Input and Output Impedances with Feedback

Size: px
Start display at page:

Download "Input and Output Impedances with Feedback"

Transcription

1 EE 3 Lecture Basic Feedback Configurations Generalized Feedback Schemes Integrators Differentiators First-order active filters Second-order active filters

2 Review from Last Time Input and Output Impedances with Feedback R INF =? R β = R+R R OF =? Exact analysis : Consider amplifier as a two-port and use open/short analysis method V R IN R O A V V Will find R INF, R OF, A V almost identical to previous calculations Will see a small A VR present but it plays almost no role since R INF is so large (effectively unilateral) Two-Port Nonideal Op Amp R R A VF β R F R R +βa ( ) INF=RIN + AVβ A VRF V β

3 Review from Last Time Buffer Amplifier A V VOUT = = V IN R IN = One of the most widely used Op Amp circuits R OUT = Provides a signal to a load that is not affected by a source impedance This provides for decoupling between stages in many circuits Special case of basic noninverting amplifier with R = and R = V R = + V R OUT IN

4 Review from Last Time Basic Inverting Amplifier V IN + OUT = R V R IN OUT V OUT V R = - R IN R OUT = R IN =R Input impedance of R is unacceptable in many (but not all) applications This is not a voltage feedback amplifier (it is a feedback amplifier) of the type (note R IN is not high!) Feedback concepts could be used to analyze this circuit but lots of detail required

5 Review from Last Time Summing Amplifier F OUT k k VOUT V V Vk = R R R R F k R R R V = - V - V V F F F OUT k R R Rk Output is a weighted sum of the input voltages Any number of inputs can be used Gains from all inputs can be adjusted together with R F Gain for input V i can be adjusted independently with R i for I k All weights are negative Input impedance on each input is R i

6 Generalized Inverting Amplifier s-domain representation T s = Z Z F ( s) ( s) Z and Z F can be any s-domain circuits If Z =R, Z F =/sc, obtain T( s) = s What is this circuit?

7 Generalized Inverting Amplifier What is this circuit? T s = s Consider the differential equation ( τ ) t y = K x dτ Taking the Laplace Transform, obtain Xs Y( s ) = K s Y s T s = = Xs K is the frequency where T(jω) = and is termed the Integrator Unity Gain Frequency K s Thus, this circuit is an inverting integrator with a unity gain frequency of K = () -

8 Inverting Integrator T s = s T jω = jω T jω = ω 9 T jω = o Unity gain frequency is ω =

9 Inverting Integrator Integrators are widely used! R IN =R R OUT = t V = V + V ( τ) dτ OUT IN IN T s = s The integrator function itself is ill-conditioned and integrators are seldom used open-loop The ideal integrator has a pole at s= which is not in the LHP If the input has any dc component present, since superposition applies, the output would diverge to ± as time increases The offset voltage (discussed later) will also cause an integrator output to diverge

10 Inverting Integrator t V = V + V ( τ) dτ OUT IN IN What is the output of an ideal integrator if the input is an ideal square wave? Amplitude of output dependent upon product

11 Inverting Integrator t V = V + V ( τ) dτ OUT IN IN What is the output of an ideal integrator if the input is an ideal sine wave? Amplitude of output dependent upon product

12 Inverting Integrator Ill-conditioned nature of open-loop integrator DC OUT t V = V + V ( τ) dτ OUT IN IN If V IN () =, V OUT = V t t DC DC V VOUT = dτ V V t ( τ ) dτ DC OUT = = VDC t For any values of V DC, R, and C, the output will diverge to ±

13 Inverting Integrator Ill-conditioned nature of open-loop integrator t V = V + V ( τ) dτ OUT IN IN Any periodic input that in which the average value is not EXACTLY will have a dc component () V t A sin kωt+θ = + IN k k = This dc input will cause the output to diverge!

14 Noninverting Integrator t V = V + V ( τ) dτ OUT IN IN Obtained from inverting integrator by preceding or following with inverter Requires more components Also widely used Same issues affect noninverting integrator

15 Lossy Integrator F OUT IN Add a large resistor to slowly drain charge off of C and prevent divergence Allows integrator to be used open-loop Changes the dc gain from - to -R F /R But the lossy integrator is no longer a perfect integrator

16 What if R F is not so large? F OUT IN T s Z = Z F ( s) ( s)

17 What if R F is not so large? T s = Z Z F ( s) ( s) T s R sc R+ sc R = = R R +scr

18 First-order lowpass filter with a dc gain of R /R R R T( jω) R = R +scr T s R controls the pole (and also the dc gain) R controls the dc gain (and not the pole)

19 Summing Integrator C R T s = s V V R V OUT V OUT = V s IN V k R k V = V V V By superposition... OUT k sr C sr C sr kc All inverting functions Can have any number of inputs Weights independently controlled by resistor values Weights all changed by C V OUT k = Vi sr C i= i

20 I ve got a better noninverting integrator! R C V OUT V V R = - R OUT IN V IN VOUT = - V s IN R R OUT V IN V V R = + R OUT IN V OUT IN VOUT = + V s IN?

21 I ve got a better noninverting integrator! IN VOUT = + V s IN? OUT But is this a useful circuit? IN V sc+g =V sc OUT V V OUT IN +s = s It has a noninverting transfer function But it is not an noninverting integrator!

22 First-Order Highpass Filter But is this a useful circuit? OUT IN V V OUT IN +s = s This is a first-order high-pass amplifier (or filter) but the gain at dc goes to so applications probably limited.

