics with Rates of Convergence Poisson Approximation for Two Scan Statistics with Rates of Convergence Xiao Fang (Joint work with David Siegmund) National University of Singapore May 28, 2015 Outline The first scan statistic The second

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2004

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 2004 EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY (formerly the Examinations of the Institute of Statisticians) GRADUATE DIPLOMA, 004 Statistical Theory and Methods I Time Allowed: Three Hours Candidates should

More information

Session-Based Queueing Systems

Session-Based Queueing Systems Session-Based Queueing Systems Modelling, Simulation, and Approximation Jeroen Horters Supervisor VU: Sandjai Bhulai Executive Summary Companies often offer services that require multiple steps on the

More information

RESEARCH REPORT. Estimation of sample spacing in stochastic processes. Anders Rønn-Nielsen, Jon Sporring and Eva B.

RESEARCH REPORT. Estimation of sample spacing in stochastic processes.   Anders Rønn-Nielsen, Jon Sporring and Eva B. CENTRE FOR STOCHASTIC GEOMETRY AND ADVANCED BIOIMAGING www.csgb.dk RESEARCH REPORT 6 Anders Rønn-Nielsen, Jon Sporring and Eva B. Vedel Jensen Estimation of sample spacing in stochastic processes No. 7,

More information

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues

Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Asymptotic Coupling of an SPDE, with Applications to Many-Server Queues Mohammadreza Aghajani joint work with Kavita Ramanan Brown University March 2014 Mohammadreza Aghajanijoint work Asymptotic with

More information

Understanding Branch Cuts of Expressions

Understanding Branch Cuts of Expressions The University of Bath Joint work with: Russell Bradford, James Davenport & David Wilson (Bath) and Edgardo Cheb-Terrab (Maplesoft) University of Waterloo 21st June 2013 Supported by the Engineering and

More information

Derivation of Formulas by Queueing Theory

Derivation of Formulas by Queueing Theory Appendices Spectrum Requirement Planning in Wireless Communications: Model and Methodology for IMT-Advanced E dite d by H. Takagi and B. H. Walke 2008 J ohn Wiley & Sons, L td. ISBN: 978-0-470-98647-9

More information

An introduction to basic information theory. Hampus Wessman

An introduction to basic information theory. Hampus Wessman An introduction to basic information theory Hampus Wessman Abstract We give a short and simple introduction to basic information theory, by stripping away all the non-essentials. Theoretical bounds on

More information

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at

Your use of the JSTOR archive indicates your acceptance of the Terms & Conditions of Use, available at On the Estimation of the Intensity Function of a Stationary Point Process Author(s): D. R. Cox Source: Journal of the Royal Statistical Society. Series B (Methodological), Vol. 27, No. 2 (1965), pp. 332-337

More information

Chapter 2 SIMULATION BASICS. 1. Chapter Overview. 2. Introduction

Chapter 2 SIMULATION BASICS. 1. Chapter Overview. 2. Introduction Chapter 2 SIMULATION BASICS 1. Chapter Overview This chapter has been written to introduce the topic of discreteevent simulation. To comprehend the material presented in this chapter, some background in

More information

Stochastic Models 3 (1998)

Stochastic Models 3 (1998) CALCULATING TRANSIENT CHARACTERISTICS OF THE ERLANG LOSS MODEL BY NUMERICAL TRANSFORM INVERSION J. ABATE W. WHITT 900 Hammond Road AT&T Labs Research Ridgewood, NJ 07450-2908 Room 2C-178 Murray Hill, NJ

More information

Elementary queueing system

Elementary queueing system Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue M/M/1 with preemptive-resume priority M/M/1 with non-preemptive priority 1 History of queueing theory An old

More information

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals

CHAPTER 4. Networks of queues. 1. Open networks Suppose that we have a network of queues as given in Figure 4.1. Arrivals CHAPTER 4 Networks of queues. Open networks Suppose that we have a network of queues as given in Figure 4.. Arrivals Figure 4.. An open network can occur from outside of the network to any subset of nodes.

