Logical Entailment A set of premises Δ logically entails a conclusion ϕ (Δ = ϕ) if and only if every interpretation that satisfies Δ also satisfies ϕ.

Size: px
Start display at page:

Download "Logical Entailment A set of premises Δ logically entails a conclusion ϕ (Δ = ϕ) if and only if every interpretation that satisfies Δ also satisfies ϕ."

Transcription

1 Relational Proofs

2 Logical Entailment A set of premises Δ logically entails a conclusion ϕ (Δ = ϕ) if and only if every interpretation that satisfies Δ also satisfies ϕ.

3 Propositional Truth Assignments p q r With n constants, there are 2 n truth assignments.

4 Truth Assignments p(a) p(f(a)) p(f(f(a))) Infinitely many interpretations!

5 Good News Given a few restrictions (described later), we have good news. Good News: If Δ logically entails ϕ, then there is a finite proof of ϕ from Δ. And vice versa. More Good News: If Δ logically entails ϕ, it is possible to find such a proof in finite time.

6 Programme Proof System Examples, Examples, Examples

7 Logical Rules of Inference Negations ϕ ψ ϕ ϕ ψ ϕ ϕ Implications ϕ ψ ϕ ψ ϕ ϕ ψ ψ Biconditionals ϕ ψ ϕ ψ ψ ϕ ϕ ψ ϕ ψ ψ ϕ ϕ 1... ϕ n Conjunctions ϕ 1... ϕ n ϕ i Disjunctions ϕ 1... ϕ 1 ϕ 1... ϕ n ϕ 1... ϕ n ϕ 1... ϕ n ϕ 1 ψ... ϕ n ψ ψ

8 New Rules of Inference Universal Introduction Universal Elimination Existential Introduction Existential Elimination

9 Universal Introduction (UI) ϕ ν.ϕ where ν does not occur free in ϕ and an active assumption

10 Examples Premise: hates(jane,x) Conclusion: x.hates(jane,x) Premise: hates(jane,jill) Conclusion: x.hates(jane,jill) Premise: hates(jane,y) Conclusion: x.hates(jane,y)

11 Disallowed case p(x) q(x) x.q(x) Assumption UI

12 Allowed Case p(x) q(x) p(x) q(x) y.(p(x) q(x)) Assumption II UI

13 Universal Elimination (UE) ν.ϕ[ν] ϕ[τ ] where τ is substitutable for ν in ϕ

14 Premise: x.hates(jane,x) Examples Conclusions: hates(jane,jill) hates(jane,jane) x jill x jane hates(jane,x) x x hates(jane,y) x y

15 Premise: x. y.hates(x,y) More Examples Conclusions: y.hates(jane,y) x jane y.hates(y,y) x y Wrong!!

16 Capture An occurrence of a variable ν in ϕ captures a term τ if and only if τ contains a variable µ and the occurrence of ν lies in the scope of a quantifier of µ. The occurrence of y in x.hates(x,y) captures x. Why? The occurrence of y lies in scope of quantifier of x.

17 Substitutability A term τ is substitutable for ν in ϕ if and only if no free occurrence of ν captures τ. Some texts say τ is free for ν in ϕ instead of τ is substitutable for ν in ϕ. mother(jane) is free for y in hates(jane,y). mother(x) is free for y in hates(jane,y). mother(x) is free for y in z.hates(z,y). mother(x) is not free for y in x.hates(x,y). mother(x) is free for y in ( x. y.l(x,y) z.h(z,y)).

18 Universal Elimination (UE) ν.ϕ[ν] ϕ[τ ] where τ is substitutable for ν in ϕ

19 Existential Introduction (EI) ϕ[τ] ν.ϕ[ν] where τ does not occur in ϕ

20 Examples Premise: hates(jill,jill) Conclusions: x.hates(x,x) x.hates(jill,x) x.hates(x,jill) x. y.hates(x,y)

21 Existential Elimination (EE) ν.ϕ[ν] ν.(ϕ[ν] ψ) ψ

22 Example Premises: x.hates(jane,x) x.(hates(jane,x) nice(jane)) Conclusion: nice(jane)

23 Example - Lovers

24 Lovers Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill.

25 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise

26 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise

27 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise 3. z.loves(jill,z) UE:1

28 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise 3. z.loves(jill,z) UE:1 4. y. z.(loves(y,z) loves(jack,y)) UE:2

29 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise 3. z.loves(jill,z) UE:1 4. y. z.(loves(y,z) loves(jack,y)) UE:2 5. z.(loves(jill,z) loves(jack,jill)) UE:4

