THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS. Chapter 8. This work extends chapter 6 titled, "Field Mass Generation and Control", while

Size: px
Start display at page:

Download "THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS. Chapter 8. This work extends chapter 6 titled, "Field Mass Generation and Control", while"

Transcription

1 133 THE FLUXOID QUANTUM AND ELECTROGRAVITATIONAL DYNAMICS Chapter 8 This wrk extends chapter 6 titled, "Field Mass Generatin and Cntrl", while als develping a new cnceptual apprach t mass-field vehicle cntrl utilizing the invariance f the electric and magnetic frms f the Fluxid Quantum in the Lrentz transfrms which are an intregal part f Einstein's Special Thery f Relativity. This is a direct applicatin f the principle that if a prcess may be made reversible then the cause may be invked by reversing the effect. In therwrds, a velcity increase may be made t ccur by invking a relativistic time increase by linking that actin thrugh a mechanism invlving (in this case) the invariant quantum fluxid cnstant in its electrical frm and an increase in time f that electrical parameter thrugh a lwering (in step fashin) f its interactin frequency. First let the fllwing pertinent parameters be intrduced fr the purpse f running the active Mathcad frms f this bk. q cul Electrn charge. ε farad m 1 Electric permittivity f free space. µ henry m 1 Magnetic permeability f free space. V... n m sec 1 Bhr n1 rbital velcity f Hydrgen. m.. e kg Electrn rest mass. r.. n m Bhr radius f n1 rbital. l q m Classic electrn radius.

2 134 r.. LM m Quantum Electrgravitatinal radius. t.. n sec Bhr n1 rbital time. v... LM m sec 1 Quantum electrgravitatinal velcity. i.. LM amp Quantum electrgravitatinal current. R.. Q hm Quantum Hall hm. c m. sec 1 Velcity f light in free space. Φ weber Fluxid Quantum. f.. LM Hz Quantum electrgravitatinal frequency. t LM f LM 1 h jule. sec Planks cnstant. Quantum electrgravitatinal time. The electric ptential at the Bhr (n1) radius is given by; q ọ (241) E n1 ε r n1 r, E n1 = And let; vlt t (242) Φ. n1 E E n1 2 r, Φ E = weber Als the same quantum magnetic flux is arrived at by (244) belw: Let θ π 2 (243) Φ = B(tesla) x Area and, (244) Φ M µ. q. v.... LM sin( θ) 4 π l q r n1. r. LM r n1 r, Φ M = weber where the rati Φ E = Φ M (Then the electric fluxid thrugh time and the magnetic fluxid thrugh time are cnnected t each ther by the Fluxid Quantum cnstant and ne must necessarily generate the ther.)

3 135 There is a cnstant radius related t the least quantum vlt as derived frm the Quantum Fluxid as; (245) E. LM i LM R Q r, E LM = vlt then; q ọ (246) r qlm r, r qlm = m ε E LM This radius can be equated t a wavelength by: (247) λ.. qlm 2 π r qlm r, λ qlm = m which f curse will have an assciated frequency f; c (248) f qlm r, f qlm = Hz λ qlm This frequency may well be the whistler frequency assciated with the lw frequency waves attributed t lightening strms which culd act as an amplifying stimulus. Als, there are in existence phtgraphs f sme inized curved semicircles at the Earth's ples that were taken sme time back. These may serve als t illustrate the lng electrgravitatinal wavelength assciated with equatin (247) abve. This is repr- duced frm memry belw in figure #8. Fig. #8