More information

NOTE ON SIDEBAND INTENSITIES IN ONE-DIMENSIONAL MAGIC ANGLE SPINNING NUCLEAR MAGNETIC RESONANCE

NOTE ON SIDEBAND INTENSITIES IN ONE-DIMENSIONAL MAGIC ANGLE SPINNING NUCLEAR MAGNETIC RESONANCE Philips J. Res. 46, 107-112, 1991 R 1251 NOTE ON SIDEBAND INTENSITIES IN ONE-DIMENSIONAL MAGIC ANGLE SPINNING NUCLEAR MAGNETIC RESONANCE by H. F. J. M. VAN WELL, J. M. J. VANKAN and A. J. E. M. JANSSEN

More information

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010

Exercises Stochastic Performance Modelling. Hamilton Institute, Summer 2010 Exercises Stochastic Performance Modelling Hamilton Institute, Summer Instruction Exercise Let X be a non-negative random variable with E[X ]

More information

GCE Mathematics. Mark Scheme for June Unit 4727: Further Pure Mathematics 3. Advanced GCE. Oxford Cambridge and RSA Examinations

GCE Mathematics. Mark Scheme for June Unit 4727: Further Pure Mathematics 3. Advanced GCE. Oxford Cambridge and RSA Examinations GCE Mathematics Unit 477: Further Pure Mathematics 3 Advanced GCE Mark Scheme for June 04 Oxford Cambridge and RSA Examinations OCR (Oxford Cambridge and RSA) is a leading UK awarding body, providing a

More information

Lecture Notes in Linear Algebra

Lecture Notes in Linear Algebra Lecture Notes in Linear Algebra Dr. Abdullah Al-Azemi Mathematics Department Kuwait University February 4, 2017 Contents 1 Linear Equations and Matrices 1 1.2 Matrices............................................

More information

Exponential Distribution and Poisson Process

Exponential Distribution and Poisson Process Exponential Distribution and Poisson Process Stochastic Processes - Lecture Notes Fatih Cavdur to accompany Introduction to Probability Models by Sheldon M. Ross Fall 215 Outline Introduction Exponential

More information

Non Markovian Queues (contd.)

Non Markovian Queues (contd.) MODULE 7: RENEWAL PROCESSES 29 Lecture 5 Non Markovian Queues (contd) For the case where the service time is constant, V ar(b) = 0, then the P-K formula for M/D/ queue reduces to L s = ρ + ρ 2 2( ρ) where

More information

A Simple Solution for the M/D/c Waiting Time Distribution

A Simple Solution for the M/D/c Waiting Time Distribution A Simple Solution for the M/D/c Waiting Time Distribution G.J.Franx, Universiteit van Amsterdam November 6, 998 Abstract A surprisingly simple and explicit expression for the waiting time distribution

More information

M/G/1 and M/G/1/K systems

M/G/1 and M/G/1/K systems M/G/1 and M/G/1/K systems Dmitri A. Moltchanov dmitri.moltchanov@tut.fi http://www.cs.tut.fi/kurssit/elt-53606/ OUTLINE: Description of M/G/1 system; Methods of analysis; Residual life approach; Imbedded

More information

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic

A FIRST COURSE IN LINEAR ALGEBRA. An Open Text by Ken Kuttler. Matrix Arithmetic A FIRST COURSE IN LINEAR ALGEBRA An Open Text by Ken Kuttler Matrix Arithmetic Lecture Notes by Karen Seyffarth Adapted by LYRYX SERVICE COURSE SOLUTION Attribution-NonCommercial-ShareAlike (CC BY-NC-SA)

More information

18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS. By M. Goldstein and R. M. Thaler

18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS. By M. Goldstein and R. M. Thaler 18 BESSEL FUNCTIONS FOR LARGE ARGUMENTS Bessel Functions for Large Arguments By M. Goldstein R. M. Thaler Calculations of Bessel Functions of real order argument for large values of the argument can be

