ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM. Hee Oh

Size: px
Start display at page:

Download "ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM. Hee Oh"

Transcription

1 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Hee Oh Abstract. In this paper, we generalize Margulis s S-arithmeticity theorem to the case when S can be taken as an infinite set of primes. Let R be the set of all primes including infinite one and set Q = R. Let S be any subset of R. For each p S, let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors and D p G p (Q p ) be a compact open subgroup for almost all finite prime p S. Let (G S, D p ) denote the restricted topological product of G p (Q p ) s, p S with respect to D p s. Note that if S is finite, (G S, D p ) = Q p S G p(q p ). We show that if P p S rank Q p (G p ) 2, any irreducible lattice in (G S, D p ) is a rational lattice. We also present a criterion on the collections G p and D p for (G S, D p ) to admit an irreducible lattice. In addition, we describe discrete subgroups of (G A, D p ) generated by lattices in a pair of opposite horospherical subgroups. 1. Introduction Let R denote the set of all prime numbers including the infinite prime and R f the set of finite prime numbers, i.e., R f = R { }. We set Q = R. For each p R, let G p be a non-trivial connected semisimple algebraic Q p -group and for each p R f, let D p be a compact open subgroup of G p (Q p ). The adele group of G p, p R with respect to D p, p R f is defined to be the restricted topological product of the groups G p (Q p ) with respect to the distinguished subgroups D p. We denote this group by (G A, {D p, p R f }) or simply by (G A, D p ). That is, (G A, D p ) = {(g p ) p R G p (Q p ) g p D p for almost all p R f }. As is well known, the adele group (G A, D p ) is a locally compact topological group. If G is a connected semisimple Q-group, then we mean by (G A, G(Z p )) the adele group attached to the groups G p = G, p R with respect to the subgroups G(Z p ), p R f. It is a well known result of Borel [Bo1] that the diagonal embedding of G(Q) into (G A, G(Z p )), which we will identify with G(Q), is a lattice in (G A, G(Z p )). Furthermore 2000 Mathematics Subject Classification number: 20G35, 22E40, 22E46, 22E50, 22E55 1

2 2 HEE OH Godement s criterion in an adelic setting, proved by Mostow and Tamagawa [MT] and also independently by Borel [Bo1], implies that G is Q-isotropic if and only if G(Q) is a non-uniform lattice in (G A, G(Z p )). In the spirit of Margulis arithmeticity theorem [Ma1], we show in this paper that any irreducible lattice in an adele group (G A, D p ) is essentially of the form described as above. We say that a lattice Γ in (G A, D p ) is irreducible if, for any finite subset S of R containing, π S (Γ {(g p ) G A g p D p for all p / S}) is an irreducible lattice in p S G p(q p ) in the usual sense (see [Ma2, Ch III, 5.9] or definition 2.9 below) where π S denotes the natural projection (G A, D p ) p S G p(q p ). The following is a sample case of our main theorem: 1.1. Theorem. For each p R, let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors and D p a compact open subgroup for almost all p R f. Assume that G is absolutely simple. Then any irreducible non-uniform lattice Γ in (G A, D p ) is rational in the sense that there exist a connected absolutely simple Q-isotropic Q-group H and a Q p -isomorphism f p : H G p for each p R with f p (H(Z p )) = D p for almost all p R f such that Γ is a subgroup of finite index in f(h(q)) where f is the restriction of the product map p R f p to (H A, H(Z p )). In particular, f provides a topological group isomorphism of (H A, H(Z p )) to (G A, D p ). In order to define a rational lattice in an adele group in generality, we first describe arithmetic methods of constructing irreducible lattices in adele groups. Let K be a number field. Let R K be the set of all (inequivalent) valuations of K. For each v R K, K v denotes the local field which is the completion of K with respect to v and for non-archimedean v R K, O v denotes the ring of integers of K v. If H is a connected absolutely simple K-group, it is a well known fact that the set T (H) = {v R K H(K v ) is compact} is finite. Let S be a subset of R K T (H) containing all archimedean valuations in R K T (H), and let (H S, H(O v )) denote the restricted topological product of the groups H(K v ), v S with respect to the subgroups H(O v ). Then the subgroup H(K(S)), when identified with its image under the diagonal embedding into (H S, H(O v )), is a lattice in (H S, H(O v )) where K(S) denotes the ring of S-integers in K [Bo1]. The group H being absolutely simple, H(K(S)) is in fact an irreducible lattice in (H S, H(O v )). Unless mentioned otherwise, throughout the introduction, we let G p be a connected semisimple adjoint Q p -group for each p R and D p a compact open subgroup for each p R f.