4 136 Again, Figure #8 n page 135 previus is an apprximate drawing f the phtgraphed standing waves that have been bserved ver the Nrth Ple at varius times. It is this authrs pstulate that they are evidence f the electrgravitatinal lng-wave f equatin (247) abve alng with the well knwn whistlers that are assciated with high energy lightening stimulus. Since there exist magnetic dmains it is nt unreasnable t prpse the existence f electrgravitatinal dmains as well. The size f these dmains wuld depend n the lcal transfer impedance f the surrunding medium. A gd example wuld be the plasma at the phtsphere f ur Sun which is cmpsed f a layer f granules and supergranules abut 60 miles thick where als a granule is larger than the size f Texas and the underlying supergranule is twice Earth's diameter. If we let the quantum resistance prtin f equatin (245) n the previus page be lwered, then the result wuld be an increase in the wavelength f equatin (247) thus enlarging the dmain. This is nt unreasnable since the resistance t current flw shuld decrease as the number f charge carriers increases per unit vlume. It is then als pssible t prpse that different pressures in the plasma culd cause chas and thus slar flares whse dmain (r lp size) wuld depend n the temperature and pressure in the lcal plasma. Even the strm cells n Earth culd be attributed t the electrgravitatinal dmain principle. The electric and magnetic fluxid cnstants being equal t the Fluxid Quantum will allw fr sme interesting field cnsequences which will be shwn by the fllwing frmulas n the next page. First we will slve fr r d with the expressin emplying the Fluxid Quantum in equatin (249) next.;

5 137 q (249) r d r, r ε... d = m 2 Φ f LM which is the same lng-wave radius as btained in equatin (246). If we allw fr f LM t becme a variable then r d will change inversely as the frequency changes. This change f frequency will necessitate the changing f L Q and C Q at the interface s that the interactin angles φ' and φ'' may be held cnstant. (See the previus chapter 7, page 123.) The hlding f the quantum electric fluxid as a cnstant is illustrated belw Assume that r d is increasing then; let t d t LM vlts(dwn) x time(up) (250) Φ. E q ε. r d t d 2 r, Φ = weber Thus the quantum electric fluxid abve and the quantum magnetic fluxid in equatin (244) are cnstants as is the standard Fluxid Quantum belw; Φ = weber The quantum magnetic fluxid may be further develped by simplifying equatin (244) s that; µ. q. v. l. LM sin( θ ) q r n1. r. LM r n1 simplifies t 1 q.. µ... 4 v l LM sin( θ) r LM q where nw;

6 138 (251) Φ 1 q..... M µ 4 v LM sin( θ ) r l LM q r; Φ M = weber Nte that the expressin fr the the quantum magnetic fluxid abve in equatin (251) is btained frm cnstants nly. N variables are invlved. (This hlds the parameters v LM and r LM cnstant at the pint f interactin.) It is f interest that the Fluxid Quantum is much like the Plank cnstant (h) wherein Heisenbergs tw mst famus expressins invlve the uncertainty principle such that the uncertainty in particle mmentum times the uncertainty in its psitin will be equal t Planks cnstant h and als the uncertainty f the energy f a particle times the uncertainty in the time f that particle als is equal t Planks cnstant. The Fluxid Quantum (and thus the quantum electric and magnetic fluxid develped in this paper abve) have a similar frm wherein the variable vlts times the variable time equals the quantum electric fluxid and the variable flux density (B Q ) times the variable area equals the quantum magnetic fluxid and bth f these are equal t the standard Fluxid Quantum. It is f further interest that the Fluxid Quantum may be derived directly in terms f Planks cnstant and the basic electrn charge as in equatin (252) belw. h (252) Φ' ( 2). r; Φ' = q weber and then the rati is; = Φ' Φ

7 139 Nte that the equatin in (252) previus requires that tw basic electrn charges must be used which implies that electrns naturally exist in pairs when the Fluxid Quantum is invlved and this may be applied directly t all f the electrgravitatinal equatins as well as the case fr the mechanism f supercnductivity. This may als state the case fr the natural generatin f electrn pairs by a free field as well. The quantum electric fluxid being held cnstant allws fr a variable distance frm the interface t a target mass t be achieved by causing an increase in t d thrugh a relativistic effect. The charging sequence f dts n the surface f the electrgravitatinal interface can be charged at a surface velcity appraching the velcity f light. The time displacement can be likened t a methd f prducing time dilatin as in the relativistic time dilatin in Einstein's special thery f relativity and the distance prjectin wuld ccur as fr the case f the mu-mesn that is traveling at near light speeds wherein the decay time is lengthened relativistically which causes the mu-mesn t travel much farther thrugh the atmsphere than wuld therwise be the case befre it decays. (This gives the appearance that the mu-mesn is traveling faster than the velcity f light if the relativistic time dilatin is nt taken int accunt.) This is demnstrated by equatin (250) where by frcing the vlts dwn will require r d t increase and thereby als require t d t increase. This relativistic type f effect can therefre be mimicked by the sudden change f t d t a larger t' d value. This is then simply a change in the frequency f the interactin field f the electrgravitatinal cntrl surface frm a higher t a lwer value. Then the Lrentz transfrm invlving the relativistic increase f time t' d wuld invke the relatinship f d'' = c x t' d. This wuld frce r d t increase in prprtin t the frequency decrease