23 Two-capacitor noninverting integrator Requires matched resistors and matched capacitors V sc+g = V Actually uses a concept called pole-zero cancellation OUT V( sc+g ) = VING VOUT = + V s Generally less practical than the cascade with an inverter IN sc

24 Generalized Inverting Amplifier s-domain representation If Z =/sc, Z F =R, obtain T( s) What is this circuit? = s T s = Z Z F ( s) ( s)

25 Generalized Inverting Amplifier What is this circuit? Consider the differential equation dx( t) y = K dt Taking the Laplace Transform, obtain Y( s ) = Ks X( s) K - is the frequency where T(jω) = T( s) = s Y s T s = = Ks Xs Thus, this circuit is an inverting differentiator with a unity gain frequency of K - = () -

26 Inverting Differentiator T( s) = s Differentiator gain ideally goes to at high frequencies Differentiator not widely used Differentiator relentlessly amplifies noise Stability problems with implementation (not discussed here) Placing a resistor in series with C will result in a lossy differentiator that has some applications

27 First-order High-pass Filter R sr T( s ) = - C = - R+ +R Cs sc R R T( jω) T jω = ωr C + ω

28 Applications of integrators to solving differential equations IN OUT Standard Integral form of a differential equation X = b X + b X + b X a X + X + X +... OUT OUT OUT 3 OUT IN IN IN Standard differential form of a differential equation X = α X + α X + α X β X + β X + β X +... ' '' ''' ' '' OUT OUT OUT 3 OUT IN IN 3 IN Initial conditions not shown Can express any system in either differential or integral form

29 Applications of integrators to solving differential equations Linear X IN X OUT Consider the standard integral form System X = b X + b X + b X a X + X + X +... OUT OUT OUT 3 OUT IN IN IN X IN a a a a 3 am b b b 3 b n X OUT This circuit is comprised of summers and integrators Can solve an arbitrary linear differential equation This concept was used in Analog Computers in the past

30 Applications of integrators to solving differential equations Linear X IN X OUT Consider the standard integral form System X = b X + b X + b X a X + X + X +... OUT OUT OUT 3 OUT IN IN IN Take the Laplace transform of this equation X = b X + b X + b X b + a X + a X + a X + a X a s s s s s s s s OUT OUT OUT 3 3 OUT n n IN IN IN 3 3 IN m m Multiply by s n and assume m=n (some of the coefficients can be ) s X = bs X + b s X + bs X b + a s X + as X + a s X + a s X a n n- n- n-3 n n- n- n-3 OUT OUT OUT 3 OUT n IN IN IN 3 IN n X n n- n- n-3 n n- n- n-3 ( s bs bs b3s... b ) = X ( as + as + as + a3s a ) OUT n IN n n n- n- n-3 a s + as + a s + a s a s bs b s bs... b OUT 3 = = T s X X IN n n- n- n-3 3 n n

31 Applications of integrators to solving differential equations Linear X IN X OUT Consider the standard integral form System X = b X + b X + b X a X + X + X +... OUT OUT OUT 3 OUT IN IN IN n n- n- n-3 a s + as + a s + a s a s bs b s bs... b OUT 3 = = T s X X IN n n- n- n-3 3 n n This can be written in more standard form n n- α s + α s +... α s + α s + β s β s + β n n = T s n n- n

32 Applications of integrators to filter design Linear System T s n n- α s + α s +... α s + α = s + β s β s + β X IN X n m OUT n n- n α n X IN α n- α n- α n-3 α X OUT -β n- -β n- -β n-3 -β Can design (synthesize) any T(s) with just integrators and summers! Integrators are not used open loop so loss is not added Although this approach to filter design works, often more practical methods are used

33 End of Lecture

34 Applications of integrators to filter design + I s I s This is a two-integrator-loop filter I X = - X +X +αx s OUT IN OUT OUT I s X OUT= XOUT These are -nd order filters X X I OUT=T s = X IN s + αis+i I I OUT =T s = X IN s + αis+i I s I If I =I =I, these transfer functions reduce to T Is ( s ) = s + αis+i T I ( s) = s + αis+i

35 Applications of integrators to filter design + I s I s T Is ( s ) = s + αis+i Consider T (jω) ( jω) T = T ( jω) = jωi ( I -ω ) α +jω I ωi ( I ) ( ) -ω + ωαi T T( jω) I ( s) = s + αis+i This is the standard nd order bandpass transfer function Now lets determine the BW and ω P

36 T Applications of integrators to filter design Determine the BW and ω P T ( jω) Is ( s ) = s + αis+i T ( jω) = ωi ( I ) ( ) -ω + ωαi To determine ω P, must set d T d ( jω) ω ( jω) = T = T ( jω ) P ( jω ) P This will occur also when d T and the latter is easier to work with dω ω I T jω = I -ω + ωαi ( ) ( ) d T ( I -ω ) + ( ωαi) I -ω I ( I -ω ) + ( αi) jω dω = ( I -ω ) + ( ωαi ) =

37 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P Is T T ( jω) d T d ( s ) = s + αis+i = = ( I -ω ) + ( ωαi ) ( I -ω ) + ( ωαi) I -ω I ( I -ω ) + ( αi) jω ω It suffices to set the numerator to ( I -ω ) + ( ωαi) I =ω I ( I -ω ) + ( αi) Solving, we obtain ω = I P ( jω ) T P II = = α ( I ) ( ) -I + I α = ωi ( I ) ( ) -ω + ωαi ( jω ) P Substituting back into the magnitude expression, we obtain Although the analysis is somewhat tedious, the results are clean T T ( jω ) P T( jω)

38 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P T( jω) Is T s + αis+i ( s ) = T ( jω) = ωi ( I ) ( ) -ω + ωαi To obtain ω L and ω H, must solve T ( jω) This becomes ( I -ω ) + ( ωαi) I -ω I ( I -ω ) + ( αi) = α ( I -ω ) + ( ωαi ) BW = ωh- ω L= αi ωω H L = I = α The expressions for ω L and ω H can be easily obtained but are somewhat messy, but from these expressions, we obtain the simple expressions α α

39 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P Is T ( s) = s + αis+i T ( jω) = ωi ( I ) ( ) -ω + ωαi T T ( jω ) P ( jω ) P T( jω) ω P = I T( jωp) = α T( jω) α α