30 Proof Everybody loves somebody. Everybody loves a lover. Show that Jack loves Jill. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise 3. z.loves(jill,z) UE:1 4. y. z.(loves(y,z) loves(jack,y)) UE:2 5. z.(loves(jill,z) loves(jack,jill)) UE:4 6. loves(jack,jill) EE:3, 5

31 General Lovers Everybody loves somebody. Everybody loves a lover. Show that everybody loves everybody.

32 Proof Everybody loves somebody. Everybody loves a lover. Show that everybody loves everybody. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise

33 Proof Everybody loves somebody. Everybody loves a lover. Show that everybody loves everybody. 1. y. z.loves(y,z) Premise 2. x. y. z.(loves(y,z) loves(x,y)) Premise 3. z.loves(y,z) UE:1 4. y. z.(loves(y,z) loves(x,y)) UE:2 5. z.(loves(y,z) loves(x,y)) UE:4 6. loves(x,y) EE: 3, 5 7. y.loves(x,y) UI: 6 8. x. y.loves(x,y) UI: 7

34 Example - Harry and Ralph

35 Harry and Ralph Every horse can outrun every dog. Some greyhounds can outrun every rabbit. Harry is a horse. Ralph is a rabbit. Prove that Harry can outrun Ralph.

36 Harry and Ralph Every horse can outrun every dog. Some greyhound can outrun every rabbit. Harry is a horse. Ralph is a rabbit. Prove that Harry can outrun Ralph. 1. x. y.(h(x) d(x) f(x,y)) Premise 2. y.(g(y) z.(r(z) f(y,z))) Premise 3. x.(g(x) d(x)) Premise 4. x. y. z.(f(y,z) f(y,z) f(x,z)) Premise 5. h(harry) Premise 6. r(ralph) Premise

37 Harry and Ralph (continued) 7. g(y) z.(r(z) f(y,z)) Assumption 8. g(y) AE: 7 9. z.(r(z) f(y,z)) AE: 7

38 Harry and Ralph (continued) 7. g(y) z.(r(z) f(y,z)) Assumption 8. g(y) AE: 7 9. z.(r(z) f(y,z)) AE: r(ralph) f(y,ralph) UE: f(y,ralph) IE: 10, 6

39 Harry and Ralph (continued) 7. g(y) z.(r(z) f(y,z)) Assumption 8. g(y) AE: 7 9. z.(r(z) f(y,z)) AE: r(ralph) f(y,ralph) UE: f(y,ralph) IE: 10, g(y) d(y) UE: d(y) IE: 12, 8

40 Harry and Ralph (continued) 7. g(y) z.(r(z) f(y,z)) Assumption 8. g(y) AE: 7 9. z.(r(z) f(y,z)) AE: r(ralph) f(y,ralph) UE: f(y,ralph) IE: 10, g(y) d(y) UE: d(y) IE: 12, y.(h(harry) d(y) f(harry,y)) UE: h(harry) d(y) f(harry,y) UE: h(harry) d(y) AI: 5, f(harry,y) IE: 15, 16

41 Harry and Ralph (concluded) 18. y. z.(f(harry,y) f(y,z) f(harry,z)) UI: z.(f(harry,y) f(y,z) f(harry,z)) UI: f(harry,y) f(y,z) f(harry,z) UI: 19

42 Harry and Ralph (concluded) 18. y. z.(f(harry,y) f(y,z) f(harry,z)) UI: z.(f(harry,y) f(y,z) f(harry,z)) UI: f(harry,y) f(y,z) f(harry,z) UI: f(harry,y) f(y,ralph) AI: 17, f(harry,ralph) IE: 20, 21

43 Harry and Ralph (concluded) 18. y. z.(f(harry,y) f(y,z) f(harry,z)) UI: z.(f(harry,y) f(y,z) f(harry,z)) UI: f(harry,y) f(y,z) f(harry,z) UI: f(harry,y) f(y,ralph) AI: 17, f(harry,ralph) IE: 20, g(y) z.(r(z) f(y,z)) II: 7, 22 f(harry,ralph)) 24. y.(g(y) z.(r(z) f(y,z)) UI: 23 f(harry,ralph)) 25. f(harry,ralph) EE: 2, 24

44

Problem With Natural Deduction

Problem With Natural Deduction Herbrand Resolution Problem With Natural Deduction Assumption p(a) p(f(a)) p(x) => q(x) ~p(x) => q(x) Universal Elimination x. y.q(x,y) q(a,a) q(x,a) q(a,y) q(x,y) q(a, f(a)) q(x, f(a)) 2 Resolution Principle