8 140 alng the vectred phase angle. (See equatin (250) f this paper.) This is predicated upn the quantum fluxids F, F E, and F M all being cnstants even in the relativistic case. There als exists the pssibility f the virtual relativistic actin being frced int imaginary space where if the linear velcity f the dt charging sequence be allwed t exceed the velcity f light then the craft behind that interface wuld n lnger be in ur nrmal space but wuld be utside the wrld-line light cne in a regin defined as present but elsewhere, a regin that may be cnnected t all pints in ur space at nce. The entire craft wuld then becme invisible t ur space. Related t this chapter and included with this bk is a stand alne executable file named SPIRALLY.EXE that dynamically illustrates the dt charging sequence actin that is the same as described in the previus chapter 7 titled "Electrgravitatinal Craft Prpulsin and Cntrl". The sequence f spiraling dts made by electrns striking the phsphr surface f a CRT cntain the basic frequency independent interactin angles φ' and φ'' which are develped n page (123) f that paper. A suitable detectr munted in frnt f that CRT may be able t pick ut the frequencies cnnected with that electrgravitatinal actin spiral. This file may be run frm the DOS prmpt r frm the file manager in windws. It shuld again be nted that a vide screen is much like the dt charging surface described in the previus text and thus under the right circumstances culd simulate that surface quite clsely which makes experimentatin easily available t all cncerned. The prgram may be slw n sme lder machines but the prgram culd be vastly speeded up by writing the prgram in machine language. The prgram as it is was written under Micrsft Basic's PD7 develpment system and

9 141 then was cmpiled int an EXE self executable file by this authr. When the electrgravitatinal interface frequency is changed t effect a change in r' d there exists the requirement f hlding either ne r bth f the interactin phase angles φ' and φ'' cnstant r cntrllable t a required phase fr the prper cntrl f the spacecraft. Therefre the inductance L Q and the capacitance C Q shuld be variable and cntrllable. Or, cnstant X... LQ 2 π f Q L Q and, 1 cnstant X CQ 2. f. Q C Q The abve equatins can be expressed as numerical values by setting Df Q t be equal t f LM, DL Q equal t L Q, and DC Q equal t C Q. Als the net impedance cnstant may be slved fr as fllws: let; L.. Q henry and C.. Q farad then; (253) X... LQ 2 π f LM L Q r, X LQ = hm cnstant 1 (254) X CQ r, X 2. f. CQ = hm LM C Q cnstant (255) Z ttal R Q 2 X LQ X CQ 2 r; Z ttal = hm cnstant Thus while the frequency is being changed t affect a change in the spacecraft's

10 142 crdinates, the inductance and capacitance must change t keep cntrl ver the interface impedance and thus the interactin phase angle at the spacecraft's electrgravitatinal interface. The quantum inductance L Q may be derived directly frm the relatinship that states that a change in field flux divided by a change in initiating current defines the related inductance. This is shwn belw fr the quantum electrgravitatinal parameters as previusly derived. (256) L QE Again, t d = t LM and i LM = q / t 2. q LM. ọ t. d ε r 2 d r, L = i QE henry LM If we nw let the least quantum electrgravitatinal distance r LM be substituted fr r d and then slve fr t d, the result is interesting when cmpared t the related frequencies f M1rn1 and f Crn1 in the previus chapter titled "Electrgravitatinal Dynamics", n pages 67 and 68. r, t. d t LM (257) L QE r, L ε. QE = henry r d which is the electrgravitatinal quantum inductance as previusly derived in previus papers by this authr. Then slving fr t d as t new when r d = r LM in equatin (257) previus; L.... QE 4 π ε r LM (258) t new r, t new = sec t LM 1 and f new r, f new = Hz t new

11 143 This frequency is extremely clse t the frequencies f M1rn1 and f Crn1 mentined abve, where als; f.. M1rn Hz f.. C1rn Hz r, f new f M1rn1 = Hz and, f C1rn1 f new = Hz The frequency (f new ) is likely t be a universal quantum frequency that is t be assciated with the electrgravitatinal field actin in general. It therefre may be expected t be cnnected with all manner f energy quanta and detectable by varius experimental methds. Assciated with this frequency shuld be the quantum electrgravitatin frequency f LM as perhaps a sideband mix cnnected t f new. Fr example, an experiment utilizing a phase-lck lp centered n randm energy-related frequencies may detect ne r the ther r bth at the same time.