3 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM Definition. We call an irreducible lattice Γ in (G A, D p ) rational if there exist K, H, S as above and a topological group epimorphism f : (G A, D p ) (H S, H(O v )) with compact kernel such that f(γ) is commensurable with H(K(S)). Remark. (1) Since S R K T (H), H(K v ) is non-compact for each v S. If we denote by G i p the maximal connected normal Q p -subgroup of G p without any Q p -anisotropic factors for each p R and let D i p = D p G i p for each p R f, then in the above definition the quotient (G A, D p )/kerf is isomorphic to (G i A, Di p). In particular, if G p (Q p ) has no compact factors for any p R, we may assume that f is an isomorphism in Definition 1.2. (2) If R 0 = {p R G p (Q p ) is non-compact}, then (G i A, Di p ) is naturally identified with the restricted topological product of the groups G i p (Q p), p R 0 with respect to the subgroups D i p. If R 0 is finite, then (G i A, Di p ) = p R 0 G i p (Q p). In this case, the above definition of a rational lattice in (G A, D p ) coincides with that of an R 0 -arithmetic (usually referred to as S-arithmetic ) lattice of p R 0 G i p(q p ) given in [Ma2, Ch IX, 1.4]. (3) If Γ is an irreducible lattice in (G A, D p ), then pr(γ) is an irreducible lattice in (G i A, Di p ) as well where pr denotes the natural projection (G A, D p ) (G i A, Di p ). Then an irreducible lattice Γ in (G A, D p ) is rational if and only if pr(γ) is a rational lattice in (G i A, Di p ) in the sense of Definition A (or Definition B) in 4.1. The following is a special case of Corollary 4.10 below Main Theorem. If p R rank Q p (G p ) 2, any irreducible lattice in (G A, D p ) is rational. That the adele group (G A, D p ) contains an irreducible lattice imposes a strong restriction not only on the family of the ambient groups G p but also on the family of distinguished subgroups D p. The following presents a necessary and sufficient condition on those restriction: 1.4. Theorem. For each p R, assume that G p (Q p ) has no compact factors. The adele group (G A, D p ) admits an irreducible lattice if and only if there exist a connected semisimple Q-simple Q-group H such that G p is Q p -isomorphic to a connected normal Q p -subgroup of H for each p R and D p is a subgroup whose volume is maximum among all compact open subgroups of G p (Q p ) for almost all p R f. See Theorem 4.13 below for a more general statement.