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

Predicate Logic: Sematics Part 1

Predicate Logic: Sematics Part 1 Predicate Logic: Sematics Part 1 CS402, Spring 2018 Shin Yoo Predicate Calculus Propositional logic is also called sentential logic, i.e. a logical system that deals with whole sentences connected with

More information

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations

3/29/2017. Logic. Propositions and logical operations. Main concepts: propositions truth values propositional variables logical operations Logic Propositions and logical operations Main concepts: propositions truth values propositional variables logical operations 1 Propositions and logical operations A proposition is the most basic element

More information

Announcements & Overview

Announcements & Overview Branden Fitelson Philosophy 4515 (Advanced Logic) Notes 1 Announcements & Overview Administrative Stuff HW #3 grades and solutions have been posted HW #4 s due date extended to next Friday (LMPL/L2PL proofs)

More information

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam

Logic and Modelling. Introduction to Predicate Logic. Jörg Endrullis. VU University Amsterdam Logic and Modelling Introduction to Predicate Logic Jörg Endrullis VU University Amsterdam Predicate Logic In propositional logic there are: propositional variables p, q, r,... that can be T or F In predicate

More information

Discrete Mathematics

Discrete Mathematics Department of Mathematics National Cheng Kung University 2008 2.4: The use of Quantifiers Definition (2.5) A declarative sentence is an open statement if 1) it contains one or more variables, and 1 ) quantifier:

More information

Knowledge representation in AI Symbolic Logic

Knowledge representation in AI Symbolic Logic Lecture No. 2 Knowledge representation in AI Symbolic Logic Simbolic logic representation Formal system Propositional logic Predicate logic Theorem proving 1. Knowledge representation Why Symbolic logic

More information

Propositional Logic. Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack?

Propositional Logic. Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack? Relational Logic Propositional Logic Premises: If Jack knows Jill, then Jill knows Jack. Jack knows Jill. Conclusion: Is it the case that Jill knows Jack? Problem Premises: If one person knows another,

More information

Thinking of Nested Quantification

Thinking of Nested Quantification Section 1.5 Section Summary Nested Quantifiers Order of Quantifiers Translating from Nested Quantifiers into English Translating Mathematical Statements into Statements involving Nested Quantifiers. Translating

More information

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s).

Denote John by j and Smith by s, is a bachelor by predicate letter B. The statements (1) and (2) may be written as B(j) and B(s). PREDICATE CALCULUS Predicates Statement function Variables Free and bound variables Quantifiers Universe of discourse Logical equivalences and implications for quantified statements Theory of inference

More information

First order Logic ( Predicate Logic) and Methods of Proof

First order Logic ( Predicate Logic) and Methods of Proof First order Logic ( Predicate Logic) and Methods of Proof 1 Outline Introduction Terminology: Propositional functions; arguments; arity; universe of discourse Quantifiers Definition; using, mixing, negating

More information

CS157 Greatest Hits. The Top 100 Slides of the Course

CS157 Greatest Hits. The Top 100 Slides of the Course Computational Logic Lecture 20 CS157 Greatest Hits The Top 100 Slides of the Course Michael Genesereth Autumn 2008 Syntax Propositional Constants: raining, snowing, cloudy Negations: raining Conjunctions:

More information

Logic and Proof. On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes!

Logic and Proof. On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes! Logic and Proof On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes! 26-Aug-2011 MA 341 001 2 Requirements for Proof 1. Mutual understanding

More information

Mat 243 Exam 1 Review

Mat 243 Exam 1 Review OBJECTIVES (Review problems: on next page) 1.1 Distinguish between propositions and non-propositions. Know the truth tables (i.e., the definitions) of the logical operators,,,, and Write truth tables for

More information

On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes! 26-Aug-2011 MA

On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes! 26-Aug-2011 MA Logic and Proof On my first day of school my parents dropped me off at the wrong nursery. There I was...surrounded by trees and bushes! 26-Aug-2011 MA 341 001 2 Requirements for Proof 1. Mutual understanding

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

Rules Build Arguments Rules Building Arguments

Rules Build Arguments Rules Building Arguments Section 1.6 1 Section Summary Valid Arguments Inference Rules for Propositional Logic Using Rules of Inference to Build Arguments Rules of Inference for Quantified Statements Building Arguments for Quantified

More information

The predicate calculus is complete

The predicate calculus is complete The predicate calculus is complete Hans Halvorson The first thing we need to do is to precisify the inference rules UI and EE. To this end, we will use A(c) to denote a sentence containing the name c,

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational.

