CELLULAR AUTOMATA WITH CHAOTIC RULE FORMATION AND ITS CHARACTERISTICS ABSTRACT

Size: px
Start display at page:

Download "CELLULAR AUTOMATA WITH CHAOTIC RULE FORMATION AND ITS CHARACTERISTICS ABSTRACT"

Transcription

1 CELLULAR AUTOMATA WITH CHAOTIC RULE FORMATION AND ITS CHARACTERISTICS Christopher Immanuel W * 1 Paul Mary Deborrah S 2 Samuel Selvaraj R 3 * Research and Development Centre, Bharathiar University, Coimbatore Department of Physics, Vel Tech High Tech Engineering College, Chennai, India. 2 Department of Physics, TheAmerican College, Madurai, India. 3 Department of Physics, Presidency College, Chennai, India. ABSTRACT The fractal procedure known as cellular automata are applied to the different field.cellular Automata are not only of theoretical interest. One of the main topics in CA research is their usage as models of phenomena which can be observed in real life, the practical applications of Cellular Automata can be seen in multiple fields of science and social science. They range from computer science, technology, physics, biology, and math, to economics, psychology, philosophy, and even art. Cellular Automata are discrete dynamical systems, of simple construction but complex and varied behavior.despite of the simplicity of their construction; Cellular Automata are capable of very complicated behavior with very little specification. The present paper introducesa cellular automata and their applicationwith some rules. It is very useful for future references. Keywords: Cellular Automaton, Fractal Dimension, Chaotic Rule. 97

2 1. Introduction This paper should give a short overview of what cellular automata are, how they work and what they can be used for. The next section starts with the history, how cellular automata were invented and briefly discuss some of their properties. Cellular automata are a relatively new development in modern science. It consists of simple progressions from algorithms or Rules over time.cellular automata (CA) are mathematical models for complex natural systems containing large numbers of simple identical componentswith local interactions. Cellular automata rules can be classified automatically for a spectrum of ordered, complex and chaotic dynamics, by a measure of the variance of input entropy overtime. They are discrete dynamical systems exhibiting a wide range of complex behavior;from on the one hand, point and cyclic behavior yielding structures of relative periodicity and, on the other hand, utterly chaotic attractors. Chaos and complexity theory teaches us that simple rules can lead to enormous levels of complexity. Cellular Automata or Cellular Spaces as they were called then were invented by John von Neumann half a century ago. 2. The basic idea 98

3 What are cellular automata? The word cellular here means consisting of cells a cellular automaton is made up of cells. Each of those cells contains an automaton, a finite state machine. The resulting construct is a space filled with cells, each of those cells containing a finite state machine. We say a cell has a state, meaning the state, the cells finite state machine is in. Usually the space is divided into a grid or lattice structure. In the cellular space, all the cells go from their current state to some next state according to the local rule, the switching rule of their state machine. The input for the local rule is the neighborhood of the cell, which is usually a small number of cells surrounding the cell. All the cells use the same local rule.the entire cells switch from their current state to the next state at the same time, the space is synchronous. A Cellular Automata consists of processors (cells), connected usually in an n-dimensional grid. Fig.1 One Dimensional CA 99

4 Fig.2 Two Dimensional CA Rules are formed through a definition of the 2 3 = 8 possible progressions of three cells (the cell, the cells left-hand neighbor, and the cells right-hand neighbor). Each of these progressions gives a single output, producing a new cell and creating a three to one mapping. A cell dies or lives according to some transition rule 100

5 Fig.3Cell transition from T=0 to T=1 3. Some terms The following terms will be used in the remainder of this paper. Cell A single element of a cellular space, the smallest unit of the space. Cellular Space A lattice space made up of cells, each of which is in one of several predefined states. This is what most people nowadays call a Cellular Automaton, but I find the distinction useful. Cellular Automaton A structure built in a cellular space, an automaton built out of cells. The term is often used as a synonym for Cellular Space, but to be clearer, I ll try not use it that way. CA is an abbreviation that is often used for these terms. Cellular Automata Plural of Cellular Automaton, sometimes used instead of the singular form. 101

6 Local Rule The rule governing the transition between states. The definition of a cell s finite state machine. It s called local, because it only uses the Neighborhood as its input. Neighborhood The cells surrounding a cell that influencesits next state. The choice of neighborhood influences the behavior of the cellular space. Configuration A snapshot of all cell states, representing a single point in time. When we talk about a configuration, it s usually the starting point or a result of running a cellular space. GenerationOne step in the evolution of a cellular space, an intermediate configuration. Passage of time in a cellular space is measured in generations. 4. History of CA In the 1950s, John von Neumann tried to construct self-replicating machines. He wanted to find the simplest machines that could build copies of themself, but to be useful, they also had to be universal computers. According to [John von Neumann 1951] started out working with differential equations until his colleague Stanislaw Ulam suggested a different model, similar to the lattice spaces Ulam used to study crystals, which lead to a significant simplification Von Neumann s automata Von Neumann realized that a 2-dimensional model would be sufficient. In his 2-dimensional model, a cellular space was formed of cells that could be in one of several possible states. Each 102

7 cell would change its state according to a local rule that calculated the new state as a function of the four nearest neighboring cells (the orthogonal neighbors, this type of neighborhood is now called a von Neumann neighborhood). Von Neumann called his creation a cellular space and the constructions in that space were the cellular automata. The cells in von Neumann s space could be in one of 29 states and there was a complicated set of rules for the movement between these states. For a detailed explanation of these states see e.g. [John von Neumann 1951]. But self-replication was only half of the problem; there were actually two properties von Neumann was looking for: universal computation and universal construction. The first was to make sure that the automata he constructed were not trivial; the second was the basis for self-replication. Universal computation meant that constructions in the cellular space were capable of computing any computable function. The simplest way of proving this property was showing that a Turing machine can be built in the cellular space. Universal construction meant that an automaton could be built that could create other constructions in the cellular space. A programmable construction machine was created by coupling a Turing machine with a universal constructor. Although von Neumann developed the core of his self-replicating machines, he didn t finish the work. The complete model was published after his death in 1966 by Arthur W. Burks. Following this publication, a small number of other works were published, including a monograph by E. F. Codd Codd s space 103