4 4 HEE OH Example. (1) If G p is Q p -simple and Q p -isotropic for each p R and (G A, D p ) admits an irreducible lattice, then all G p s are typewise homogeneous, that is, their Dynkin types are the same. (2) Let n 2 and G p = PGL n for each p R. Then (G A, D p ) has an irreducible lattice if and only if D p is conjugate to PGL n (Z p ) for almost all p R f. For n = 2, for each p R f, there are two conjugacy classes of maximal compact open subgroups of PGL 2 (Q p ), represented by PGL 2 (Z p ) and by {( ) } ( ) a b 0 1 L p = PGL pc d 2 (Z p ), p 0 respectively. Note that in the Bruhat-Tits tree associated to PGL 2 (Q p ), the conjugacy class of PGL 2 (Z p ) corresponds to the stabilizer of a vertex and the conjugacy class of L p corresponds to the stabilizer of the middle point of an edge. If we denote by µ p a Haar measure of PGL 2 (Q p ), then µ p (L p ) = 2 p+1 µ p(pgl 2 (Z p )) {( ) } a b because the common subgroup PGL pc d 2 (Z p ) has index p + 1 in PGL 2 (Z p ) while it has index 2 in L p. Hence if D p is conjugate to L p for infinitely many primes p, (G A, D p ) does not admit an irreducible lattice. Furthermore, it follows from Theorem 1.1 and the Hasse principle that, up to automorphism of (G A, PGL 2 (Z p )), PGL 2 (Q) is the unique irreducible non-uniform lattice in (G A, PGL 2 (Z p )) up to commensurability (see Proposition 6.3 below). (3) Let n 1. If G p = PGSp 2n for each p R, then (G A, D p ) admits an irreducible lattice only when D p is conjugate to PGSp 2n (Z p ) for almost all p R f. Up to automorphism of (G A, PGSp 2n (Z p )), the subgroup PGSp 2n (Q) is the unique irreducible non-uniform lattice in (G A, PGSp 2n (Z p )) up to commensurability (see Proposition 6.3 below). (4) More generally, if G is a connected absolutely simple Q-group, then for almost all p R f, G(Z p ) is a hyperspecial subgroup of G(Q p ), or equivalently, the volume of G(Z p ) is the maximum among all compact open subgroups of G(Q p ) [Ti]. It thus follows from Theorem 1.4 that if we let G p = G, p R, then (G A, D p ) admits an irreducible lattice if and only if D p is conjugate to G(Z p ) for almost all p R f (see 4.14). If H is a connected semisimple Q-isotropic Q-group, there exists a pair P 1, P 2 of opposite proper Q-parabolic subgroups of H. Then the subgroup R u (P i )(Q) is a (uniform) lattice in (H A, H(Z p )) p R R u(p i )(Q p ) where R u (P i ) denotes the unipotent radical

5 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 5 of P i for each i = 1, 2 [Bo1]. The notation H(Q) + denotes the subgroup generated by all unipotent elements contained in H(Q). If H is almost Q-simple, the subgroup generated by these two lattices R u (P 1 )(Q) and R u (P 2 )(Q) coincides with the subgroup H(Q) + [BT1]. We also show that a discrete subgroup of (G A, D p ) containing any lattices in a pair of opposite horospherical subgroups respectively, is essentially of the form H(Q) + for H as above, under some additional assumptions on G. A subgroup U of (G A, D p ) is called a horospherical subgroup if U = (G A, D p ) p R R u(p p ) where P p is a proper parabolic Q p -subgroups of G p for each p R. Two horospherical subgroups of (G A, D p ) are called opposite if the corresponding Q p - parabolic subgroups are opposite for each p R. For a subgroup Γ (G A, D p ), we denote by Γ the image of Γ (G (R) p R f D p ) under the natural projection pr : (G A, D p ) G (R) Theorem. For each p R, assume that G p has no Q p -anisotropic factors. Assume that rank (G ) 2. Let Γ be a subgroup of (G A, D p ) containing lattices in a pair of opposite horospherical subgroups of (G A, D p ). Assume moreover ( ) that Γ is a lattice in G (R). Then Γ is discrete if and only if there exist a connected absolutely simple Q- isotropic Q-group H and a topological group isomorphism f : (H A, H(Z p )) (G A, D p ) such that f(h(q) + ) Γ f(h(q)). Remark. The above theorem holds without the assumption ( ) provided Margulis s conjecture (see [Oh1, Conjecture 0.1]) holds for G. Indeed, for a discrete subgroup Γ as above, Γ is a discrete subgroup containing lattices in a pair of opposite horospherical subgroups in G (R). The conjecture says that any such a discrete subgroup is a lattice in G (R) as long as the real rank of G is at least 2. See [Oh, Theorem 4.1] and the remark following it for the list of groups for which the conjecture has been settled. For instance, the list includes groups G which are split over R and not locally isomorphic to SL 3 (R). We also remark that in an S-arithmetic setting (S finite), i.e., when G = p S G p(q p ), the class of discrete subgroup of G containing lattices in a pair of opposite horospherical subgroups coincides with that of non-uniform lattices in G [Oh1]. In an adelic setting this is no more true, since the subgroup H(Q) + has infinite index in H(Q) in general (cf. Remark 4.12). However H(Q) + is contained every subgroup of finite index in H(Q) [BT1]. Naturally one may ask how many irreducible lattices an adele group (G A, D p ) can admit up to commensurability. By the Hasse principle for an adjoint absolutely simple Q-group, Theorem 1.1 implies that for instance, if for some p R, G p is not of