Quantifiers Here is a (true) statement about real numbers: Every real number is either rational or irrational. Quantifiers 1-17-2008 Here is a (true) statement about real numbers: Every real number is either rational or irrational. I could try to translate the statement as follows: Let P = x is a real number Q

More information

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES

SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES SYMBOLIC LOGIC UNIT 10: SINGULAR SENTENCES Singular Sentences name Paris is beautiful (monadic) predicate (monadic) predicate letter Bp individual constant Singular Sentences Bp These are our new simple

More information

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP)

Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning. Mathematical Proof and Proving (MPP) Steinhardt School of Culture, Education, and Human Development Department of Teaching and Learning Terminology, Notations, Definitions, & Principles: Mathematical Proof and Proving (MPP) 1. A statement

More information

Propositional Logic Not Enough

Propositional Logic Not Enough Section 1.4 Propositional Logic Not Enough If we have: All men are mortal. Socrates is a man. Does it follow that Socrates is mortal? Can t be represented in propositional logic. Need a language that talks

More information

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional)

Section Summary. Predicates Variables Quantifiers. Negating Quantifiers. Translating English to Logic Logic Programming (optional) Predicate Logic 1 Section Summary Predicates Variables Quantifiers Universal Quantifier Existential Quantifier Negating Quantifiers De Morgan s Laws for Quantifiers Translating English to Logic Logic Programming

More information

2. Use quantifiers to express the associative law for multiplication of real numbers.

2. Use quantifiers to express the associative law for multiplication of real numbers. 1. Define statement function of one variable. When it will become a statement? Statement function is an expression containing symbols and an individual variable. It becomes a statement when the variable

More information

CSC Discrete Math I, Spring Propositional Logic

CSC Discrete Math I, Spring Propositional Logic CSC 125 - Discrete Math I, Spring 2017 Propositional Logic Propositions A proposition is a declarative sentence that is either true or false Propositional Variables A propositional variable (p, q, r, s,...)

More information

First-Order Logic. Chapter Overview Syntax

First-Order Logic. Chapter Overview Syntax Chapter 10 First-Order Logic 10.1 Overview First-Order Logic is the calculus one usually has in mind when using the word logic. It is expressive enough for all of mathematics, except for those concepts

More information

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers Section 1.3 Predicates and Quantifiers A generalization of propositions - propositional functions or predicates.: propositions which contain variables Predicates become propositions once every variable

More information

Propositional Functions. Quantifiers. Assignment of values. Existential Quantification of P(x) Universal Quantification of P(x)

Propositional Functions. Quantifiers. Assignment of values. Existential Quantification of P(x) Universal Quantification of P(x) Propositional Functions Rosen (6 th Ed.) 1.3, 1.4 Propositional functions (or predicates) are propositions that contain variables. Ex: P(x) denote x > 3 P(x) has no truth value until the variable x is

More information

2. The Logic of Compound Statements Summary. Aaron Tan August 2017

2. The Logic of Compound Statements Summary. Aaron Tan August 2017 2. The Logic of Compound Statements Summary Aaron Tan 21 25 August 2017 1 2. The Logic of Compound Statements 2.1 Logical Form and Logical Equivalence Statements; Compound Statements; Statement Form (Propositional

More information

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers

! Predicates! Variables! Quantifiers. ! Universal Quantifier! Existential Quantifier. ! Negating Quantifiers. ! De Morgan s Laws for Quantifiers Sec$on Summary (K. Rosen notes for Ch. 1.4, 1.5 corrected and extended by A.Borgida)! Predicates! Variables! Quantifiers! Universal Quantifier! Existential Quantifier! Negating Quantifiers! De Morgan s

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Predicate logic. G. Carl Evans. Summer University of Illinois. Propositional Logic Review Predicate logic Predicate Logic Examples

Predicate logic. G. Carl Evans. Summer University of Illinois. Propositional Logic Review Predicate logic Predicate Logic Examples G. Carl Evans University of Illinois Summer 2013 Propositional logic Propositional Logic Review AND, OR, T/F, implies, etc Equivalence and truth tables Manipulating propositions Implication Propositional

More information

Convert to clause form:

Convert to clause form: Convert to clause form: Convert the following statement to clause form: x[b(x) ( y [ Q(x,y) P(y) ] y [ Q(x,y) Q(y,x) ] y [ B(y) E(x,y)] ) ] 1- Eliminate the implication ( ) E1 E2 = E1 E2 x[ B(x) ( y [