8 In his Monograph, Codd summarizes his research into the requirements for universal computation and construction. He shows that there exists no cellular space with 2 states and a local rule using the von Neumann neighborhood that exhibits universality. He then proceeds to develop a cellular space that does exhibit universality but has simpler rules than von Neumann s space. He shows how both universal computation and universal construction can be realized in his simpler space. Another first is the fact that he tries out his cellular automata on-line, ie. on a computer terminal as opposed to having simulations run in batch mode. In a section titled Why On-Line? he argues Rapid interaction between man and machine tends to develop the intuition and perceptivity of the experimenter. The immediacy of the machine s response has the effect of maintaining a high level of cerebral activity in the experimenter. He may have been the first to experience the fascination of cellular automata first hand! Codd was not the first to create a simpler cellular space, though. According to Sarkar, in 1966 Arbib created self-replicating universal computers in a space with 4 different states and von Neumann neighborhood. 4.3.Konradzuse s rechnenderraum KonradZuse described how the whole of space might be in reality a cellular space of the kind von Neumann described. He called this space Computing Space ( RechnenderRaum in German). The idea was later picked up by both Edward Fredkin [Hurd 1990] and StephenWolfram. Compelling as the idea may be, there are no practical applications. 104

9 4.4. Conway s game of life Short after Codd s experiments, the British mathematician John Horton Con-way developed another cellular space that he called Game of Life. The Game of Life was a breakthrough because it is one of the simplest cellular spaces to exhibit universal computation and universal construction, although that was not known when the Game of Life was first published. Martin Gardner wrote about the Game of Life in his column in Scientific American and it became very popular to run simulations of it on the mini computers of the time. Although Conway constructed the rules for his cellular space in a way that should allow for complex interaction, the constructions that are possible in this space were discovered after the rules for the space had been set. In contrast, most of the patterns used by Codd and von Neumann to construct their automata were developed at the same time as the rules governing their spaces, the rules are complex and it seems clear that they were crafted specifically to enable certain constructions. The rules for Conway s Game of Life are actually very different from the ones von Neumann and Codd used they are totalistic, which means that only the number of neighbors that are in a certain state is important, their positions are not taken into account. In Codd s and von Neumann s spaces, most of the rules had directional components only neighbors in certain positions are considered in each state. This difference means that Conway s rules are much simpler than Codd s and von Neumann s. 105

10 Around this time a trend started to call the cellular spaces cellular automata, the former distinction blurring, possibly because no one thought of the gliders and guns in Conway s Game of Life as automata, they seemed more like multi celled organisms that sprang to life in this foreign universe Wolfram s surveys of cellular space On a quest to figure out where the complexity in nature comes from, Stephen Wolfram encountered cellular automata (a colleague told him to have a look and look he did). In contrast to Codd, who thought that exhaustive search is out of the question ), he wanted to do an exhaustive survey of possible cellular automata (or spaces, as Codd would have called them). But there are too many 2-dimensional cellular spaces so he simplified the model even further.wolfram looked at the simplest possible cellular automata: 1-dimensional automata with two states and a three cell neighborhood. Since there are eight possible input configurations of three cells with two possible states, there are 256 possible local rules for these cellular automata.of these 256 possible rules, only 32 are legal under the restrictions he used in his initial survey.as a result of his experiments, he grouped the rules into three classes the first class that evolves from arbitrary initial conditions into a static pattern, like rules numbers 0 or 4; the second class that evolves into simple crystalline structures and the third class that evolves into complex self-similar patterns. 106

11 Wolfram refined his classification scheme later into four classes, splitting the class of rules with complex behavior intocomplex andchaoticrules. The rules with chaotic behavior can be used to generate randomness, while some of the rules with complex behavior are computation universal. 5. Cellular automata and the mechanisms of nature Cellular automata are examples of simple programs, that work by having the color of each cell in successive rows be determined by the same simple rule that certain simple rules like the one on the right can produce patterns and behavior of immense complexity. Rule 30 cellular automaton Rule 30 is a one-dimensional binary cellular automaton. current pattern new state for center cell Fig.4One-dimensional binary cellular automaton Rule

12 Rule 30 exhibits class 3 behaviors, meaning even simple input patterns such as that shown lead to chaotic, seemingly random histories. With the rule above, a simple pattern is produced. Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 108

13 Step 7 Step 8 109

14 Fig.5Successive lines give configurations obtained on successive time steps, with white and black squares representing sites with values 0 and 1 respectively. The above figure showed patterns produced by evolution according to various Cellular automaton rules, starting from typical disordered initial conditions, in which the value of each site is randomly chosen to be zero or one. Such cellular automata can be used as models of randomness in nature. some class 3 cellular automata yield rather simple patterns, which are typically periodic or at least self-similar (almost periodic). There are never the less class 3 cellular automatawhich yield complex patterns, even from simple initial states. Their evolution can intrinsically produce apparent randomness, withoutexternal input of random initial conditions. Many class 3 cellular automata seem to perform very complicated trans-formations on their initial conditions. Their evolution thus corresponds to a complicated computation. But any predictions of the cellular automaton behavior must also be obtained through computations. Most class 3cellular automata are expected to be computationally irreducible. A few rules however 110