6 6 HEE OH type A n (n 2), D n (n 3), or E 6, then (G A, D p ) admits at most one irreducible non-uniform lattice up to commensurability and up to automorphism of (G A, D p ) (see Proposition 6.3). In section 2, we set up some notation as well as state some well known facts about algebraic groups. In section 3, we obtain a necessary and sufficient condition on the collection of distinguished subgroups D p so that (G A, D p ) admits a lattice contained in G(Q) (Theorem 3.9). Theorem 1.3 immediately follows from Theorem 4.9 (see Corollary 4.10). For the proof of Theorem 4.9, based on the S-arithmeticity theorem and a special case of super-rigidity theorem of Margulis [Ma2], we first obtain a connected Q-simple Q-group H so that, up to Q p -anisotropic factors, H is isomorphic to G p, say via f p, for each p R and H(Q) corresponds to Γ under the product map p R f p, up to commensurability. Here we embed Γ into p R f p(h(q)) (G A, D p ) as well. Up to this part, the proof proceeds exactly the same way as in the Margulis S-arithmeticity theorem for S finite. The difference in the case of S infinite is to handle the compact subgroups D p s. To ensure the Q p -isomorphisms f p s transfer the Q-structure on H to (G A, D p ) in a compatible way, we has to show that f p (H(Z p )) = D p for almost all p R f. This is based on the strong approximation property of the simply connected covering of H, explained in Section 3. Similarly the proof of Theorem 1.5 is based on the result analogous in the S-arithmetic setting obtained by the author [Oh1]. These are explained in section 5. In section 6, we relate the Hasse principle with the set of irreducible non-uniform lattices in (G A, D p ). Acknowledgment. Thanks are due to Gopal Prasad and Andrei Rapinchuk for communications regarding the Hasse principle for adjoint groups. I am also grateful to Jim Cogdell, Wee Teck Gan and Dave Witte for helpful discussions. 2. Notation and Terminology We continue the definitions and the notation mentioned in the introduction For any field k, we mean by a linear algebraic k-group M that M is a Zariski closed k-subgroup of GL N for some N, and we set M(J) = M GL N (J) for any subring J of k. The term k-group will always mean a linear algebraic group with a fixed realization as a k-closed subgroup of GL N for some N Let K be a number field. Let R K, K v and O v be as in the introduction. For any S R K, we set K(S) to be the ring of S-integers in K, that is, K(S) = {x K x O v for all v R f S}. If K = Q, we simply set R = R Q and we sometimes write Z S