More information

Formal (Natural) Deduction for Predicate Calculus

Formal (Natural) Deduction for Predicate Calculus Formal (Natural) Deduction for Predicate Calculus Lila Kari University of Waterloo Formal (Natural) Deduction for Predicate Calculus CS245, Logic and Computation 1 / 42 Formal deducibility for predicate

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques

Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Discrete Mathematics & Mathematical Reasoning Predicates, Quantifiers and Proof Techniques Colin Stirling Informatics Some slides based on ones by Myrto Arapinis Colin Stirling (Informatics) Discrete Mathematics

More information

A Little Deductive Logic

A Little Deductive Logic A Little Deductive Logic In propositional or sentential deductive logic, we begin by specifying that we will use capital letters (like A, B, C, D, and so on) to stand in for sentences, and we assume that

More information

Math.3336: Discrete Mathematics. Nested Quantifiers

Math.3336: Discrete Mathematics. Nested Quantifiers Math.3336: Discrete Mathematics Nested Quantifiers Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu Fall 2018

More information

Logic. Logic is a discipline that studies the principles and methods used in correct reasoning. It includes:

Logic. Logic is a discipline that studies the principles and methods used in correct reasoning. It includes: Logic Logic is a discipline that studies the principles and methods used in correct reasoning It includes: A formal language for expressing statements. An inference mechanism (a collection of rules) to

More information

III. Elementary Logic

III. Elementary Logic III. Elementary Logic The Language of Mathematics While we use our natural language to transmit our mathematical ideas, the language has some undesirable features which are not acceptable in mathematics.

More information

MAT2345 Discrete Math

MAT2345 Discrete Math Fall 2013 General Syllabus Schedule (note exam dates) Homework, Worksheets, Quizzes, and possibly Programs & Reports Academic Integrity Do Your Own Work Course Web Site: www.eiu.edu/~mathcs Course Overview

More information

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017 3. The Logic of Quantified Statements Summary Aaron Tan 28 31 August 2017 1 3. The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I Predicate; domain; truth set Universal quantifier,

More information

Artificial Intelligence. Propositional logic

Artificial Intelligence. Propositional logic Artificial Intelligence Propositional logic Propositional Logic: Syntax Syntax of propositional logic defines allowable sentences Atomic sentences consists of a single proposition symbol Each symbol stands

More information

Learning Goals of CS245 Logic and Computation

Learning Goals of CS245 Logic and Computation Learning Goals of CS245 Logic and Computation Alice Gao April 27, 2018 Contents 1 Propositional Logic 2 2 Predicate Logic 4 3 Program Verification 6 4 Undecidability 7 1 1 Propositional Logic Introduction

More information

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook)

Lecture 2. Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits. Reading (Epp s textbook) Lecture 2 Logic Compound Statements Conditional Statements Valid & Invalid Arguments Digital Logic Circuits Reading (Epp s textbook) 2.1-2.4 1 Logic Logic is a system based on statements. A statement (or

More information

4 Quantifiers and Quantified Arguments 4.1 Quantifiers

4 Quantifiers and Quantified Arguments 4.1 Quantifiers 4 Quantifiers and Quantified Arguments 4.1 Quantifiers Recall from Chapter 3 the definition of a predicate as an assertion containing one or more variables such that, if the variables are replaced by objects

More information

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form.

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Valentin Stockholm University October 2016 Revision: CNF and DNF of propositional

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Review: Potential stumbling blocks

Review: Potential stumbling blocks Review: Potential stumbling blocks Whether the negation sign is on the inside or the outside of a quantified statement makes a big difference! Example: Let T(x) x is tall. Consider the following: x T(x)

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method Overview CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL Agenda for today: Semantic argument method for proving FOL validity Işıl Dillig Important properties of FOL

More information

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson

Natural Deduction. Formal Methods in Verification of Computer Systems Jeremy Johnson Natural Deduction Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. An example 1. Validity by truth table 2. Validity by proof 2. What s a proof 1. Proof checker 3. Rules of

More information

Discrete Mathematics and Its Applications

Discrete Mathematics and Its Applications Discrete Mathematics and Its Applications Lecture 1: The Foundations: Logic and Proofs (1.3-1.5) MING GAO DASE @ ECNU (for course related communications) mgao@dase.ecnu.edu.cn Sep. 19, 2017 Outline 1 Logical

More information

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Predicate Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Predicates A function P from a set D to the set Prop of propositions is called a predicate.