15 have special simplifying features which make predictions and analysis possible. Most class 3 cellular automata are however nonlinear. But the two rules that seem best as random sequence generators are nonlinear, and are given by s i n+1 =s i-1 nxor (s i nor s i+1 n) (1) or, equivalently, a i = (a i-1 + a i +a i+1 + a i a i+1 ) mod 2 (2) The cellular automaton rule 30 is essentially nonlinear. Any class 3 (chaotic) cellular automaton rule can be considered a candidate random sequence generator. Here, we shall restrict ourselves to the case of one-dimensional binary CA ofncells with neighborhood ofsize equal to 3, defined as elementaryby Wolfram. In these models, Lis a linear array where each celladopts one of two possible states ins={0,1}and thedynamical rule is the form s i n+1 =f (s i-1 n, s i n,s i+1 n) means that,n(i) s i n+1 =f (s i-1 n, s i n,s i+1 n) In this case, there are 256 possible rules f. If {bi}is a binary string, corresponding to the result of applying f to each different set of 3-tuples (s i-1 n, s i n, s i+1 n) sorted in descending order,it is possible to use the Wolfram s naming scheme to assign, to each rule, a label given by the decimal representation of the binary sequence. Rules of elementary automata were classified qualitatively by [Wolfram 1984] according to its asymptotic behavioras Class I to IV, if the automata evolution 111

16 asymptoticallygoes to: a constant state, an isolated periodic segments,chaotic regime or isolated chaotic segments, respectively.in contrast with the continuous case, the elements ofthe Class III can be linear or nonlinear CA. The linear arethe rules that can be written as In the case of elementary CA this class contains 16 elementsand the rest are nonlinear. 6. Main characteristics of cellular automata a. Space is discrete, and there is a regular array of sites (cells). Each cell has a finite set of values. b. Time is discrete, and the value of each site is up-dated in a sequence of discrete time steps. c. The Rule for the new value of a site depends only on the values of a local neighborhood of sites near it. d. The variables at each site are up-dated simultaneously ( synchronously ) based on the values of the variables at the previous time step. Conclusion The model studied in this paper was developed in an attempt to increase our understanding of complex behavior in dynamical systems. It is well known that dynamical systems differ dramatically in several important aspects of their behavior, such as periodicity, predictability, 112

17 stability, dependence on initial conditions, etc. Systems that are nasty in these respects are called chaotic. There are many important, and sometimes deep, facts known about chaotic dynamical systems. The cellular automata are the new style, high performance simulation tool. We hope researchers can bring into play well the modeling power of the CA approach in future in variety complex systems. Cellular automata have been successfully used to model many variety complex systems, such as biology, chemistry, mathematics, physics field. A cellular automaton model allows the formulation of a dynamic complex system application in simple rules. Based on standard CA, there are of course many corrective and extended computational models for different applied objectives. According to simple local transition functions, CA are intuitively regarded as a set of interacting elements are updated during a discrete time interval. References 1.John von Neumann,The general and logical theory of automata, Cerebral Mechanisms in Behavior.[ The Hixon Symposium, John Wiley & Sons Inc., New York, N. Y., 3] 1951, pp K. C., Hurd, L. P., Yu, S.: Computation Theoretic Aspects of Cellular Automata, Physica D, 45, 1990, Wolfram, S. "Universality and Complexity in Cellular Automata." Physica D 10, 1-35,1984. Wolfram 113

Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central

Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central Cellular automata are idealized models of complex systems Large network of simple components Limited communication among components No central control Complex dynamics from simple rules Capability of information

More information

Modelling with cellular automata

Modelling with cellular automata Modelling with cellular automata Shan He School for Computational Science University of Birmingham Module 06-23836: Computational Modelling with MATLAB Outline Outline of Topics Concepts about cellular

More information

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography

Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography Image Encryption and Decryption Algorithm Using Two Dimensional Cellular Automata Rules In Cryptography P. Sanoop Kumar Department of CSE, Gayatri Vidya Parishad College of Engineering(A), Madhurawada-530048,Visakhapatnam,

More information

II. Cellular Automata 8/27/03 1

II. Cellular Automata 8/27/03 1 II. Cellular Automata 8/27/03 1 Cellular Automata (CAs) Invented by von Neumann in 1940s to study reproduction He succeeded in constructing a self-reproducing CA Have been used as: massively parallel computer

More information

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob

Cellular Automata. and beyond. The World of Simple Programs. Christian Jacob Cellular Automata and beyond The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC / MDSC 605 Fall 2003 Cellular

More information

II. Spatial Systems. A. Cellular Automata. Structure. Cellular Automata (CAs) Example: Conway s Game of Life. State Transition Rule

II. Spatial Systems. A. Cellular Automata. Structure. Cellular Automata (CAs) Example: Conway s Game of Life. State Transition Rule II. Spatial Systems A. Cellular Automata B. Pattern Formation C. Slime Mold D. Excitable Media A. Cellular Automata 1/18/17 1 1/18/17 2 Cellular Automata (CAs) Invented by von Neumann in 1940s to study

More information

II. Spatial Systems A. Cellular Automata 8/24/08 1

II. Spatial Systems A. Cellular Automata 8/24/08 1 II. Spatial Systems A. Cellular Automata 8/24/08 1 Cellular Automata (CAs) Invented by von Neumann in 1940s to study reproduction He succeeded in constructing a self-reproducing CA Have been used as: massively

More information

On Elementary and Algebraic Cellular Automata

On Elementary and Algebraic Cellular Automata Chapter On Elementary and Algebraic Cellular Automata Yuriy Gulak Center for Structures in Extreme Environments, Mechanical and Aerospace Engineering, Rutgers University, New Jersey ygulak@jove.rutgers.edu

More information

Mitchell Chapter 10. Living systems are open systems that exchange energy, materials & information

Mitchell Chapter 10. Living systems are open systems that exchange energy, materials & information Living systems compute Mitchell Chapter 10 Living systems are open systems that exchange energy, materials & information E.g. Erwin Shrodinger (1944) & Lynn Margulis (2000) books: What is Life? discuss

More information

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x.