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Electric Current and Resistance

Electric Current and Resistance Electric Current and Resistance Electric Current Electric current is the rate f flw f charge thrugh sme regin f space The SI unit f current is the ampere (A) 1 A = 1 C / s The symbl fr electric current

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

37 Maxwell s Equations

37 Maxwell s Equations 37 Maxwell s quatins In this chapter, the plan is t summarize much f what we knw abut electricity and magnetism in a manner similar t the way in which James Clerk Maxwell summarized what was knwn abut

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Preparation work for A2 Mathematics [2017]

Preparation work for A2 Mathematics [2017] Preparatin wrk fr A2 Mathematics [2017] The wrk studied in Y12 after the return frm study leave is frm the Cre 3 mdule f the A2 Mathematics curse. This wrk will nly be reviewed during Year 13, it will

More information

NGSS High School Physics Domain Model

NGSS High School Physics Domain Model NGSS High Schl Physics Dmain Mdel Mtin and Stability: Frces and Interactins HS-PS2-1: Students will be able t analyze data t supprt the claim that Newtn s secnd law f mtin describes the mathematical relatinship

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

MANIPAL INSTITUTE OF TECHNOLOGY

MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL INSTITUTE OF TECHNOLOGY MANIPAL UNIVERSITY, MANIPAL SECOND SEMESTER B.Tech. END-SEMESTER EXAMINATION - MAY 013 SUBJECT: ENGINEERING PHYSICS (PHY101/10) Time: 3 Hrs. Max. Marks: 50 Nte: Answer any

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data

Examiner: Dr. Mohamed Elsharnoby Time: 180 min. Attempt all the following questions Solve the following five questions, and assume any missing data Benha University Cllege f Engineering at Banha Department f Mechanical Eng. First Year Mechanical Subject : Fluid Mechanics M111 Date:4/5/016 Questins Fr Final Crrective Examinatin Examiner: Dr. Mhamed

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m

Therefore the atomic diameter is 5 orders of magnitude ( times) greater than the m Orders f Magnitude Pwers f 10 are referred t as rders f magnitude e.g. smething a thusand times larger (10 3 ) is three rders f magnitude bigger. A prtn has a diameter f the rder ~10-15 m The diameter

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Kinetics of Particles. Chapter 3

Kinetics of Particles. Chapter 3 Kinetics f Particles Chapter 3 1 Kinetics f Particles It is the study f the relatins existing between the frces acting n bdy, the mass f the bdy, and the mtin f the bdy. It is the study f the relatin between

More information

Chapter 23 Electromagnetic Waves Lecture 14

Chapter 23 Electromagnetic Waves Lecture 14 Chapter 23 Electrmagnetic Waves Lecture 14 23.1 The Discvery f Electrmagnetic Waves 23.2 Prperties f Electrmagnetic Waves 23.3 Electrmagnetic Waves Carry Energy and Mmentum 23.4 Types f Electrmagnetic

More information

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0

1/2 and e0 e s ' 1+ imm w 4 M s 3 πρ0 r 3 m. n 0 ktr. .Also,since n 0 ktr 1,wehave. 4 3 M sπρ 0 r 3. ktr. 3 M sπρ 0 Chapter 6 6.1 Shw that fr a very weak slutin drplet (m 4 3 πr3 ρ 0 M s ), (6.8) can be written as e 0 ' 1+ a r b r 3 where a σ 0 /n 0 kt and b imm w / 4 3 M sπρ 0. What is yur interpretatin f thecnd and

More information

Einstein's special relativity the essentials

Einstein's special relativity the essentials VCE Physics Unit 3: Detailed study Einstein's special relativity the essentials Key knwledge and skills (frm Study Design) describe the predictin frm Maxwell equatins that the speed f light depends nly

More information

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1

Phy 213: General Physics III 6/14/2007 Chapter 28 Worksheet 1 Ph 13: General Phsics III 6/14/007 Chapter 8 Wrksheet 1 Magnetic Fields & Frce 1. A pint charge, q= 510 C and m=110-3 m kg, travels with a velcit f: v = 30 ˆ s i then enters a magnetic field: = 110 T ˆj.