More information

4 / Gaussian Ensembles. Level Density

4 / Gaussian Ensembles. Level Density 4 / Gaussian Ensembles. Level Density In this short chapter we reproduce a statistical mechanical argument of Wigner to "derive" the level density for the Gaussian ensembles. The joint probability density

More information

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller

Explicit evaluation of the transmission factor T 1. Part I: For small dead-time ratios. by Jorg W. MUller Rapport BIPM-87/5 Explicit evaluation of the transmission factor T (8,E) Part I: For small dead-time ratios by Jorg W. MUller Bureau International des Poids et Mesures, F-930 Sevres Abstract By a detailed

More information

Kendall notation. PASTA theorem Basics of M/M/1 queue

Kendall notation. PASTA theorem Basics of M/M/1 queue Elementary queueing system Kendall notation Little s Law PASTA theorem Basics of M/M/1 queue 1 History of queueing theory An old research area Started in 1909, by Agner Erlang (to model the Copenhagen

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008

IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 IEOR 6711: Stochastic Models I SOLUTIONS to the First Midterm Exam, October 7, 2008 Justify your answers; show your work. 1. A sequence of Events. (10 points) Let {B n : n 1} be a sequence of events in

More information

IS 709/809: Computational Methods in IS Research Fall Exam Review

IS 709/809: Computational Methods in IS Research Fall Exam Review IS 709/809: Computational Methods in IS Research Fall 2017 Exam Review Nirmalya Roy Department of Information Systems University of Maryland Baltimore County www.umbc.edu Exam When: Tuesday (11/28) 7:10pm

More information

Lecture 7: Lagrangian Relaxation and Duality Theory

Lecture 7: Lagrangian Relaxation and Duality Theory Lecture 7: Lagrangian Relaxation and Duality Theory (3 units) Outline Lagrangian dual for linear IP Lagrangian dual for general IP Dual Search Lagrangian decomposition 1 / 23 Joseph Louis Lagrange Joseph

More information

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes

26.2. Cauchy-Riemann Equations and Conformal Mapping. Introduction. Prerequisites. Learning Outcomes Cauchy-Riemann Equations and Conformal Mapping 26.2 Introduction In this Section we consider two important features of complex functions. The Cauchy-Riemann equations provide a necessary and sufficient

More information

1 (2n)! (-1)n (θ) 2n

1 (2n)! (-1)n (θ) 2n Complex Numbers and Algebra The real numbers are complete for the operations addition, subtraction, multiplication, and division, or more suggestively, for the operations of addition and multiplication

More information

Chapter 3: Markov Processes First hitting times

Chapter 3: Markov Processes First hitting times Chapter 3: Markov Processes First hitting times L. Breuer University of Kent, UK November 3, 2010 Example: M/M/c/c queue Arrivals: Poisson process with rate λ > 0 Example: M/M/c/c queue Arrivals: Poisson

More information

Introduction to Probability

Introduction to Probability LECTURE NOTES Course 6.041-6.431 M.I.T. FALL 2000 Introduction to Probability Dimitri P. Bertsekas and John N. Tsitsiklis Professors of Electrical Engineering and Computer Science Massachusetts Institute

More information

Herbert Robbins and E. J. G. Pitman Institute of Statistics, Uhiversity of North Carolina

Herbert Robbins and E. J. G. Pitman Institute of Statistics, Uhiversity of North Carolina \ APPLICATION OF TEE METHOD OF MIXTURES TO QUADRATIC FORMS IN NORMAL VARIATES 'by Herbert Robbins and E.. G. Pitman Institute of Statistics, Uhiversity of North Carolina Nota; This report is based on a

More information

One important issue in the study of queueing systems is to characterize departure processes. Study on departure processes was rst initiated by Burke (

One important issue in the study of queueing systems is to characterize departure processes. Study on departure processes was rst initiated by Burke ( The Departure Process of the GI/G/ Queue and Its MacLaurin Series Jian-Qiang Hu Department of Manufacturing Engineering Boston University 5 St. Mary's Street Brookline, MA 2446 Email: hqiang@bu.edu June

More information