7 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 7 for Q(S) For each v R K, let G v be a connected semisimple algebraic K v -group. Fix a compact open subgroup D v of G v (K v ) for each non-archimedean v R K. For any subset T R K, we denote by (G T, D v ) the restricted topological product of the groups G v (K v ), v T with respect to the distinguished subgroups D v. If T is finite, then (G T, D v ) = v T G v(k v ), which we will then simply denote by G T. If T = R K, we write (G A, D v ) = (G T, D v ) and call an adele group. The topology on (G T, D v ) is given as follows: a base of open subsets consists of the sets of the form p S U v v/ S D v where S is a finite subset of T and U v G v (K v ) is an open subset for each v S. The group (G T, D v ) is a locally compact group with respect to this topology As is well known, for each v R K, the local field K v is a finite extension of a subfield isomorphic to Q p for some (unique) p R. For each p R, we denote by I p the set of valuations v R K such that Q p K v (up to isomorphism). Then H p = v I p Rest Kv /Q p G v is a connected semisimple Q p -group and v I p G v (K v ) is isomorphic to H p (Q p ) as topological groups. We denote this isomorphism by Rest 0. The map Rest 0 also extends to an isomorphism of the adele group (G A, D v ) with the adele group (H A, M p ) where M p = v I p Rest Kv /Q p D v (cf. [Ma2, Ch I, 3.1.4] and [Bo1]) If G is a connected semisimple K-group, then we mean by (G A, G(O v )) the adele group attached to the groups G v = G with respect to the subgroups G(O v ). The diagonal embedding of G(K) into (G A, G(O v )), which we will identify with G(K), is a lattice in (G A, G(O v )) [Bo1]. Denote by T (G) the set of all v R K such that G(K v ) is compact. Then T (G) is finite (cf. [Ma2, Ch I, 3.2.3]). It then follows that if T R K contains all archimedean valuations in R K T (G), the subgroup G(K(T)) is a lattice in (G T, G(O v )) when diagonally embedded into (G T, G(O v )). Note that G(K(T)) = {x G(K) x G(O v ) for all non-archimedean v R K T }. The group G is K-isotropic if and only if G(K(T)) is a non-uniform lattice in (G T, G(O v )) For each p R, we denote by pr p the natural projection (G A, D p ) G p (Q p ). For any T R, the notation pr T denotes the natural projection (G A, D p ) (G T, D p ). We set G A(T) = {(g p ) G A g p D p for all p R f T }. For any subgroup H of (G A, D p ) and for any subset T R, we set H T = pr T ( H GA(T) ).

8 8 HEE OH 2.7. For any finite S R, let G p be a connected semisimple algebraic Q p -group without any Q p -anisotropic factors for each p S. A lattice Λ in G S = p S G p(q p ) is called irreducible if for any two connected normal subgroups H = p S H p(q p ) and M = p S M p(q p ) of G S such that for each p S, G p is an almost direct product of connected normal Q p -subgroups M p and H p, (Λ H) (Λ M) has infinite index in Λ (cf. [Ma2, Ch III, 5.9]). This is equivalent to saying that Γ cannot be an almost direct product of two infinite normal subgroups of Γ For a connected semisimple Q p -subgroup G p, we denote by G i p (i standing for isotropic) the maximal connected normal subgroup of G p without any Q p -anisotropic factors. Note that G p (Q p )/G i p (Q p) is compact. That G p has no Q p -anisotropic factors is equivalent to saying that G p (Q p ) has no compact factors Let G p be a connected semisimple algebraic Q p -group for each p R. Fix a compact open subgroup D p of G p (Q p ) for each p R f. Let T R. A lattice Γ in (G T, D p ) is called irreducible if the projection of Γ S into p S G p(q p ) i is an irreducible lattice in p S G p(q p ) i for any finite subset S T containing For a connected semisimple algebraic K-group G, the notation G(K) + denotes the normal subgroup of G(K) generated by the subgroups R u (P)(K) where P runs through the set of all parabolic K-subgroups of G and R u (P) denotes the unipotent radical of P. Or equivalently G(K) + denotes the subgroup generated by all unipotent elements in G(K) [BT1]. If G is almost K-simple and K-isotropic, G(K) + coincides with the subgroup generated by R u (P 1 )(K) and R u (P 2 )(K) for any pair P 1, P 2 of opposite proper parabolic K-subgroups [BT1]. Recall that two parabolic subgroups are called opposite if their intersection is a common Levi subgroup in both of them We refer to [PR], [Bo1] or [Ma2, Ch I] as a general reference to our terminology regarding algebraic groups. 3. Distinguished subgroups D p 3.1. Lemma. Let G p be a connected semisimple Q p -group for each p R. Fix a compact open subgroup D p of G p (Q p ) for each p R f. Let S be a finite subset of R. Assume that S if G (R) is non-compact. (1) If Γ is a discrete subgroup in (G A, D p ), then Γ S is a discrete subgroup in G S. (2) If Γ is a (uniform) lattice in (G A, D p ), then Γ S is a (uniform) lattice in G S.