40 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P T Is ( s ) = s + αis+i BW = αi ωω H L = I α α T( jω) Often express the standard nd order bandpass transfer function as T Is ( s ) = s +BWs+I

41 Applications of integrators to filter design The nd order Bandpass Filter These results can be generalized T BW = a ( s) = BP Hs s +as+b K K TBP ( jω) ωp = b H K= a

42 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P T T Is ( s ) = s + αis+i Is ( s ) = s +BWs+I + I s I s T( jω) α α Can readily be implemented with a summing inverting integrator and a noninverting integrator

43 Applications of integrators to filter design The nd order Bandpass Filter Determine the BW and ω P T T Is ( s ) = s + αis+i Is ( s ) = s +BWs+I + I s I s T( jω) α α α I= BW= Widely used nd order Bandpass Filter BW can be adjusted with R Q Peak gain changes with R Q Note no loss is added to the integrators ω P = I BW = αi

44 Applications of integrators to filter design The nd order Bandpass Filter Design Strategy Assume BW and ω P are specified T Is ( s ) = BP s + αis+i + I s T( jω) I s α α I= α BW= ω P = I. Pick C (use some practical or convenient value). Solve expression ω P= to obtain R 3. Solve expression α BW= to obtain α and thus R Q

45 Applications of integrators to filter design The nd order Lowpass Filter T I ( s) = s + αis+i + I s I s T ( jω ) P T ( jω) T jωp BW I= ω P ω Exact expressions for BW and ω P are very complicated but ω P I Widely used nd order Lowpass Filter BW can be adjusted with R Q but expression not so simple Peak gain changes with R Q Note no loss is added to the integrators Design procedure to realize a given nd order lowpass function is straightforward

46 Another nd -order Bandpass Filter V( sc +sc +G +G 3) = VOUTsC +VING 3 VsC +V G = OUT If the capacitors are matched and equal to C s 3 T( s ) = - s+s + ( R //R3) ω = R R //R C P ( 3) BW = R K= R T s = - Since this is of the general form of a nd order BP transfer function, obtain 3 s 3 s+s + + ( R //R3) C K K TBP ( jω)

47 Another nd -order Bandpass Filter Design Strategy Assume BW, ω P, and K are specified T s = - s 3 ( R //R3) s+s + BW = P ( 3) R K= R 3 ω = R R //R C K TBP ( jω). Pick C to some practical or convenient value. Solve expression BW = to obtain R R K= R 3. Solve expression to obtain α and thus R Solve expression P to obtain R ω = R R //R C 3 K

48 Another nd -order Bandpass Filter Termed the STAR biquad by inventors at Bell Labs V sc +sc +G +G = V sc +V G + V 3 OUT IN 3 OUT V H OUT ( sc+g ) =VsC+VOUTG sc H ω P= R ( R //R 3) C s H 3 H- T( s ) = - s+s + ( R //R3)( H-) ( R //R3) TBP ( jω) BW = R //R H- K = 3 H R3 H- R ( R //R3)( H-) For the appropriate selection of component values, this is one of the best nd order bandpass filters that has been published K K

49 STAR nd -order Bandpass Filter Implementation: s H 3 H- T( s ) = - s+s + ( R //R3)( H-) ( R //R3)??? But the filter doesn t work!

50 STAR nd -order Bandpass Filter s H 3 H- T( s ) = - s+s + ( R //R3)( H-) ( R //R3) Implementation: Works fine! If op amp ideal, V V OUT IN = H??? Will discuss why this happens later! Reduces to previous bandpass filter at H gets large Note that the H amplifier has feedback to positive terminal

OPERATIONAL AMPLIFIER APPLICATIONS

OPERATIONAL AMPLIFIER APPLICATIONS OPERATIONAL AMPLIFIER APPLICATIONS 2.1 The Ideal Op Amp (Chapter 2.1) Amplifier Applications 2.2 The Inverting Configuration (Chapter 2.2) 2.3 The Non-inverting Configuration (Chapter 2.3) 2.4 Difference

More information

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits

EE 508 Lecture 4. Filter Concepts/Terminology Basic Properties of Electrical Circuits EE 58 Lecture 4 Filter Concepts/Terminology Basic Properties of Electrical Circuits Review from Last Time Filter Design Process Establish Specifications - possibly T D (s) or H D (z) - magnitude and phase

More information

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration

EE 508 Lecture 24. Sensitivity Functions - Predistortion and Calibration EE 508 Lecture 24 Sensitivity Functions - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same T(s) within a gain factor)

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op Amp Design - Single Stage ow Gain Op Amps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op Amp Amplifier Amplifier used in open-loop

More information

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration

EE 508 Lecture 22. Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration EE 58 Lecture Sensitivity Functions - Comparison of Circuits - Predistortion and Calibration Review from last time Sensitivity Comparisons Consider 5 second-order lowpass filters (all can realize same

More information

Laplace Transform Analysis of Signals and Systems

Laplace Transform Analysis of Signals and Systems Laplace Transform Analysis of Signals and Systems Transfer Functions Transfer functions of CT systems can be found from analysis of Differential Equations Block Diagrams Circuit Diagrams 5/10/04 M. J.