Cellular Automata. ,C ) (t ) ,..., C i +[ K / 2] Cellular Automata. x > N : C x ! N. = C x. x < 1: C x. = C N+ x. and beyond Lindenmayer Systems The World of Simple Programs Christian Jacob Department of Computer Science Department of Biochemistry & Molecular Biology University of Calgary CPSC 673 Winter 2004 Random

More information

Cellular Automata. History. 1-Dimensional CA. 1-Dimensional CA. Ozalp Babaoglu

Cellular Automata. History. 1-Dimensional CA. 1-Dimensional CA. Ozalp Babaoglu History Cellular Automata Ozalp Babaoglu Developed by John von Neumann as a formal tool to study mechanical self replication Studied extensively by Stephen Wolfram ALMA MATER STUDIORUM UNIVERSITA DI BOLOGNA

More information

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems

Motivation. Evolution has rediscovered several times multicellularity as a way to build complex living systems Cellular Systems 1 Motivation Evolution has rediscovered several times multicellularity as a way to build complex living systems Multicellular systems are composed by many copies of a unique fundamental

More information

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing

biologically-inspired computing lecture 12 Informatics luis rocha 2015 INDIANA UNIVERSITY biologically Inspired computing lecture 12 -inspired Sections I485/H400 course outlook Assignments: 35% Students will complete 4/5 assignments based on algorithms presented in class Lab meets in I1 (West) 109 on Lab Wednesdays Lab 0

More information

Justine Seastres. Cellular Automata and the Game of Life

Justine Seastres. Cellular Automata and the Game of Life Justine Seastres Saint Mary s College of California Department of Mathematics May 16, 2016 Cellular Automata and the Game of Life Supervisors: Professor Porter Professor Sauerberg 2 Contents 1 Introduction

More information

Discrete Tranformation of Output in Cellular Automata

Discrete Tranformation of Output in Cellular Automata Discrete Tranformation of Output in Cellular Automata Aleksander Lunøe Waage Master of Science in Computer Science Submission date: July 2012 Supervisor: Gunnar Tufte, IDI Norwegian University of Science

More information

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors

Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Extension of cellular automata by introducing an algorithm of recursive estimation of neighbors Yoshihiko Kayama BAIKA Women s University, Japan (Tel: 81-72-643-6221, Fax: 81-72-643-8473) kayama@baika.ac.jp

More information

Note that numerically, with white corresponding to 0 and black to 1, the rule can be written:

Note that numerically, with white corresponding to 0 and black to 1, the rule can be written: Cellular automata We discuss cellular automata as a simple application of MATLAB programming and as an accessible scientific topic of recent interest. You can find a lot of information on the internet.

More information

Introduction to Artificial Life and Cellular Automata. Cellular Automata

Introduction to Artificial Life and Cellular Automata. Cellular Automata Introduction to Artificial Life and Cellular Automata CS405 Cellular Automata A cellular automata is a family of simple, finite-state machines that exhibit interesting, emergent behaviors through their

More information

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09

Cellular Automata CS 591 Complex Adaptive Systems Spring Professor: Melanie Moses 2/02/09 Cellular Automata CS 591 Complex Adaptive Systems Spring 2009 Professor: Melanie Moses 2/02/09 Introduction to Cellular Automata (CA) Invented by John von Neumann (circa~1950). A cellular automata consists

More information

Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata

Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata Introduction to Scientific Modeling CS 365, Fall 2011 Cellular Automata Stephanie Forrest ME 214 http://cs.unm.edu/~forrest/cs365/ forrest@cs.unm.edu 505-277-7104 Reading Assignment! Mitchell Ch. 10" Wolfram

More information

Chapter 2 Simplicity in the Universe of Cellular Automata

Chapter 2 Simplicity in the Universe of Cellular Automata Chapter 2 Simplicity in the Universe of Cellular Automata Because of their simplicity, rules of cellular automata can easily be understood. In a very simple version, we consider two-state one-dimensional

More information

Cellular Automata. Jason Frank Mathematical Institute

Cellular Automata. Jason Frank Mathematical Institute Cellular Automata Jason Frank Mathematical Institute WISM484 Introduction to Complex Systems, Utrecht University, 2015 Cellular Automata Game of Life: Simulator: http://www.bitstorm.org/gameoflife/ Hawking:

More information

Bio-inspired Models of Computation Seminar. Daniele Sgandurra. 16 October 2009

Bio-inspired Models of Computation Seminar. Daniele Sgandurra. 16 October 2009 Bio-inspired Models of Computation Seminar Università di Pisa 16 October 2009 Outline Introduction Motivation History Cellular Systems Wolfram Classes Variants and Extensions Extended Topics Garden of

More information

BINARY MORPHOLOGY AND CELLULAR AUTOMATA

BINARY MORPHOLOGY AND CELLULAR AUTOMATA BINARY MORPHOLOGY AND CELLULAR AUTOMATA I can't leave this subject without mentioning cellular automata (CAs). Conway's "Game of Life" is an example of a cellular automaton (CA). In each generation (or

More information

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step.

Any live cell with less than 2 live neighbours dies. Any live cell with 2 or 3 live neighbours lives on to the next step. 2. Cellular automata, and the SIRS model In this Section we consider an important set of models used in computer simulations, which are called cellular automata (these are very similar to the so-called

More information

Can You do Maths in a Crowd? Chris Budd

Can You do Maths in a Crowd? Chris Budd Can You do Maths in a Crowd? Chris Budd Human beings are social animals We usually have to make decisions in the context of interactions with many other individuals Examples Crowds in a sports stadium

More information

Periodic Cellular Automata of Period-2

Periodic Cellular Automata of Period-2 Malaysian Journal of Mathematical Sciences 10(S) February: 131 142 (2016) Special Issue: The 3 rd International Conference on Mathematical Applications in Engineering 2014 (ICMAE 14) MALAYSIAN JOURNAL

More information

The Fixed String of Elementary Cellular Automata

The Fixed String of Elementary Cellular Automata The Fixed String of Elementary Cellular Automata Jiang Zhisong Department of Mathematics East China University of Science and Technology Shanghai 200237, China zsjiang@ecust.edu.cn Qin Dakang School of

More information

Symmetry and Entropy of One- Dimensional Legal Cellular Automata

Symmetry and Entropy of One- Dimensional Legal Cellular Automata Symmetry and Entropy of One- Dimensional Legal Cellular Automata Kazuhito Yamasaki Department of Earth and Planetary Sciences, Kobe University Nada, Kobe, 657-8501, Japan Kazuyoshi Z. Nanjo Earthquake