9 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 9 Proof. For simplicity, set G A = (G A, D p ). Denote by pr S the restriction of pr S to the subgroup G A(S). Since the kernel of pr S is compact, the subgroup Γ S is discrete if Γ is so. Let Γ be a (uniform) lattice in G A. Since G A(S) is an open subgroup of G A, the intersection Γ G A(S) is a (uniform) lattice in G A(S). Consider the natural map pr S : G A(S) /(Γ G A(S) ) G S /Γ S induced by pr S. Now if µ is an invariant measure on G A(S) /(Γ G A(S) ), then pr S (µ) is an invariant measure on G S/Γ S. Hence if Γ is a uniform lattice in G A, then Γ S is a uniform lattice in G S We recall the following corollary of (a special case of) the strong approximation theorem: Theorem. Let G be a connected semisimple simply connected almost Q-simple group. Let S be a finite subset of R such that p S G p(q p ) is non-compact. Then G(Z S ) is dense in the direct product p R f S G(Z p), when diagonally embedded. In particular if is a subgroup of finite index in G(Z S ), then the closure of has finite index in p R f S G(Z p). Proof. Let G AS denote the restricted topological product of the G p (Q p ) for p R f S with respect to the subgroups G(Z p ), p R f S. By the strong approximation theorem (cf. [PR, Theorem 7.12, P. 427]), G(Q) is dense in G AS. Since p R f S G(Z p) is an open subgroup of G AS, G(Q) p R f S G(Z p) is dense in p R f S G(Z p). Since G(Z S ) = G(Q) p R f S G(Z p), this proves the first claim. For the second claim, it suffices to note that [G(Z S ) : ] [G(Z S ) : ] by the first claim Proposition. Let p R f. Let G be a connected semisimple Q p -group and let K 1 and K 2 be maximal compact subgroups of G(Q p ). Assume that there exists a maximal compact subgroup K of G(Q p ) such that π(k) K 1 K 2 where G is the simply connected covering of G and π : G G is the Q p -isogeny. Then K 1 = K 2. Proof. Consider the Bruhat-Tits building B attached to G. In the following proof, we use some results in [Ti] without repeating reference. The group G(Q p ) acts on B through the map π. For each i = 1, 2, the maximal compact subgroup K i is the stabilizer G(Q p ) x i in G(Q p ) of some point x i B. Since G is simply connected, there exists a vertex v B such that G(Q p ) v = K. We claim that v = x 1 = x 2, which implies that K i G(Q p ) v for both i = 1 and 2. Since K 1 and K 2 are maximal compact subgroups, this implies that K 1 = K 2 = G(Q p ) v. Suppose that v x i for some i {1, 2}. Since π(k) stabilizes v and x i, it stabilizes pointwisely the unique geodesic l joining v and x i. Since v x i, we can find a facet F whose closure contains v and F l is non-empty. Fix z F l. Note