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

11. DUAL NATURE OF RADIATION AND MATTER

11. DUAL NATURE OF RADIATION AND MATTER 11. DUAL NATURE OF RADIATION AND MATTER Very shrt answer and shrt answer questins 1. Define wrk functin f a metal? The minimum energy required fr an electrn t escape frm the metal surface is called the

More information

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments

Sodium D-line doublet. Lectures 5-6: Magnetic dipole moments. Orbital magnetic dipole moments. Orbital magnetic dipole moments Lectures 5-6: Magnetic diple mments Sdium D-line dublet Orbital diple mments. Orbital precessin. Grtrian diagram fr dublet states f neutral sdium shwing permitted transitins, including Na D-line transitin

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Lecture 13: Electrochemical Equilibria

Lecture 13: Electrochemical Equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 13: 10.21.05 Electrchemical Equilibria Tday: LAST TIME...2 An example calculatin...3 THE ELECTROCHEMICAL POTENTIAL...4 Electrstatic energy cntributins

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018

Physics 2B Chapter 23 Notes - Faraday s Law & Inductors Spring 2018 Michael Faraday lived in the Lndn area frm 1791 t 1867. He was 29 years ld when Hand Oersted, in 1820, accidentally discvered that electric current creates magnetic field. Thrugh empirical bservatin and

More information

Study Group Report: Plate-fin Heat Exchangers: AEA Technology

Study Group Report: Plate-fin Heat Exchangers: AEA Technology Study Grup Reprt: Plate-fin Heat Exchangers: AEA Technlgy The prblem under study cncerned the apparent discrepancy between a series f experiments using a plate fin heat exchanger and the classical thery

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string?

Q1. A string of length L is fixed at both ends. Which one of the following is NOT a possible wavelength for standing waves on this string? Term: 111 Thursday, January 05, 2012 Page: 1 Q1. A string f length L is fixed at bth ends. Which ne f the fllwing is NOT a pssible wavelength fr standing waves n this string? Q2. λ n = 2L n = A) 4L B)

More information

Dispersion Ref Feynman Vol-I, Ch-31

Dispersion Ref Feynman Vol-I, Ch-31 Dispersin Ref Feynman Vl-I, Ch-31 n () = 1 + q N q /m 2 2 2 0 i ( b/m) We have learned that the index f refractin is nt just a simple number, but a quantity that varies with the frequency f the light.

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion

Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals of Diffusion Materials Engineering 272-C Fall 2001, Lecture 7 & 8 Fundamentals f Diffusin Diffusin: Transprt in a slid, liquid, r gas driven by a cncentratin gradient (r, in the case f mass transprt, a chemical ptential

More information

(Communicated at the meeting of January )

(Communicated at the meeting of January ) Physics. - Establishment f an Abslute Scale fr the herm-electric Frce. By G. BOR ELlUS. W. H. KEESOM. C. H. JOHANSSON and J. O. LND E. Supplement N0. 69b t the Cmmunicatins frm the Physical Labratry at

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

AP Physics Kinematic Wrap Up

AP Physics Kinematic Wrap Up AP Physics Kinematic Wrap Up S what d yu need t knw abut this mtin in tw-dimensin stuff t get a gd scre n the ld AP Physics Test? First ff, here are the equatins that yu ll have t wrk with: v v at x x

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Introduction to Smith Charts

Introduction to Smith Charts Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

ChE 471: LECTURE 4 Fall 2003

ChE 471: LECTURE 4 Fall 2003 ChE 47: LECTURE 4 Fall 003 IDEL RECTORS One f the key gals f chemical reactin engineering is t quantify the relatinship between prductin rate, reactr size, reactin kinetics and selected perating cnditins.