More information

A Colorful Introduction to Cellular Automata

A Colorful Introduction to Cellular Automata A Colorful Introduction to Cellular Automata Silvio Capobianco February 5, 2011 Revised: February 10, 2011 Silvio Capobianco () February 5, 2011 1 / 37 Overview Cellular automata (ca) are local presentations

More information

The Game (Introduction to Digital Physics) *

The Game (Introduction to Digital Physics) * The Game (Introduction to Digital Physics) * Plamen Petrov ppetrov@digitalphysics.org In the present brief article we introduce the main idea of Digital Physics in the form of an abstract game. 1 Introduction

More information

Cellular Automata and Tilings

Cellular Automata and Tilings Cellular Automata and Tilings Jarkko Kari Department of Mathematics, University of Turku, Finland TUCS(Turku Centre for Computer Science), Turku, Finland Outline of the talk (1) Cellular automata (CA)

More information

Toward a Better Understanding of Complexity

Toward a Better Understanding of Complexity Toward a Better Understanding of Complexity Definitions of Complexity, Cellular Automata as Models of Complexity, Random Boolean Networks Christian Jacob jacob@cpsc.ucalgary.ca Department of Computer Science

More information

Cellular Automata. Jarkko Kari Spring University of Turku

Cellular Automata. Jarkko Kari Spring University of Turku Cellular Automata Jarkko Kari Spring 2 University of Turku Preliminaries. Introduction A cellular automaton is a discrete dynamical system that consists of a regular network of finite state automata (cells)

More information

New Possibilities for Cellular Automata in Cryptography

New Possibilities for Cellular Automata in Cryptography New Possibilities for Cellular Automata in Cryptography Mauro Tardivo Filho Marco A. A. Henriques Faculty of Electrical and Computer Engineering University of Campinas Sao Paulo - Brazil Overview 1. History

More information

Dynamical Behavior of Cellular Automata

Dynamical Behavior of Cellular Automata Dynamical Behavior of Cellular Automata Miles Kenyon and Matthew Driscoll December 4, 2009 1 Introduction Cellular Automata are simple computational models which can be leveraged to model a wide variety

More information

Coexistence of Dynamics for Two- Dimensional Cellular Automata

Coexistence of Dynamics for Two- Dimensional Cellular Automata Coexistence of Dynamics for Two- Dimensional Cellular Automata Ricardo Severino Department of Mathematics and Applications University of Minho Campus de Gualtar - 4710-057 Braga, Portugal Maria Joana Soares

More information

Coalescing Cellular Automata

Coalescing Cellular Automata Coalescing Cellular Automata Jean-Baptiste Rouquier 1 and Michel Morvan 1,2 1 ENS Lyon, LIP, 46 allée d Italie, 69364 Lyon, France 2 EHESS and Santa Fe Institute {jean-baptiste.rouquier, michel.morvan}@ens-lyon.fr

More information

Introduction. Spatial Multi-Agent Systems. The Need for a Theory

Introduction. Spatial Multi-Agent Systems. The Need for a Theory Introduction Spatial Multi-Agent Systems A spatial multi-agent system is a decentralized system composed of numerous identically programmed agents that either form or are embedded in a geometric space.

More information

Sorting Network Development Using Cellular Automata

Sorting Network Development Using Cellular Automata Sorting Network Development Using Cellular Automata Michal Bidlo, Zdenek Vasicek, and Karel Slany Brno University of Technology, Faculty of Information Technology Božetěchova 2, 61266 Brno, Czech republic

More information

Cell-based Model For GIS Generalization

Cell-based Model For GIS Generalization Cell-based Model For GIS Generalization Bo Li, Graeme G. Wilkinson & Souheil Khaddaj School of Computing & Information Systems Kingston University Penrhyn Road, Kingston upon Thames Surrey, KT1 2EE UK

More information

REALIZATION OF A TRI-VALUED PROGRAMMABLE CELLULAR AUTOMATA WITH TERNARY OPTICAL COMPUTER

REALIZATION OF A TRI-VALUED PROGRAMMABLE CELLULAR AUTOMATA WITH TERNARY OPTICAL COMPUTER INTERNATIONAL JOURNAL OF NUMERICAL ANALYSIS AND MODELING Volume 9, Number 2, Pages 304 311 c 2012 Institute for Scientific Computing and Information REALIZATION OF A TRI-VALUED PROGRAMMABLE CELLULAR AUTOMATA

More information

We prove that the creator is infinite Turing machine or infinite Cellular-automaton.

We prove that the creator is infinite Turing machine or infinite Cellular-automaton. Do people leave in Matrix? Information, entropy, time and cellular-automata The paper proves that we leave in Matrix. We show that Matrix was built by the creator. By this we solve the question how everything

More information

Complex Systems Theory

Complex Systems Theory Complex Systems Theory 1988 Some approaches to the study of complex systems are outlined. They are encompassed by an emerging field of science concerned with the general analysis of complexity. Throughout

More information

arxiv: v1 [nlin.cg] 23 Sep 2010

arxiv: v1 [nlin.cg] 23 Sep 2010 Complex networks derived from cellular automata Yoshihiko Kayama Department of Media and Information, BAIKA Women s University, 2-9-5, Shukuno-sho, Ibaraki-city, Osaka-pref., Japan arxiv:009.4509v [nlin.cg]

More information

Cellular Automata. Jarkko Kari Spring University of Turku

Cellular Automata. Jarkko Kari Spring University of Turku Cellular Automata Jarkko Kari Spring 23 University of Turku Preliminaries. Introduction A cellular automaton is a discrete dynamical system that consists of a regular network of finite state automata (cells)

More information

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method

Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Radial View: Observing Fuzzy Cellular Automata with a New Visualization Method Paola Flocchini and Vladimir Cezar School of Information Technology and Engineering University of Ottawa, 800 King Eduard,

More information

Investigation of Rule 73 as a Case Study of Class 4 Long-Distance Cellular Automata. Lucas Kang