More information

H(s) = 2(s+10)(s+100) (s+1)(s+1000)

H(s) = 2(s+10)(s+100) (s+1)(s+1000) Problem 1 Consider the following transfer function H(s) = 2(s10)(s100) (s1)(s1000) (a) Draw the asymptotic magnitude Bode plot for H(s). Solution: The transfer function is not in standard form to sketch

More information

ECE3050 Assignment 7

ECE3050 Assignment 7 ECE3050 Assignment 7. Sketch and label the Bode magnitude and phase plots for the transfer functions given. Use loglog scales for the magnitude plots and linear-log scales for the phase plots. On the magnitude

More information

Homework Assignment 11

Homework Assignment 11 Homework Assignment Question State and then explain in 2 3 sentences, the advantage of switched capacitor filters compared to continuous-time active filters. (3 points) Continuous time filters use resistors

More information

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators

EE 508 Lecture 29. Integrator Design. Metrics for comparing integrators Current-Mode Integrators EE 508 Lecture 29 Integrator Design Metrics for comparing integrators urrent-mode Integrators eview from last time nti-aliasing filter often required to limit frequency content at input to S filters ontinuous-time

More information

Electronic Circuits Summary

Electronic Circuits Summary Electronic Circuits Summary Andreas Biri, D-ITET 6.06.4 Constants (@300K) ε 0 = 8.854 0 F m m 0 = 9. 0 3 kg k =.38 0 3 J K = 8.67 0 5 ev/k kt q = 0.059 V, q kt = 38.6, kt = 5.9 mev V Small Signal Equivalent

More information

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters

Lecture 6, ATIK. Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters Lecture 6, ATIK Switched-capacitor circuits 2 S/H, Some nonideal effects Continuous-time filters What did we do last time? Switched capacitor circuits The basics Charge-redistribution analysis Nonidealties

More information

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 )

Exercise s = 1. cos 60 ± j sin 60 = 0.5 ± j 3/2. = s 2 + s + 1. (s + 1)(s 2 + s + 1) T(jω) = (1 + ω2 )(1 ω 2 ) 2 + ω 2 (1 + ω 2 ) Exercise 7 Ex: 7. A 0 log T [db] T 0.99 0.9 0.8 0.7 0.5 0. 0 A 0 0. 3 6 0 Ex: 7. A max 0 log.05 0 log 0.95 0.9 db [ ] A min 0 log 40 db 0.0 Ex: 7.3 s + js j Ts k s + 3 + j s + 3 j s + 4 k s + s + 4 + 3

More information

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps

EE 435. Lecture 2: Basic Op Amp Design. - Single Stage Low Gain Op Amps EE 435 ecture 2: Basic Op mp Design - Single Stage ow Gain Op mps 1 Review from last lecture: How does an amplifier differ from an operational amplifier?? Op mp mplifier mplifier used in open-loop applications

More information

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits

ECE2262 Electric Circuits. Chapter 4: Operational Amplifier (OP-AMP) Circuits ECE2262 Electric Circuits Chapter 4: Operational Amplifier (OP-AMP) Circuits 1 4.1 Operational Amplifiers 2 4. Voltages and currents in electrical circuits may represent signals and circuits can perform

More information

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i

Start with the transfer function for a second-order high-pass. s 2. ω o. Q P s + ω2 o. = G o V i aaac3xicbzfna9taeizxatkk7kec9tilqck4jbg5fjpca4ew0kmpdsrxwhlvxokl7titrirg69lr67s/robll64wmkna5jenndmvjstzyib9pfjntva/vzu6dzsnhj5/sdfefxhmvawzjpotsxeiliemxiucjpogkkybit3x5atow5w8xfugs5qmksecubqo7krlsfhkzsagxr4jne8wehaaxjqy4qq2svvl5el5qai2v9hy5tnxwb0om8igbiqfhhqhkoulcfs2zczhp26lwm7ph/hehffsbu90syo3hcmwvyxpawjtfbjpkm/wlbnximooweuygmsivnygqlpcmywvfppvrewjl3yqxti9gr6e2kgqbgrnlizqyuf2btqd/vgmo8cms4dllesrrdopz4ahyqjf7c66bovhzqznm9l89tqb2smixsxzk3tsdtnat4iaxnkk5bfcbn6iphqywpvxwtypgvnhtsvux234v77/ncudz9leyj84wplgvm7hrmk4ofi7ynw8edpwl7zt62o9klz8kl0idd8pqckq9krmaekz/kt7plbluf3a/un/d7ko6bc0zshbujz6huqq

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 578 Second order LCR resonator-poles V o I 1 1 = = Y 1 1 + sc + sl R s = C 2 s 1 s + + CR LC s = C 2 sω 2 s + + ω

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Stability Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ideal Configuration V i Σ V ε a(s) V o V fb f a(s) = V o V ε (s)

More information

Chapter 10 Feedback. PART C: Stability and Compensation

Chapter 10 Feedback. PART C: Stability and Compensation 1 Chapter 10 Feedback PART C: Stability and Compensation Example: Non-inverting Amplifier We are analyzing the two circuits (nmos diff pair or pmos diff pair) to realize this symbol: either of the circuits

More information

Passive RL and RC Filters

Passive RL and RC Filters NDSU Passive RL and RC Filters ECE 3 Passive RL and RC Filters A filter is a system whose gain changes with frequency. Essentially, all dynamic systems are filters. -Stage Low-Pass Filter For the following

More information

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741

Operational Amplifier (Op-Amp) Operational Amplifiers. OP-Amp: Components. Internal Design of LM741 (Op-Amp) s Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering & Technology ME 475: Mechatronics

More information

Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999

Deliyannis, Theodore L. et al Two Integrator Loop OTA-C Filters Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999 Deliyannis, Theodore L. et al "Two Integrator Loop OTA-C Filters" Continuous-Time Active Filter Design Boca Raton: CRC Press LLC,1999 Chapter 9 Two Integrator Loop OTA-C Filters 9.1 Introduction As discussed

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) v R o R i v i Av i v View it as an ideal amp. Take the properties to the extreme: R i, R o 0, A.?!?!?!?! v v i Av i v A Consequences: No voltage dividers at input or output.

More information

Operational amplifiers (Op amps)

Operational amplifiers (Op amps) Operational amplifiers (Op amps) Recall the basic two-port model for an amplifier. It has three components: input resistance, Ri, output resistance, Ro, and the voltage gain, A. v R o R i v d Av d v Also

More information

Bandwidth of op amps. R 1 R 2 1 k! 250 k!