More information

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them.

Proofs. Example of an axiom in this system: Given two distinct points, there is exactly one line that contains them. Proofs A mathematical system consists of axioms, definitions and undefined terms. An axiom is assumed true. Definitions are used to create new concepts in terms of existing ones. Undefined terms are only

More information

Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January )

Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January ) Notes on Propositional and First-Order Logic (CPSC 229 Class Notes, January 23 30 2017) John Lasseter Revised February 14, 2017 The following notes are a record of the class sessions we ve devoted to the

More information

Predicate Logic 16. Quantifiers. The Lecture

Predicate Logic 16. Quantifiers. The Lecture Predicate Logic 16. Quantifiers The Lecture First order (predicate logic) formulas Quantifiers are the final elements that first order (i.e. predicate logic) formulas are built up from. First order formulas

More information

CSC242: Intro to AI. Lecture 12. Tuesday, February 26, 13

CSC242: Intro to AI. Lecture 12. Tuesday, February 26, 13 CSC242: Intro to AI Lecture 12 Quiz Stop Time: 2:15 ULW First draft due Mar 1 8-10 pages minimum First-Order Logic First-Order Logic Propositional Logic Syntax & Semantics Truth tables Model checking

More information

Discrete Structures for Computer Science

Discrete Structures for Computer Science Discrete Structures for Computer Science William Garrison bill@cs.pitt.edu 6311 Sennott Square Lecture #4: Predicates and Quantifiers Based on materials developed by Dr. Adam Lee Topics n Predicates n

More information

Why Learning Logic? Logic. Propositional Logic. Compound Propositions

Why Learning Logic? Logic. Propositional Logic. Compound Propositions Logic Objectives Propositions and compound propositions Negation, conjunction, disjunction, and exclusive or Implication and biconditional Logic equivalence and satisfiability Application of propositional

More information

Negation introduction

Negation introduction Negation introduction How do we prove a negation? P = P F -introduction {Assume} P (l-1) F { -intro on and (l-1)} (l) P -intro Negation elimination -elimination How do we use a negation in a proof? P (l)

More information

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson Predicate Calculus Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. Motivation 1. Variables, quantifiers and predicates 2. Syntax 1. Terms and formulas 2. Quantifiers, scope

More information

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional

Logical Operators. Conjunction Disjunction Negation Exclusive Or Implication Biconditional Logical Operators Conjunction Disjunction Negation Exclusive Or Implication Biconditional 1 Statement meaning p q p implies q if p, then q if p, q when p, q whenever p, q q if p q when p q whenever p p

More information

Equivalence and Implication

Equivalence and Implication Equivalence and Alice E. Fischer CSCI 1166 Discrete Mathematics for Computing February 7 8, 2018 Alice E. Fischer Laws of Logic... 1/33 1 Logical Equivalence Contradictions and Tautologies 2 3 4 Necessary

More information

Logical Agents. September 14, 2004

Logical Agents. September 14, 2004 Logical Agents September 14, 2004 The aim of AI is to develop intelligent agents that can reason about actions and their effects and about the environment, create plans to achieve a goal, execute the plans,

More information

Unit I LOGIC AND PROOFS. B. Thilaka Applied Mathematics

Unit I LOGIC AND PROOFS. B. Thilaka Applied Mathematics Unit I LOGIC AND PROOFS B. Thilaka Applied Mathematics UNIT I LOGIC AND PROOFS Propositional Logic Propositional equivalences Predicates and Quantifiers Nested Quantifiers Rules of inference Introduction

More information

Collins' notes on Lemmon's Logic

Collins' notes on Lemmon's Logic Collins' notes on Lemmon's Logic (i) Rule of ssumption () Insert any formula at any stage into a proof. The assumed formula rests upon the assumption of itself. (ii) Double Negation (DN) a. b. ( Two negations

More information

Inference in first-order logic

Inference in first-order logic CS 57 Introduction to AI Lecture 5 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square Logical inference in FOL Logical inference problem: Given a knowledge base KB (a

More information

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers

CSI30. Chapter 1. The Foundations: Logic and Proofs Nested Quantifiers Chapter 1. The Foundations: Logic and Proofs 1.9-1.10 Nested Quantifiers 1 Two quantifiers are nested if one is within the scope of the other. Recall one of the examples from the previous class: x ( P(x)