Investigation of Rule 73 as a Case Study of Class 4 Long-Distance Cellular Automata. Lucas Kang Investigation of Rule 73 as a Case Study of Class 4 Long-Distance Cellular Automata Lucas Kang Personal Section In my sophomore year, I took a post-ap class named Computational Physics at my school. Given

More information

Cellular Automata: Tutorial

Cellular Automata: Tutorial Cellular Automata: Tutorial Jarkko Kari Department of Mathematics, University of Turku, Finland TUCS(Turku Centre for Computer Science), Turku, Finland Cellular Automata: examples A Cellular Automaton

More information

Cellular Automaton Growth on # : Theorems, Examples, and Problems

Cellular Automaton Growth on # : Theorems, Examples, and Problems Cellular Automaton Growth on : Theorems, Examples, and Problems (Excerpt from Advances in Applied Mathematics) Exactly 1 Solidification We will study the evolution starting from a single occupied cell

More information

NETWORK REPRESENTATION OF THE GAME OF LIFE

NETWORK REPRESENTATION OF THE GAME OF LIFE JAISCR, 2011, Vol.1, No.3, pp. 233 240 NETWORK REPRESENTATION OF THE GAME OF LIFE Yoshihiko Kayama and Yasumasa Imamura Department of Media and Information, BAIKA Women s University, 2-19-5, Shukuno-sho,

More information

Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection Method

Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection Method A Game of Life on Penrose Tilings Kathryn Lindsey Department of Mathematics Cornell University Olivetti Club, Sept. 1, 2009 Outline 1 Introduction Tiling definitions 2 Conway s Game of Life 3 The Projection

More information

Partitioning of Cellular Automata Rule Spaces

Partitioning of Cellular Automata Rule Spaces Partitioning of Cellular Automata Rule Spaces Rodrigo A. Obando TSYS School of Computer Science Columbus State University 4225 University Avenue Columbus, GA 31907, USA Obando_Rodrigo@ColumbusState.edu

More information

Elementary Cellular Automata with

Elementary Cellular Automata with letourneau_pdf.nb 1 Elementary Cellular Automata with Memory Paul-Jean Letourneau Department of Physics, University of Calgary Elementary Cellular Automata (ECA) In order to explain how an Elementary Cellular

More information

The Nature of Computation

The Nature of Computation The Nature of Computation Introduction of Wolfram s NKS Complex systems research center Zhang Jiang What can we do by computers? Scientific computation Processing data Computer simulations New field emerging

More information

Fuzzy Cellular Automata in. Conjunctive Normal Form

Fuzzy Cellular Automata in. Conjunctive Normal Form Fuzzy Cellular Automata in Conjunctive Normal Form by David Michael Forrester Thesis submitted to the Faculty of Graduate and Postdoctoral Studies In partial fulfilment of the requirements for Master of

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science On the maximal cycle and transient lengths of circular cellular automata Kim Weyns, Bart Demoen Report CW 375, December 2003 Katholieke Universiteit Leuven Department of Computer Science Celestijnenlaan

More information

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model

Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Simulation of cell-like self-replication phenomenon in a two-dimensional hybrid cellular automata model Takeshi Ishida Nippon Institute of Technology ishida06@ecoinfo.jp Abstract An understanding of the

More information

APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL

APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL J. Appl. Math. & Computing Vol. 20(2006), No. 1-2, pp. 433-443 Website: http://jamc.net APPLICATION OF FUZZY LOGIC IN THE CLASSICAL CELLULAR AUTOMATA MODEL CHUNLING CHANG, YUNJIE ZHANG, YUNYING DONG Abstract.

More information

Project 1: Edge of Chaos in 1D Cellular Automata

Project 1: Edge of Chaos in 1D Cellular Automata CS 420/527: Biologically-Inspired Computation Project 1: Edge of Chaos in 1D Cellular Automata Due: Friday, Feb. 3, Midnight Introduction In this project you will explore Edge of Chaos phenomena (Wolfram

More information

Cellular Automata as Models of Complexity

Cellular Automata as Models of Complexity Cellular Automata as Models of Complexity Stephen Wolfram, Nature 311 (5985): 419 424, 1984 Natural systems from snowflakes to mollusc shells show a great diversity of complex patterns. The origins of

More information

Cellular automata, entropy and box- coun4ng dimension

Cellular automata, entropy and box- coun4ng dimension Cellular automata, entropy and box- coun4ng dimension Cellular Automata Cellular automata (CA) models epitomize the idea that simple rules can generate complex pa=erns. A CA consists of an array of cells

More information

Pascal s Triangle: Cellular Automata and Attractors

Pascal s Triangle: Cellular Automata and Attractors Chapter 8 Pascal s Triangle: Cellular Automata and Attractors Mathematics is often defined as the science of space and number [...] It was not until the recent resonance of computers and mathematics that

More information

Complexity Classes in the Two-dimensional Life Cellular Automata Subspace

Complexity Classes in the Two-dimensional Life Cellular Automata Subspace Complexity Classes in the Two-dimensional Life Cellular Automata Subspace Michael Magnier Claude Lattaud Laboratoire d Intelligence Artificielle de Paris V, Université René Descartes, 45 rue des Saints

More information

CS 420/594: Complex Systems & Self-Organization Project 1: Edge of Chaos in 1D Cellular Automata Due: Sept. 20

CS 420/594: Complex Systems & Self-Organization Project 1: Edge of Chaos in 1D Cellular Automata Due: Sept. 20 CS 420/594: Complex Systems & Self-Organization Project 1: Edge of Chaos in 1D Cellular Automata Due: Sept. 20 Introduction In this project you will explore Edge of Chaos phenomena (Wolfram class IV behavior)

More information

o or 1. The sequence of site values is the "configuration" of the cellular automaton. The cellular

o or 1. The sequence of site values is the configuration of the cellular automaton. The cellular Physica loo (1984) vii- xii North-Holland. Amsterdam VlI PREFACE Stephen WOLFRAM The Institute /or Advanced Study, Princeton, NJ 08540, USA 1. Introduction Differential equations form the mathematical