Bandwidth of op amps. R 1 R 2 1 k! 250 k! Bandwidth of op amps An experiment - connect a simple non-inverting op amp and measure the frequency response. From the ideal op amp model, we expect the amp to work at any frequency. Is that what happens?

More information

EE C245 ME C218 Introduction to MEMS Design

EE C245 ME C218 Introduction to MEMS Design EE C45 ME C8 Introduction to MEMS Design Fall 007 Prof. Clark T.-C. Nguyen Dept. of Electrical Engineering & Computer Sciences University of California at Berkeley Berkeley, CA 9470 Lecture 5: Output t

More information

ECEN 325 Electronics

ECEN 325 Electronics ECEN 325 Electronics Operational Amplifiers Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Opamp Terminals positive supply inverting input terminal non

More information

Lecture 7: Transistors and Amplifiers

Lecture 7: Transistors and Amplifiers Lecture 7: Transistors and Amplifiers Hybrid Transistor Model for small AC : The previous model for a transistor used one parameter (β, the current gain) to describe the transistor. doesn't explain many

More information

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C

DESIGN MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT. Dr. Eman Azab Assistant Professor Office: C MICROELECTRONICS ELCT 703 (W17) LECTURE 3: OP-AMP CMOS CIRCUIT DESIGN Dr. Eman Azab Assistant Professor Office: C3.315 E-mail: eman.azab@guc.edu.eg 1 TWO STAGE CMOS OP-AMP It consists of two stages: First

More information

Sophomore Physics Laboratory (PH005/105)

Sophomore Physics Laboratory (PH005/105) CALIFORNIA INSTITUTE OF TECHNOLOGY PHYSICS MATHEMATICS AND ASTRONOMY DIVISION Sophomore Physics Laboratory (PH5/15) Analog Electronics Active Filters Copyright c Virgínio de Oliveira Sannibale, 23 (Revision

More information

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH )

LECTURE 130 COMPENSATION OF OP AMPS-II (READING: GHLM , AH ) Lecture 30 Compensation of Op AmpsII (/26/04) Page 30 LECTURE 30 COMPENSATION OF OP AMPSII (READING: GHLM 638652, AH 260269) INTRODUCTION The objective of this presentation is to continue the ideas of

More information

Design of Narrow Band Filters Part 1

Design of Narrow Band Filters Part 1 E.U.I.T. Telecomunicación 2010, Madrid, Spain, 27.09 30.09.2010 Design of Narrow Band Filters Part 1 Thomas Buch Institute of Communications Engineering University of Rostock Th. Buch, Institute of Communications

More information

EE 230 Lecture 25. Waveform Generators. - Sinusoidal Oscillators The Wein-Bridge Structure

EE 230 Lecture 25. Waveform Generators. - Sinusoidal Oscillators The Wein-Bridge Structure EE 230 Lecture 25 Waveform Generators - Sinusoidal Oscillators The Wein-Bridge Structure Quiz 9 The circuit shown has been proposed as a sinusoidal oscillator. Determine the oscillation criteria and the

More information

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids).

The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). nd-order filters The general form for the transform function of a second order filter is that of a biquadratic (or biquad to the cool kids). T (s) A p s a s a 0 s b s b 0 As before, the poles of the transfer

More information

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1

E40M. Op Amps. M. Horowitz, J. Plummer, R. Howe 1 E40M Op Amps M. Horowitz, J. Plummer, R. Howe 1 Reading A&L: Chapter 15, pp. 863-866. Reader, Chapter 8 Noninverting Amp http://www.electronics-tutorials.ws/opamp/opamp_3.html Inverting Amp http://www.electronics-tutorials.ws/opamp/opamp_2.html

More information

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters

EE 435 Lecture 44. Switched-Capacitor Amplifiers Other Integrated Filters EE 435 Lecture 44 Switched-Capacitor Amplifiers Other Integrated Filters Switched-Capacitor Amplifiers Noninverting Amplifier Inverting Amplifier C A V = C C A V = - C Accurate control of gain is possible

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

EE100Su08 Lecture #9 (July 16 th 2008)

EE100Su08 Lecture #9 (July 16 th 2008) EE100Su08 Lecture #9 (July 16 th 2008) Outline HW #1s and Midterm #1 returned today Midterm #1 notes HW #1 and Midterm #1 regrade deadline: Wednesday, July 23 rd 2008, 5:00 pm PST. Procedure: HW #1: Bart

More information

EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject

EE 508 Lecture 15. Filter Transformations. Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject EE 508 Lecture 15 Filter Transformations Lowpass to Bandpass Lowpass to Highpass Lowpass to Band-reject Review from Last Time Thompson and Bessel pproximations Use of Bessel Filters: X I (s) X OUT (s)

More information

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1

ELECTRONIC SYSTEMS. Basic operational amplifier circuits. Electronic Systems - C3 13/05/ DDC Storey 1 Electronic Systems C3 3/05/2009 Politecnico di Torino ICT school Lesson C3 ELECTONIC SYSTEMS C OPEATIONAL AMPLIFIES C.3 Op Amp circuits» Application examples» Analysis of amplifier circuits» Single and

More information

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH)

EE105 Fall 2015 Microelectronic Devices and Circuits Frequency Response. Prof. Ming C. Wu 511 Sutardja Dai Hall (SDH) EE05 Fall 205 Microelectronic Devices and Circuits Frequency Response Prof. Ming C. Wu wu@eecs.berkeley.edu 5 Sutardja Dai Hall (SDH) Amplifier Frequency Response: Lower and Upper Cutoff Frequency Midband

More information

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon

Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon Linear Circuit Experiment (MAE171a) Prof: Raymond de Callafon email: callafon@ucsd.edu TA: Younghee Han tel. (858) 8221763/8223457, email: y3han@ucsd.edu class information and lab handouts will be available

More information

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback

Designing Information Devices and Systems I Fall 2018 Lecture Notes Note Introduction: Op-amps in Negative Feedback EECS 16A Designing Information Devices and Systems I Fall 2018 Lecture Notes Note 18 18.1 Introduction: Op-amps in Negative Feedback In the last note, we saw that can use an op-amp as a comparator. However,

More information

D is the voltage difference = (V + - V - ).