More information

(2) Even if such a value of k was possible, the neutrons multiply

(2) Even if such a value of k was possible, the neutrons multiply CHANGE OF REACTOR Nuclear Thery - Curse 227 POWER WTH REACTVTY CHANGE n this lessn, we will cnsider hw neutrn density, neutrn flux and reactr pwer change when the multiplicatin factr, k, r the reactivity,

More information

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels

ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION. Instructions: If asked to label the axes please use real world (contextual) labels ANSWER KEY FOR MATH 10 SAMPLE EXAMINATION Instructins: If asked t label the axes please use real wrld (cntextual) labels Multiple Chice Answers: 0 questins x 1.5 = 30 Pints ttal Questin Answer Number 1

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Information for Physics 1201 Midterm I Wednesday, February 20

Information for Physics 1201 Midterm I Wednesday, February 20 My lecture slides are psted at http://www.physics.hi-state.edu/~humanic/ Infrmatin fr Physics 1201 Midterm I Wednesday, February 20 1) Frmat: 10 multiple chice questins (each wrth 5 pints) and tw shw-wrk

More information

Lead/Lag Compensator Frequency Domain Properties and Design Methods

Lead/Lag Compensator Frequency Domain Properties and Design Methods Lectures 6 and 7 Lead/Lag Cmpensatr Frequency Dmain Prperties and Design Methds Definitin Cnsider the cmpensatr (ie cntrller Fr, it is called a lag cmpensatr s K Fr s, it is called a lead cmpensatr Ntatin

More information

NUMBERS, MATHEMATICS AND EQUATIONS

NUMBERS, MATHEMATICS AND EQUATIONS AUSTRALIAN CURRICULUM PHYSICS GETTING STARTED WITH PHYSICS NUMBERS, MATHEMATICS AND EQUATIONS An integral part t the understanding f ur physical wrld is the use f mathematical mdels which can be used t

More information

Math Foundations 20 Work Plan

Math Foundations 20 Work Plan Math Fundatins 20 Wrk Plan Units / Tpics 20.8 Demnstrate understanding f systems f linear inequalities in tw variables. Time Frame December 1-3 weeks 6-10 Majr Learning Indicatrs Identify situatins relevant

More information

Solution to HW14 Fall-2002

Solution to HW14 Fall-2002 Slutin t HW14 Fall-2002 CJ5 10.CQ.003. REASONING AND SOLUTION Figures 10.11 and 10.14 shw the velcity and the acceleratin, respectively, the shadw a ball that underges unirm circular mtin. The shadw underges

More information

Preparation work for A2 Mathematics [2018]

Preparation work for A2 Mathematics [2018] Preparatin wrk fr A Mathematics [018] The wrk studied in Y1 will frm the fundatins n which will build upn in Year 13. It will nly be reviewed during Year 13, it will nt be retaught. This is t allw time

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

ENGI 4430 Parametric Vector Functions Page 2-01

ENGI 4430 Parametric Vector Functions Page 2-01 ENGI 4430 Parametric Vectr Functins Page -01. Parametric Vectr Functins (cntinued) Any nn-zer vectr r can be decmpsed int its magnitude r and its directin: r rrˆ, where r r 0 Tangent Vectr: dx dy dz dr

More information

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS

TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS AN 10-18 Applicatin Nte 10-18 PAYNE ENGINEERING TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS q = (h c + h r ) A (T s - T amb ) TEMPERATURE CONSIDERATIONS FOR SCR CONTROLS Thyristr cntrls - mre cmmnly called

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

COASTAL ENGINEERING Chapter 2

COASTAL ENGINEERING Chapter 2 CASTAL ENGINEERING Chapter 2 GENERALIZED WAVE DIFFRACTIN DIAGRAMS J. W. Jhnsn Assciate Prfessr f Mechanical Engineering University f Califrnia Berkeley, Califrnia INTRDUCTIN Wave diffractin is the phenmenn

More information

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f

(1.1) V which contains charges. If a charge density ρ, is defined as the limit of the ratio of the charge contained. 0, and if a force density f 1.0 Review f Electrmagnetic Field Thery Selected aspects f electrmagnetic thery are reviewed in this sectin, with emphasis n cncepts which are useful in understanding magnet design. Detailed, rigrus treatments