More information

The Arithmetic of Reasoning. Chessa Horomanski & Matt Corson

The Arithmetic of Reasoning. Chessa Horomanski & Matt Corson The Arithmetic of Reasoning LOGIC AND BOOLEAN ALGEBRA Chessa Horomanski & Matt Corson Computers Ask us questions, correct our grammar, calculate our taxes But Misunderstand what we re sure we told them,

More information

Shannon Information (very briefly!) Lecture 4. Maximum and Minimum Entropy. Entropy. Entropy of Transition Rules. Entropy Examples

Shannon Information (very briefly!) Lecture 4. Maximum and Minimum Entropy. Entropy. Entropy of Transition Rules. Entropy Examples Lecture 4 9/4/07 1 Shannon Information (very briefly!) Information varies directly with surprise Information varies inversely with probability Information is additive The information content of a message

More information

Developments In Ecological Modeling Based On Cellular Automata

Developments In Ecological Modeling Based On Cellular Automata Developments In Ecological Modeling Based On Cellular Automata Abstract Dr Kulbhushan Agnihotri 1 Natasha Sharma 2 * 1. S.B.S. State Technical Campus, Ferozepur, PO box 152004, Punjab, India 2. D.A.V.

More information

arxiv: v1 [cs.fl] 17 May 2017

arxiv: v1 [cs.fl] 17 May 2017 New Directions In Cellular Automata arxiv:1705.05832v1 [cs.fl] 17 May 2017 Abdulrhman Elnekiti Department of Computer Science University of Turkish Aeronautical Association 11 Bahcekapi, 06790 Etimesgut

More information

CONSTRUCTING ARM MEMORY OFFSPRING M MEMORY PARENT. Fig. 1: Von Neumann's self-reproducing automaton

CONSTRUCTING ARM MEMORY OFFSPRING M MEMORY PARENT. Fig. 1: Von Neumann's self-reproducing automaton Published in: Advances in Articial Life, Proc. 3rd European Conf. on Articial Life, Grenada, Spain, June 4-6, 995, Lecture Notes in Articial Intelligence 929, Springer, Berlin, 995. A New Self-Reproducing

More information

Linear algebra for MATH2601: Theory

Linear algebra for MATH2601: Theory Linear algebra for MATH2601: Theory László Erdős August 12, 2000 Contents 1 Introduction 4 1.1 List of crucial problems............................... 5 1.2 Importance of linear algebra............................

More information

Structure in Reality By J.A.J. van Leunen

Structure in Reality By J.A.J. van Leunen Structure in Reality By J.A.J. van Leunen Last modified: 29 December 2017 Abstract Study of the physical reality can happen in two different ways that meet each other at a certain point and then complement

More information

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS

chapter 12 MORE MATRIX ALGEBRA 12.1 Systems of Linear Equations GOALS chapter MORE MATRIX ALGEBRA GOALS In Chapter we studied matrix operations and the algebra of sets and logic. We also made note of the strong resemblance of matrix algebra to elementary algebra. The reader

More information

Learning Cellular Automaton Dynamics with Neural Networks

Learning Cellular Automaton Dynamics with Neural Networks Learning Cellular Automaton Dynamics with Neural Networks N H Wulff* and J A Hertz t CONNECT, the Niels Bohr Institute and Nordita Blegdamsvej 17, DK-2100 Copenhagen 0, Denmark Abstract We have trained

More information

1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP?

1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP? 1 WHAT IS BIG HISTORY? WHY DO WE LOOK AT THINGS FROM FAR AWAY AND CLOSE UP? UNIT 1 WHAT IS BIG HISTORY? CONTENTS UNIT 1 BASICS 3 Unit 1 Overview 4 Unit 1 Learning Outcomes 5 Unit 1 Lessons 7 Unit 1 Key

More information

P The Entropy Trajectory: A Perspective to Classify Complex Systems. Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI

P The Entropy Trajectory: A Perspective to Classify Complex Systems. Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI P 0 0 8 The Entropy Trajectory: A Perspective to Classify Complex Systems Tomoaki SUZUDO Japan Atomic Energy Research Institute, JAERI What are complex systems? Having macroscopic properties which are

More information

Algebraic Properties of Elementary Cellular Automata

Algebraic Properties of Elementary Cellular Automata Algebraic Properties of Elementary Cellular Automata Yuriy Gulak Rutgers University June 17, 2006 Simple models complex behavior One-dimensional maps (Ulam, 1950 s) von Neumann s automata R. Coifman, GAFA2000

More information

Stream Ciphers. Çetin Kaya Koç Winter / 20

Stream Ciphers. Çetin Kaya Koç   Winter / 20 Çetin Kaya Koç http://koclab.cs.ucsb.edu Winter 2016 1 / 20 Linear Congruential Generators A linear congruential generator produces a sequence of integers x i for i = 1,2,... starting with the given initial

More information

Characterization of Fixed Points in Sequential Dynamical Systems

Characterization of Fixed Points in Sequential Dynamical Systems Characterization of Fixed Points in Sequential Dynamical Systems James M. W. Duvall Virginia Polytechnic Institute and State University Department of Mathematics Abstract Graph dynamical systems are central

More information

Computation in Cellular Automata: A Selected Review

Computation in Cellular Automata: A Selected Review Computation in Cellular Automata: A Selected Review Melanie Mitchell Santa Fe Institute 1399 Hyde Park Road Santa Fe, NM 87501 U.S.A. email: mm@santafe.edu In T. Gramss, S. Bornholdt, M. Gross, M. Mitchell,

More information

Lecture 6: Sequential Dynamical Systems

Lecture 6: Sequential Dynamical Systems Math 137B Professor: Padraic Bartlett Lecture 6: Sequential Dynamical Systems Weeks 8-9 UCSB 2014 (Relevant source material: the first four chapters of Mortveit and Reidys s An Introduction to Sequential

More information

Elementary cellular automata

Elementary cellular automata Cellular Automata Cellular automata (CA) models epitomize the idea that simple rules can generate complex pa8erns. A CA consists of an array of cells each with an integer state. On each?me step a local

More information

arxiv:cond-mat/ v4 [cond-mat.soft] 23 Sep 2002

arxiv:cond-mat/ v4 [cond-mat.soft] 23 Sep 2002 arxiv:cond-mat/0207679v4 [cond-mat.soft] 23 Sep 2002 A Two-Player Game of Life Mark Levene and George Roussos School of Computer Science and Information Systems Birkbeck College, University of London London

More information

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator.