D is the voltage difference = (V + - V - ). 1 Operational amplifier is one of the most common electronic building blocks used by engineers. It has two input terminals: V + and V -, and one output terminal Y. It provides a gain A, which is usually

More information

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points):

ENGR-4300 Spring 2009 Test 2. Name: SOLUTION. Section: 1(MR 8:00) 2(TF 2:00) 3(MR 6:00) (circle one) Question I (20 points): Question II (20 points): ENGR43 Test 2 Spring 29 ENGR43 Spring 29 Test 2 Name: SOLUTION Section: 1(MR 8:) 2(TF 2:) 3(MR 6:) (circle one) Question I (2 points): Question II (2 points): Question III (17 points): Question IV (2 points):

More information

The Approximating Impedance

The Approximating Impedance Georgia Institute of Technology School of Electrical and Computer Engineering ECE 4435 Op Amp Design Laboratory Fall 005 DesignProject,Part A White Noise and Pink Noise Generator The following explains

More information

Analog Circuits and Systems

Analog Circuits and Systems Analog Circuits and Systems Prof. K Radhakrishna Rao Lecture 27: State Space Filters 1 Review Q enhancement of passive RC using negative and positive feedback Effect of finite GB of the active device on

More information

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods

EE 230 Lecture 20. Nonlinear Op Amp Applications. The Comparator Nonlinear Analysis Methods EE 230 Lecture 20 Nonlinear Op Amp Applications The Comparator Nonlinear Analysis Methods Quiz 14 What is the major purpose of compensation when designing an operatinal amplifier? And the number is? 1

More information

0 t < 0 1 t 1. u(t) =

0 t < 0 1 t 1. u(t) = A. M. Niknejad University of California, Berkeley EE 100 / 42 Lecture 13 p. 22/33 Step Response A unit step function is described by u(t) = ( 0 t < 0 1 t 1 While the waveform has an artificial jump (difficult

More information

Review of Linear Time-Invariant Network Analysis

Review of Linear Time-Invariant Network Analysis D1 APPENDIX D Review of Linear Time-Invariant Network Analysis Consider a network with input x(t) and output y(t) as shown in Figure D-1. If an input x 1 (t) produces an output y 1 (t), and an input x

More information

Operational Amplifiers

Operational Amplifiers Operational Amplifiers A Linear IC circuit Operational Amplifier (op-amp) An op-amp is a high-gain amplifier that has high input impedance and low output impedance. An ideal op-amp has infinite gain and

More information

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA

Prof. D. Manstretta LEZIONI DI FILTRI ANALOGICI. Danilo Manstretta AA AA-3 LEZIONI DI FILTI ANALOGICI Danilo Manstretta AA -3 AA-3 High Order OA-C Filters H() s a s... a s a s a n s b s b s b s b n n n n... The goal of this lecture is to learn how to design high order OA-C

More information

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.

Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5. Studio 9 Review Operational Amplifier Stability Compensation Miller Effect Phase Margin Unity Gain Frequency Slew Rate Limiting Reading: Text sec 5.2 pp. 232-242 Two-stage op-amp Analysis Strategy Recognize

More information

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters

Lecture 7, ATIK. Continuous-time filters 2 Discrete-time filters Lecture 7, ATIK Continuous-time filters 2 Discrete-time filters What did we do last time? Switched capacitor circuits with nonideal effects in mind What should we look out for? What is the impact on system

More information

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1.

( s) N( s) ( ) The transfer function will take the form. = s = 2. giving ωo = sqrt(1/lc) = 1E7 [rad/s] ω 01 := R 1. α 1 2 L 1. Problem ) RLC Parallel Circuit R L C E-4 E-0 V a. What is the resonant frequency of the circuit? The transfer function will take the form N ( ) ( s) N( s) H s R s + α s + ω s + s + o L LC giving ωo sqrt(/lc)

More information

EE-202 Exam III April 13, 2015

EE-202 Exam III April 13, 2015 EE-202 Exam III April 3, 205 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo-7:30-8:30 Furgason 3:30-4:30 DeCarlo-:30-2:30 202 2022 2023 INSTRUCTIONS There are 2 multiple choice

More information

Electronic Circuits EE359A

Electronic Circuits EE359A Electronic Circuits EE359A Bruce McNair B26 bmcnair@stevens.edu 21-216-5549 Lecture 22 569 Second order section Ts () = s as + as+ a 2 2 1 ω + s+ ω Q 2 2 ω 1 p, p = ± 1 Q 4 Q 1 2 2 57 Second order section

More information

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani

ENGN3227 Analogue Electronics. Problem Sets V1.0. Dr. Salman Durrani ENGN3227 Analogue Electronics Problem Sets V1.0 Dr. Salman Durrani November 2006 Copyright c 2006 by Salman Durrani. Problem Set List 1. Op-amp Circuits 2. Differential Amplifiers 3. Comparator Circuits

More information

Time Varying Circuit Analysis

Time Varying Circuit Analysis MAS.836 Sensor Systems for Interactive Environments th Distributed: Tuesday February 16, 2010 Due: Tuesday February 23, 2010 Problem Set # 2 Time Varying Circuit Analysis The purpose of this problem set

More information

ECE 255, Frequency Response

ECE 255, Frequency Response ECE 255, Frequency Response 19 April 2018 1 Introduction In this lecture, we address the frequency response of amplifiers. This was touched upon briefly in our previous lecture in Section 7.5 of the textbook.