More information

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes

Chem 115 POGIL Worksheet - Week 12 Molecular Shapes Chem 115 POGIL Wrksheet - Week 12 Mlecular Shapes Why? Cntrary t the impressin that Lewis structures may give, many mlecules have threedimensinal gemetries. These mlecular shapes are very imprtant t understanding

More information

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system

ASTRODYNAMICS. o o o. Early Space Exploration. Kepler's Laws. Nicolaus Copernicus ( ) Placed Sun at center of solar system ASTRODYNAMICS Early Space Explratin Niclaus Cpernicus (1473-1543) Placed Sun at center f slar system Shwed Earth rtates n its axis nce a day Thught planets rbit in unifrm circles (wrng!) Jhannes Kepler

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322

ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA. December 4, PLP No. 322 ELECTRON CYCLOTRON HEATING OF AN ANISOTROPIC PLASMA by J. C. SPROTT December 4, 1969 PLP N. 3 These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated. They are fr private

More information

7.0 Heat Transfer in an External Laminar Boundary Layer

7.0 Heat Transfer in an External Laminar Boundary Layer 7.0 Heat ransfer in an Eternal Laminar Bundary Layer 7. Intrductin In this chapter, we will assume: ) hat the fluid prperties are cnstant and unaffected by temperature variatins. ) he thermal & mmentum

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY

Name: Period: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Name: Perid: Date: ATOMIC STRUCTURE NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant

More information

Introduction to Spacetime Geometry

Introduction to Spacetime Geometry Intrductin t Spacetime Gemetry Let s start with a review f a basic feature f Euclidean gemetry, the Pythagrean therem. In a twdimensinal crdinate system we can relate the length f a line segment t the

More information

THERMAL TEST LEVELS & DURATIONS

THERMAL TEST LEVELS & DURATIONS PREFERRED RELIABILITY PAGE 1 OF 7 PRACTICES PRACTICE NO. PT-TE-144 Practice: 1 Perfrm thermal dwell test n prtflight hardware ver the temperature range f +75 C/-2 C (applied at the thermal cntrl/munting

More information

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology

Technical Bulletin. Generation Interconnection Procedures. Revisions to Cluster 4, Phase 1 Study Methodology Technical Bulletin Generatin Intercnnectin Prcedures Revisins t Cluster 4, Phase 1 Study Methdlgy Release Date: Octber 20, 2011 (Finalizatin f the Draft Technical Bulletin released n September 19, 2011)

More information

Chapter 19. Electric Potential Energy and the Electric Potential

Chapter 19. Electric Potential Energy and the Electric Potential Chapter 19 Electric Ptential Energy and the Electric Ptential 19.1 Ptential Energy W mgh mgh GPE GPE 19.1 Ptential Energy 19.1 Ptential Energy W EPE EPE 19. The Electric Ptential Difference W q EPE q EPE

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

GAUSS' LAW E. A. surface

GAUSS' LAW E. A. surface Prf. Dr. I. M. A. Nasser GAUSS' LAW 08.11.017 GAUSS' LAW Intrductin: The electric field f a given charge distributin can in principle be calculated using Culmb's law. The examples discussed in electric

More information

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN

Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Professor and Chair Mechanical Engineering Department Christian Brothers University 650 East Parkway South Memphis, TN Yeu-Sheng Paul Shiue, Ph.D 薛宇盛 Prfessr and Chair Mechanical Engineering Department Christian Brthers University 650 East Parkway Suth Memphis, TN 38104 Office: (901) 321-3424 Rm: N-110 Fax : (901) 321-3402

More information

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets

Department of Economics, University of California, Davis Ecn 200C Micro Theory Professor Giacomo Bonanno. Insurance Markets Department f Ecnmics, University f alifrnia, Davis Ecn 200 Micr Thery Prfessr Giacm Bnann Insurance Markets nsider an individual wh has an initial wealth f. ith sme prbability p he faces a lss f x (0

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

Hubble s Law PHYS 1301

Hubble s Law PHYS 1301 1 PHYS 1301 Hubble s Law Why: The lab will verify Hubble s law fr the expansin f the universe which is ne f the imprtant cnsequences f general relativity. What: Frm measurements f the angular size and

More information

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards:

MODULE FOUR. This module addresses functions. SC Academic Elementary Algebra Standards: MODULE FOUR This mdule addresses functins SC Academic Standards: EA-3.1 Classify a relatinship as being either a functin r nt a functin when given data as a table, set f rdered pairs, r graph. EA-3.2 Use

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Review Problems 3. Four FIR Filter Types

Review Problems 3. Four FIR Filter Types Review Prblems 3 Fur FIR Filter Types Fur types f FIR linear phase digital filters have cefficients h(n fr 0 n M. They are defined as fllws: Type I: h(n = h(m-n and M even. Type II: h(n = h(m-n and M dd.