Optimization of 1D and 2D Cellular Automata for Pseudo Random Number Generator. IOSR Journal of VLSI and Signal Processing (IOSR-JVSP) Volume 4, Issue 6, Ver. I (Nov - Dec. 2014), PP 28-33 e-issn: 2319 4200, p-issn No. : 2319 4197 Optimization of 1D and 2D Cellular Automata for Pseudo

More information

EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL

EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL International Journal of Modern Physics C Vol. 20, No. 1 (2009) 133 145 c World Scientific Publishing Company EMERGENT 1D ISING BEHAVIOR IN AN ELEMENTARY CELLULAR AUTOMATON MODEL PAUL G. KASSEBAUM and

More information

Stochastic Histories. Chapter Introduction

Stochastic Histories. Chapter Introduction Chapter 8 Stochastic Histories 8.1 Introduction Despite the fact that classical mechanics employs deterministic dynamical laws, random dynamical processes often arise in classical physics, as well as in

More information

Procedures for calculating reversible one-dimensional cellular automata

Procedures for calculating reversible one-dimensional cellular automata Procedures for calculating reversible one-dimensional cellular automata Juan Carlos Seck Tuoh Mora Sergio V. Chapa Vergara Genaro Juárez Martínez Departamento de Ingeniería Eléctrica, Sección Computación,

More information

Two-state, Reversible, Universal Cellular Automata In Three Dimensions

Two-state, Reversible, Universal Cellular Automata In Three Dimensions Two-state, Reversible, Universal Cellular Automata In Three Dimensions Daniel B. Miller and Edward Fredkin Carnegie Mellon University West Coast Campus Bldg 23, Nasa Research Park Moffett Field, CA 94035

More information

1 Modular Arithmetic Grade Level/Prerequisites: Time: Materials: Preparation: Objectives: Navajo Nation Math Circle Connection

1 Modular Arithmetic Grade Level/Prerequisites: Time: Materials: Preparation: Objectives: Navajo Nation Math Circle Connection 1 Modular Arithmetic Students will explore a type of arithmetic that results from arranging numbers in circles instead of on a number line. Students make and prove conjectures about patterns relating to

More information

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE by Miles Mathis miles@mileswmathis.com Abstract Here I solve Goldbach's Conjecture by the simplest method possible. I do this by first calculating probabilites

More information

Non-Uniform Cellular Automata a Review. 1. Introduction. Daniel Camara

Non-Uniform Cellular Automata a Review. 1. Introduction. Daniel Camara Non-Uniform Cellular Automata a Review Daniel Camara Department of Computer Science University of Maryland A.V. Williams Building College Park, MD 20742 danielc@cs.umd.edu Abstract : This tutorial intends

More information

Properties and Behaviours of Fuzzy Cellular Automata

Properties and Behaviours of Fuzzy Cellular Automata Properties and Behaviours of Fuzzy Cellular Automata Heather Betel Thesis submitted to the Faculty of Graduate and Postdoctoral Studies in partial fulfilment of the requirements for the PhD degree in Electrical

More information

TRANSLATING PARTITIONED CELLULAR AUTOMATA INTO CLASSICAL TYPE CELLULAR AUTOMATA VICTOR POUPET

TRANSLATING PARTITIONED CELLULAR AUTOMATA INTO CLASSICAL TYPE CELLULAR AUTOMATA VICTOR POUPET Journées Automates Cellulaires 2008 (Uzès), pp. 130-140 TRANSLATING PARTITIONED CELLULAR AUTOMATA INTO CLASSICAL TYPE CELLULAR AUTOMATA VICTOR POUPET Laboratoire d Informatique Fondamentale (LIF), UMR

More information

On the Complexity of Causal Models

On the Complexity of Causal Models On the Complexity of Causal Models Brian R. Gaines Man-Machine Systems Laboratory Department of Electrical Engineering Science University of Essex, Colchester, England It is argued that principle of causality

More information

Mechanisms of Emergent Computation in Cellular Automata

Mechanisms of Emergent Computation in Cellular Automata Mechanisms of Emergent Computation in Cellular Automata Wim Hordijk, James P. Crutchfield, Melanie Mitchell Santa Fe Institute, 1399 Hyde Park Road, Santa Fe, 87501 NM, USA email: {wim,chaos,mm}@santafe.edu

More information

Is Self-replication an Embedded Characteristic of Artificial/Living Matter?

Is Self-replication an Embedded Characteristic of Artificial/Living Matter? in Artificial Life VIII, Standish, Abbass, Bedau (eds)(mit Press) 2002. pp 38 48 1 Is Self-replication an Embedded Characteristic of Artificial/Living Matter? Eleonora Bilotta, Antonio Lafusa and Pietro

More information

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo

Workshop on Heterogeneous Computing, 16-20, July No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo Workshop on Heterogeneous Computing, 16-20, July 2012 No Monte Carlo is safe Monte Carlo - more so parallel Monte Carlo K. P. N. Murthy School of Physics, University of Hyderabad July 19, 2012 K P N Murthy

More information

Phase Transitions in the Computational Complexity of "Elementary'' Cellular Automata

Phase Transitions in the Computational Complexity of Elementary'' Cellular Automata Chapter 33 Phase Transitions in the Computational Complexity of "Elementary'' Cellular Automata Sitabhra Sinha^ Center for Condensed Matter Theory, Department of Physics, Indian Institute of Science, Bangalore

More information

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic

Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic Exercise 4: Markov Processes, Cellular Automata and Fuzzy Logic Formal Methods II, Fall Semester 2013 Distributed: 8.11.2013 Due Date: 29.11.2013 Send your solutions to: tobias.klauser@uzh.ch or deliver

More information