More information

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University

Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage (Source Follower) Claudio Talarico, Gonzaga University Common Drain Stage v gs v i - v o V DD v bs - v o R S Vv IN i v i G C gd C+C gd gb B&D v s vv OUT o + V S I B R L C L v gs - C

More information

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc

Advanced Analog Building Blocks. Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc Advanced Analog Building Blocks Prof. Dr. Peter Fischer, Dr. Wei Shen, Dr. Albert Comerma, Dr. Johannes Schemmel, etc 1 Topics 1. S domain and Laplace Transform Zeros and Poles 2. Basic and Advanced current

More information

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS

CHAPTER 14 SIGNAL GENERATORS AND WAVEFORM SHAPING CIRCUITS CHAPTER 4 SIGNA GENERATORS AND WAEFORM SHAPING CIRCUITS Chapter Outline 4. Basic Principles of Sinusoidal Oscillators 4. Op Amp RC Oscillators 4.3 C and Crystal Oscillators 4.4 Bistable Multivibrators

More information

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG

Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 INTRODUCTION TO ACTIVE AND PASSIVE ANALOG INTRODUCTION TO ACTIVE AND PASSIVE ANALOG FILTER DESIGN INCLUDING SOME INTERESTING AND UNIQUE CONFIGURATIONS Speaker: Arthur Williams Chief Scientist Telebyte Inc. Thursday November 20 th 2008 TOPICS Introduction

More information

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University

ECEN 607 (ESS) Op-Amps Stability and Frequency Compensation Techniques. Analog & Mixed-Signal Center Texas A&M University ECEN 67 (ESS) Op-Amps Stability and Frequency Compensation Techniques Analog & Mixed-Signal Center Texas A&M University Stability of Linear Systems Harold S. Black, 97 Negative feedback concept Negative

More information

Lecture 17 Date:

Lecture 17 Date: Lecture 17 Date: 27.10.2016 Feedback and Properties, Types of Feedback Amplifier Stability Gain and Phase Margin Modification Elements of Feedback System: (a) The feed forward amplifier [H(s)] ; (b) A

More information

Lecture 4: Feedback and Op-Amps

Lecture 4: Feedback and Op-Amps Lecture 4: Feedback and Op-Amps Last time, we discussed using transistors in small-signal amplifiers If we want a large signal, we d need to chain several of these small amplifiers together There s a problem,

More information

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e

Some of the different forms of a signal, obtained by transformations, are shown in the figure. jwt e z. jwt z e Transform methods Some of the different forms of a signal, obtained by transformations, are shown in the figure. X(s) X(t) L - L F - F jw s s jw X(jw) X*(t) F - F X*(jw) jwt e z jwt z e X(nT) Z - Z X(z)

More information

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation

Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Low-Sensitivity, Highpass Filter Design with Parasitic Compensation Introduction This Application Note covers the design of a Sallen-Key highpass biquad. This design gives low component and op amp sensitivities.

More information

EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL

EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL EE -213 BASIC CIRCUIT ANALYSIS LAB MANUAL EE 213 Spring 2008 LABORATORY #1 INTRODUCTION TO MATLAB INTRODUCTION The purpose of this laboratory is to introduce you to Matlab and to illustrate some of its

More information

Application Report. Mixed Signal Products SLOA021

Application Report. Mixed Signal Products SLOA021 Application Report May 1999 Mixed Signal Products SLOA021 IMPORTANT NOTICE Texas Instruments and its subsidiaries (TI) reserve the right to make changes to their products or to discontinue any product

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 9 Name: Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can

More information

ECEN 325 Electronics

ECEN 325 Electronics ECEN 325 Electronics Introduction Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering Ohm s Law i R i R v 1 v v 2 v v 1 v 2 v = v 1 v 2 v = v 1 v 2 v = ir

More information

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz.

1. Design a 3rd order Butterworth low-pass filters having a dc gain of unity and a cutoff frequency, fc, of khz. ECE 34 Experiment 6 Active Filter Design. Design a 3rd order Butterworth low-pass ilters having a dc gain o unity and a cuto requency, c, o.8 khz. c :=.8kHz K:= The transer unction is given on page 7 j

More information

MAE140 Linear Circuits Fall 2016 Final, December 6th Instructions

MAE140 Linear Circuits Fall 2016 Final, December 6th Instructions MAE40 Linear Circuits Fall 206 Final, December 6th Instructions. This exam is open book. You may use whatever written materials you choose, including your class notes and textbook. You may use a handheld

More information

6.302 Feedback Systems

6.302 Feedback Systems MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Fall Term 2005 Issued : November 18, 2005 Lab 2 Series Compensation in Practice Due

More information

EE 508 Lecture 31. Switched Current Filters

EE 508 Lecture 31. Switched Current Filters EE 508 Lecture 31 Switched Current Filters Review from last time Current-Mode Filters I IN I 0 I 0 s+αi0 s I OUT T s 2 IOUT I 0 I 2 2 IN s + I0s+I 0 Basic Concepts of Benefits of Current-Mode Filters:

More information

Lecture 37: Frequency response. Context

Lecture 37: Frequency response. Context EECS 05 Spring 004, Lecture 37 Lecture 37: Frequency response Prof J. S. Smith EECS 05 Spring 004, Lecture 37 Context We will figure out more of the design parameters for the amplifier we looked at in

More information

Filters and Tuned Amplifiers

Filters and Tuned Amplifiers Filters and Tuned Amplifiers Essential building block in many systems, particularly in communication and instrumentation systems Typically implemented in one of three technologies: passive LC filters,

More information

Electronics II. Final Examination

Electronics II. Final Examination The University of Toledo f6fs_elct7.fm - Electronics II Final Examination Problems Points. 5. 0 3. 5 Total 40 Was the exam fair? yes no The University of Toledo f6fs_elct7.fm - Problem 5 points Given is

More information

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto

Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto Switched-Capacitor Circuits David Johns and Ken Martin University of Toronto (johns@eecg.toronto.edu) (martin@eecg.toronto.edu) University of Toronto 1 of 60 Basic Building Blocks Opamps Ideal opamps usually