More information

Inference in First Order Logic

Inference in First Order Logic Inference in First Order Logic Course: CS40002 Instructor: Dr. Pallab Dasgupta Department of Computer Science & Engineering Indian Institute of Technology Kharagpur Inference rules Universal elimination:

More information

Predicate Calculus - Semantics 1/4

Predicate Calculus - Semantics 1/4 Predicate Calculus - Semantics 1/4 Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Introduction to predicate calculus (1/2) Propositional logic (sentence logic) dealt quite satisfactorily with sentences

More information

CSC165 Mathematical Expression and Reasoning for Computer Science

CSC165 Mathematical Expression and Reasoning for Computer Science CSC165 Mathematical Expression and Reasoning for Computer Science Lisa Yan Department of Computer Science University of Toronto January 21, 2015 Lisa Yan (University of Toronto) Mathematical Expression

More information

Computational Logic Lecture 3. Logical Entailment. Michael Genesereth Autumn Logical Reasoning

Computational Logic Lecture 3. Logical Entailment. Michael Genesereth Autumn Logical Reasoning Computational Logic Lecture 3 Logical Entailment Michael Genesereth Autumn 2010 Logical Reasoning Logical Reasoning relates premises and conclusion does not say whether conclusion is true in general says

More information

Lecture 4. Predicate logic

Lecture 4. Predicate logic Lecture 4 Predicate logic Instructor: Kangil Kim (CSE) E-mail: kikim01@konkuk.ac.kr Tel. : 02-450-3493 Room : New Milenium Bldg. 1103 Lab : New Engineering Bldg. 1202 All slides are based on CS441 Discrete

More information

Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, Predicate logic

Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, Predicate logic Semantics I, Rutgers University Week 3-1 Yimei Xiang September 17, 2018 Predicate logic 1. Why propositional logic is not enough? Discussion: (i) Does (1a) contradict (1b)? [Two sentences are contradictory

More information

Full file at

Full file at Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Introduction Chapter 1 - Introduction Applications of discrete mathematics: Formal Languages (computer languages) Compiler Design

More information

Review of Predicate Logic

Review of Predicate Logic Review of Predicate Logic Martin Held FB Computerwissenschaften Universität Salzburg A-5020 Salzburg, Austria held@cosy.sbg.ac.at 19. Jänner 2016 COMPUTERWISSENSCHAFTEN Legal Fine Print and Disclaimer

More information

COMP9414: Artificial Intelligence First-Order Logic

COMP9414: Artificial Intelligence First-Order Logic COMP9414, Wednesday 13 April, 2005 First-Order Logic 2 COMP9414: Artificial Intelligence First-Order Logic Overview Syntax of First-Order Logic Semantics of First-Order Logic Conjunctive Normal Form Wayne

More information

Logic and Propositional Calculus

Logic and Propositional Calculus CHAPTER 4 Logic and Propositional Calculus 4.1 INTRODUCTION Many algorithms and proofs use logical expressions such as: IF p THEN q or If p 1 AND p 2, THEN q 1 OR q 2 Therefore it is necessary to know

More information

AAA615: Formal Methods. Lecture 2 First-Order Logic

AAA615: Formal Methods. Lecture 2 First-Order Logic AAA615: Formal Methods Lecture 2 First-Order Logic Hakjoo Oh 2017 Fall Hakjoo Oh AAA615 2017 Fall, Lecture 2 September 24, 2017 1 / 29 First-Order Logic An extension of propositional logic with predicates,

More information

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof.

Overview. I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Overview I Review of natural deduction. I Soundness and completeness. I Semantics of propositional formulas. I Soundness proof. I Completeness proof. Propositional formulas Grammar: ::= p j (:) j ( ^ )

More information

COMP Intro to Logic for Computer Scientists. Lecture 11

COMP Intro to Logic for Computer Scientists. Lecture 11 COMP 1002 Intro to Logic for Computer Scientists Lecture 11 B 5 2 J Puzzle 10 The first formulation of the famous liar s paradox, attributed to a Cretan philosopher Epimenides, stated All Cretans are liars.