10 10 HEE OH that the dimension of F is positive. Since G is simply connected, G(Qp ) z = G(Q p ) F where G(Q p ) F is the pointwise stabilizer of F in G(Q p ). Therefore π(k) G(Q p ) F. This is a contradiction, since the stabilizer of a facet of positive dimension in G(Q p ) cannot be a maximal compact subgroup. This finishes the proof Lemma [Ti, 3.2]. Let G be a connected semisimple Q-group. Then G(Z p ) is a maximal compact subgroup for almost all p R f Lemma. Let G be a connected semisimple Q-group, G the simply connected covering of G and π : G G the central Q-isogeny. Then for almost all p Rf, π( G(Z p )) G(Z p ). See [PR, P. 451] for the proof of Lemma Proposition. Let G, G and π be as in Lemma 3.5. For each p R f, let D p be a compact open subgroup of G(Q p ). Assume that π( G(Z p )) D p for almost all p R f. Then D p G(Z p ) for almost all p R f. Proof. Since every compact open subgroup of G(Q p ) is contained in a maximal compact open subgroup, we may assume that D p is a maximal compact open subgroup for all p R f. By Lemmas 3.4 and 3.5, there exists a finite subset S R f such that for each p R f S, both D p and G(Z p ) are maximal compact subgroups of G(Q p ) and π( G(Z p )) D p G(Z p ). Applying Proposition 3.3, we have D p = G(Z p ) for all p R f S, proving the claim The following is a special case of [Ma2, Ch IX, 4.15]. Theorem. Let G be a connected semisimple almost Q-simple Q-group. Let S be a finite subset of R such that p S rank Q p G 2. If G(R) is non-compact, we assume that S. If Γ G(Q) and Γ is a lattice in G S (when diagonally embedded), then Γ and G(Z S ) are commensurable. In particular Γ contains a subgroup of finite index in G(Z S ) Set G(Q) (G A, D p ) = {x G(Q) x D p for almost all p R f }. We identify this set with its image under the diagonal embedding into (G A, D p ). Theorem. Let G and S be as in Lemma 3.7. Let D p be a compact open subgroup of G(Q p ) for each p R f. If Γ is a closed subgroup of G(Q) (G A, D p ) such that Γ S is a lattice in G S = p S G(Q p), then π( G(Z p )) D p G(Z p ) for almost all p R f, where G and π are as in Lemma 3.5. Furthermore if Γ is a lattice in (G A, D p ), then D p = G(Z p ) for almost all p R f.

11 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 11 Proof. We first consider the case when G is simply connected. By Theorem 3.7, Γ S contains a subgroup of finite index in G(Z S ). Let denote the diagonal embedding of the subgroup Γ S G(Z S ) into p R f S G(Z p). Note that p R f S (G(Z p) D p ) p R f S G(Z p). By Theorem 3.2, the closure of is a compact open subgroup in p R f S G(Z p), and hence G(Z p ) pr p ( ) for almost all p R f. On the other hand, since p R f S (G(Z p) D p ) is compact, we have pr p ( ) G(Z p ) D p for each p R f S. Therefore G(Z p ) = D p for almost all p R f by Lemma 3.4. If G is not simply connected, consider the simply connected covering G and the Q- isogeny π : G G. Denote by π p the restriction of π to G(Q p ). By Lemma 3.5, we have that G(Z p ) = π 1 p G(Z p) for almost all p R f. Set Γ = G(Q) ( G A, π 1 p (D p)). Since the kernel of p S π p is finite, it is clear that Γ S is a lattice in p S G(Q p ). Therefore, by the previous simply connected case, we have πp 1(D p) = G(Z p ); hence π p ( G(Z p )) D p for almost all p R f. Therefore for almost p R f, π p ( G(Z p )) D p G(Z p ) by Proposition 3.6. Now assume that Γ is a lattice in (G A, D p ). Recall that G(Q) is a lattice in (G A, G(Z p )). Denote by µ 1 and µ 2 the Haar measures on (G A, D p ) and (G A, G(Z p )) normalized so that µ 1 (D p ) = 1 and µ(g(z p )) = 1 for all p R f, respectively. For each finite S R containing, Γ S is a subgroup of finite index in G(Z S ) and both are lattices in G S. Hence µ 2 (G S /Γ S ) µ 2 (G S /G(Z S )). Note that µ 2 (G S /Γ S ) = µ 1 (G S /Γ S ) p R f S [G(Z p) : D p ]. For any increasing sequence S i, i = 1, 2, such that R = i S i, the measures µ 2 (G Si /G(Z Si )) and µ 1 (G Si /Γ S i ) converge to the measures µ 2 ((G A, G(Z p ))/G(Q)) and µ 1 ((G A, D p )/Γ) respectively. Hence lim i p R f S i [G(Z p ) : D p ] should be bounded. Hence D p = G(Z p ) for almost all p R f Theorem. Let G be a connected semisimple almost Q-simple group and D p a compact open subgroup of G(Q p ) for each p R f. If G is not simply connected, assume that D p is a maximal compact open subgroup for almost all p R f. Then the following are equivalent. (1) The adele group (G A, D p ) admits a lattice contained in G(Q) (G A, D p ). (2) There exists a finite subset S R such that p S rank Q p G 2, and Γ S is a lattice in p S G(Q p) where Γ = G(Q) (G A, D p ). (3) D p = G(Z p ) for almost all p R f.