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

CHAPTER 8b Static Equilibrium Units

CHAPTER 8b Static Equilibrium Units CHAPTER 8b Static Equilibrium Units The Cnditins fr Equilibrium Slving Statics Prblems Stability and Balance Elasticity; Stress and Strain The Cnditins fr Equilibrium An bject with frces acting n it, but

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Finding the Earth s magnetic field

Finding the Earth s magnetic field Labratry #6 Name: Phys 1402 - Dr. Cristian Bahrim Finding the Earth s magnetic field The thery accepted tday fr the rigin f the Earth s magnetic field is based n the mtin f the plasma (a miture f electrns

More information

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS

ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS ENGINEERING COUNCIL CERTIFICATE LEVEL THERMODYNAMIC, FLUID AND PROCESS ENGINEERING C106 TUTORIAL 5 THE VISCOUS NATURE OF FLUIDS On cmpletin f this tutrial yu shuld be able t d the fllwing. Define viscsity

More information

ABSORPTION OF GAMMA RAYS

ABSORPTION OF GAMMA RAYS 6 Sep 11 Gamma.1 ABSORPTIO OF GAMMA RAYS Gamma rays is the name given t high energy electrmagnetic radiatin riginating frm nuclear energy level transitins. (Typical wavelength, frequency, and energy ranges

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

PHYSICS Unit 3 Trial Examination

PHYSICS Unit 3 Trial Examination STAV Publishing Pty Ltd 005 PHYSICS Unit 3 Trial Examinatin SOLUTIONS BOOK Published by STAV Publishing Pty Ltd. STAV Huse, 5 Munr Street, Cburg VIC 3058 Australia. Phne: 6 + 3 9385 3999 Fax: 6 + 3 9386

More information

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations

Schedule. Time Varying electromagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 only) 6.3 Maxwell s equations chedule Time Varying electrmagnetic fields (1 Week) 6.1 Overview 6.2 Faraday s law (6.2.1 nly) 6.3 Maxwell s equatins Wave quatin (3 Week) 6.5 Time-Harmnic fields 7.1 Overview 7.2 Plane Waves in Lssless

More information

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges.

Q1. In figure 1, Q = 60 µc, q = 20 µc, a = 3.0 m, and b = 4.0 m. Calculate the total electric force on q due to the other 2 charges. Phys10 Secnd Majr-08 Zer Versin Crdinatr: Dr. I. M. Nasser Saturday, May 3, 009 Page: 1 Q1. In figure 1, Q = 60 µc, q = 0 µc, a = 3.0 m, and b = 4.0 m. Calculate the ttal electric frce n q due t the ther

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts

I understand the new topics for this unit if I can do the practice questions in the textbook/handouts 1 U n i t 6 11U Date: Name: Sinusidals Unit 6 Tentative TEST date Big idea/learning Gals In this unit yu will learn hw trignmetry can be used t mdel wavelike relatinships. These wavelike functins are called

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

Chapter VII Electrodynamics

Chapter VII Electrodynamics Chapter VII Electrdynamics Recmmended prblems: 7.1, 7., 7.4, 7.5, 7.7, 7.8, 7.10, 7.11, 7.1, 7.13, 7.15, 7.17, 7.18, 7.0, 7.1, 7., 7.5, 7.6, 7.7, 7.9, 7.31, 7.38, 7.40, 7.45, 7.50.. Ohm s Law T make a

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1

Phys102 Final-061 Zero Version Coordinator: Nasser Wednesday, January 24, 2007 Page: 1 Crdinatr: Nasser Wednesday, January 4, 007 Page: 1 Q1. Tw transmitters, S 1 and S shwn in the figure, emit identical sund waves f wavelength λ. The transmitters are separated by a distance λ /. Cnsider

More information