More information

Predicate Calculus - Syntax

Predicate Calculus - Syntax Predicate Calculus - Syntax Lila Kari University of Waterloo Predicate Calculus - Syntax CS245, Logic and Computation 1 / 26 The language L pred of Predicate Calculus - Syntax L pred, the formal language

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 First Order (Predicate) Logic: Syntax and Natural Deduction 1

Proseminar on Semantic Theory Fall 2013 Ling 720 First Order (Predicate) Logic: Syntax and Natural Deduction 1 First Order (Predicate) Logic: Syntax and Natural Deduction 1 A Reminder of Our Plot I wish to provide some historical and intellectual context to the formal tools that logicians developed to study the

More information

Inference in first-order logic

Inference in first-order logic CS 270 Foundations of AI Lecture 4 Inference in first-order logic Milos Hauskrecht milos@cs.pitt.edu 5329 Sennott Square First-order logic FOL More epressive than propositional logic Advantages: Represents

More information

ICS141: Discrete Mathematics for Computer Science I

ICS141: Discrete Mathematics for Computer Science I ICS141: Discrete Mathematics for Computer Science I Dept. Information & Computer Sci., Originals slides by Dr. Baek and Dr. Still, adapted by J. Stelovsky Based on slides Dr. M. P. Frank and Dr. J.L. Gross

More information

Propositional natural deduction

Propositional natural deduction Propositional natural deduction COMP2600 / COMP6260 Dirk Pattinson Australian National University Semester 2, 2016 Major proof techniques 1 / 25 Three major styles of proof in logic and mathematics Model

More information

Introduction to first-order logic:

Introduction to first-order logic: Introduction to first-order logic: First-order structures and languages. Terms and formulae in first-order logic. Interpretations, truth, validity, and satisfaction. Valentin Goranko DTU Informatics September

More information

Logic and Proofs. (A brief summary)

Logic and Proofs. (A brief summary) Logic and Proofs (A brief summary) Why Study Logic: To learn to prove claims/statements rigorously To be able to judge better the soundness and consistency of (others ) arguments To gain the foundations

More information

Predicates, Quantifiers and Nested Quantifiers

Predicates, Quantifiers and Nested Quantifiers Predicates, Quantifiers and Nested Quantifiers Predicates Recall the example of a non-proposition in our first presentation: 2x=1. Let us call this expression P(x). P(x) is not a proposition because x

More information

Solutions to Homework I (1.1)

Solutions to Homework I (1.1) Solutions to Homework I (1.1) Problem 1 Determine whether each of these compound propositions is satisable. a) (p q) ( p q) ( p q) b) (p q) (p q) ( p q) ( p q) c) (p q) ( p q) (a) p q p q p q p q p q (p

More information

Announcements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication

Announcements. CS311H: Discrete Mathematics. Propositional Logic II. Inverse of an Implication. Converse of a Implication Announcements CS311H: Discrete Mathematics Propositional Logic II Instructor: Işıl Dillig First homework assignment out today! Due in one week, i.e., before lecture next Wed 09/13 Remember: Due before

More information

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference

Math.3336: Discrete Mathematics. Nested Quantifiers/Rules of Inference Math.3336: Discrete Mathematics Nested Quantifiers/Rules of Inference Instructor: Dr. Blerina Xhabli Department of Mathematics, University of Houston https://www.math.uh.edu/ blerina Email: blerina@math.uh.edu

More information

A. Propositional Logic

A. Propositional Logic CmSc 175 Discrete Mathematics A. Propositional Logic 1. Statements (Propositions ): Statements are sentences that claim certain things. Can be either true or false, but not both. Propositional logic deals

More information

Inference in First-Order Logic

Inference in First-Order Logic Inference in First-Order Logic Dr. Richard J. Povinelli rev 1.0, 10/7/2001 Page 1 Objectives You should! be able to analyze and employ logical inference in first-order logic. rev 1.0, 10/7/2001 Page 2

More information

Chapter 1, Part II: Predicate Logic

Chapter 1, Part II: Predicate Logic Chapter 1, Part II: Predicate Logic With Question/Answer Animations Copyright McGraw-Hill Education. All rights reserved. No reproduction or distribution without the prior written consent of McGraw-Hill

More information

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae

Logic and Discrete Mathematics. Section 3.5 Propositional logical equivalence Negation of propositional formulae Logic and Discrete Mathematics Section 3.5 Propositional logical equivalence Negation of propositional formulae Slides version: January 2015 Logical equivalence of propositional formulae Propositional

More information

CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE

CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE 1 CSCI-2200 FOUNDATIONS OF COMPUTER SCIENCE Spring 2015 February 5, 2015 2 Announcements Homework 1 is due now. Homework 2 will be posted on the web site today. It is due Thursday, Feb. 12 at 10am in class.

More information

Resolution: Motivation

Resolution: Motivation Resolution: Motivation Steps in inferencing (e.g., forward-chaining) 1. Define a set of inference rules 2. Define a set of axioms 3. Repeatedly choose one inference rule & one or more axioms (or premices)

More information