More information

I. Frequency Response of Voltage Amplifiers

I. Frequency Response of Voltage Amplifiers I. Frequency Response of Voltage Amplifiers A. Common-Emitter Amplifier: V i SUP i OUT R S V BIAS R L v OUT V Operating Point analysis: 0, R s 0, r o --->, r oc --->, R L ---> Find V BIAS such that I C

More information

System on a Chip. Prof. Dr. Michael Kraft

System on a Chip. Prof. Dr. Michael Kraft System on a Chip Prof. Dr. Michael Kraft Lecture 3: Sample and Hold Circuits Switched Capacitor Circuits Circuits and Systems Sampling Signal Processing Sample and Hold Analogue Circuits Switched Capacitor

More information

EE-202 Exam III April 6, 2017

EE-202 Exam III April 6, 2017 EE-202 Exam III April 6, 207 Name: (Please print clearly.) Student ID: CIRCLE YOUR DIVISION DeCarlo--202 DeCarlo--2022 7:30 MWF :30 T-TH INSTRUCTIONS There are 3 multiple choice worth 5 points each and

More information

Homework 6 Solutions and Rubric

Homework 6 Solutions and Rubric Homework 6 Solutions and Rubric EE 140/40A 1. K-W Tube Amplifier b) Load Resistor e) Common-cathode a) Input Diff Pair f) Cathode-Follower h) Positive Feedback c) Tail Resistor g) Cc d) Av,cm = 1/ Figure

More information

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16

EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 EECE 2150 Circuits and Signals Final Exam Fall 2016 Dec 16 Instructions: Write your name and section number on all pages Closed book, closed notes; Computers and cell phones are not allowed You can use

More information

Stability and Frequency Compensation

Stability and Frequency Compensation 類比電路設計 (3349) - 2004 Stability and Frequency ompensation hing-yuan Yang National hung-hsing University Department of Electrical Engineering Overview Reading B Razavi hapter 0 Introduction In this lecture,

More information

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction)

EE 330 Lecture 31. Basic Amplifier Analysis High-Gain Amplifiers Current Source Biasing (just introduction) 330 Lecture 31 asic Amplifier Analysis High-Gain Amplifiers urrent Source iasing (just introduction) eview from Last Time ommon mitter onfiguration ommon mitter onsider the following application (this

More information

Frequency Dependent Aspects of Op-amps

Frequency Dependent Aspects of Op-amps Frequency Dependent Aspects of Op-amps Frequency dependent feedback circuits The arguments that lead to expressions describing the circuit gain of inverting and non-inverting amplifier circuits with resistive

More information

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A =

The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = The equivalent model of a certain op amp is shown in the figure given below, where R 1 = 2.8 MΩ, R 2 = 39 Ω, and A = 10 10 4. Section Break Difficulty: Easy Learning Objective: Understand how real operational

More information

EE 321 Analog Electronics, Fall 2013 Homework #3 solution

EE 321 Analog Electronics, Fall 2013 Homework #3 solution EE 32 Analog Electronics, Fall 203 Homework #3 solution 2.47. (a) Use superposition to show that the output of the circuit in Fig. P2.47 is given by + [ Rf v N + R f v N2 +... + R ] f v Nn R N R N2 R [

More information

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory

Electronic Circuits. Prof. Dr. Qiuting Huang Integrated Systems Laboratory Electronic Circuits Prof. Dr. Qiuting Huang 6. Transimpedance Amplifiers, Voltage Regulators, Logarithmic Amplifiers, Anti-Logarithmic Amplifiers Transimpedance Amplifiers Sensing an input current ii in

More information

Laboratory III: Operational Amplifiers

Laboratory III: Operational Amplifiers Physics 33, Fall 2008 Lab III - Handout Laboratory III: Operational Amplifiers Introduction Operational amplifiers are one of the most useful building blocks of analog electronics. Ideally, an op amp would

More information

Biquad Filter. by Kenneth A. Kuhn March 8, 2013

Biquad Filter. by Kenneth A. Kuhn March 8, 2013 by Kenneth A. Kuhn March 8, 201 The biquad filter implements both a numerator and denominator quadratic function in s thus its name. All filter outputs have identical second order denominator in s and

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Arizona State University Lecture 6: Generalized and Controller Design Overview In this Lecture, you will learn: Generalized? What about changing OTHER parameters

More information

Lectures on APPLICATIONS

Lectures on APPLICATIONS APP0 University of alifornia Berkeley ollege of Engineering Department of Electrical Engineering and omputer Science obert W. Brodersen EES40 Analog ircuit Design t ISE Lectures on APPLIATINS t FALL.0V

More information

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week

Today. 1/25/11 Physics 262 Lecture 2 Filters. Active Components and Filters. Homework. Lab 2 this week /5/ Physics 6 Lecture Filters Today Basics: Analog versus Digital; Passive versus Active Basic concepts and types of filters Passband, Stopband, Cut-off, Slope, Knee, Decibels, and Bode plots Active Components

More information

Design of Analog Integrated Circuits

Design of Analog Integrated Circuits Design of Analog Integrated Circuits Chapter 11: Introduction to Switched- Capacitor Circuits Textbook Chapter 13 13.1 General Considerations 13.2 Sampling Switches 13.3 Switched-Capacitor Amplifiers 13.4

More information

PHYS225 Lecture 9. Electronic Circuits

PHYS225 Lecture 9. Electronic Circuits PHYS225 Lecture 9 Electronic Circuits Last lecture Field Effect Transistors Voltage controlled resistor Various FET circuits Switch Source follower Current source Similar to BJT Draws no input current

More information

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2

EE 40: Introduction to Microelectronic Circuits Spring 2008: Midterm 2 EE 4: Introduction to Microelectronic Circuits Spring 8: Midterm Venkat Anantharam 3/9/8 Total Time Allotted : min Total Points:. This is a closed book exam. However, you are allowed to bring two pages

More information