12 12 HEE OH Proof. To show (1) (2), since G(Q p ) is non-compact for almost all p R (see 2.5), there exists a finite subset S R such that p S rank Q p G 2. If G (R) is noncompact, we assume S. Let be a lattice in (G A, D p ) contained in G(Q). It is not difficult to check that Γ is a discrete subgroup of (G A, D p ). Since Γ, the subgroup Γ is a lattice in (G A, D p ) as well. Hence Γ S is a lattice in p S G(Q p) by Lemma 3.1. The direction (2) (3) follows from Theorem 3.8. If (3) holds, then (G A, D p ) = (G A, G(Z p )) in the sense that the identity map provides a topological group isomorphism between them, and hence G(Q) is a lattice in (G A, D p ) The second claim in Theorem 3.8 combined with Theorem 3.9 yields the following: Theorem. Let G be a connected semisimple almost Q-simple group and D p a compact open subgroup of G(Q p ) for each p R f. Then the following are equivalent. (1) The adele group (G A, D p ) admits a lattice contained in G(Q) (G A, D p ). (2) D p = G(Z p ) for almost all p R f. 4. Rationality of an irreducible lattice in G A 4.1. In the following we give two definitions of a rational lattice. It is convenient for our purpose to understand the equivalence of the two definitions. In both definitions, let T R and let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors for each p T and D p a compact open subgroup of G(Q p ) for almost all finite p T. Definition A. An irreducible lattice Γ in (G T, D p ) is called a rational lattice if there exist: (1) a connected semisimple adjoint Q-simple Q-group H; (2) if / T, H(R) is compact; (3) for each p T, a decomposition H = Hp 1 H2 p where H1 p and H2 p are connected semisimple adjoint Q p -groups; (4) for each p T, a maximal compact open subgroup M p Hp(Q 2 p ) with M p = H(Z p ) Hp 2(Q p) for almost all finite p T; and (5) a family of Q p -epimorphisms f p : H G p, p T with kerf p = Hp 2 and f p (H(Z p )) = D p for almost all finite p T such that Γ is commensurable with the subgroup f H(Q(T)) p T(H p 1 (Q p) M p )

13 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 13 where f = p T f p. Definition B. An irreducible lattice in (G T, D p ) is called a rational lattice if there exist a number field K, a connected absolutely simple K-group H and a subset B R K T (H) containing all archimedean valuations in R K T (H) such that there exists a topological group isomorphism f : (H B, H(O v )) (G T, D p ) and f(h(k(b)) is commensurable with Γ. Remark. When T is finite, Definition A (essentially) coincides with that of an S- arithmetic lattice given in [Zi, Theorem ] and Definition B coincides with that of an S-arithmetic lattice given in [Ma2, Ch IX] 4.2. Proposition. Definitions A and B are equivalent. Proof. Assume that Γ is a rational lattice in (G T, D p ) as in Definition A. For any H as in (1), there exist a number field K and a connected absolutely simple K-group H such that H = Rest K/Q H. For each p T, let I p R K be as in 2.4. Then considering H as a Q p -group and H as a K v -group for each v I p, we have the decomposition H = v I p Rest Kv /Q p H over Q p. Since H is a connected absolutely simple K v -group, each Rest Kv /Q p H is a connected semisimple adjoint Q p -simple Q p -group. For each p T, we can find a partition of I p into I 1 p I2 p such that H1 p = v I 1 p Rest Kv /Q p H and H 2 p = v I 2 p Rest Kv /Q p H = kerf p. Set B = p T I 1 p. Note that if T, H 2 (R) is compact, since otherwise H 2 (R) does not admit a compact open subgroup. Hence if v R K is an archimedean valuation with H(K v ) non-compact, then v / I. 2 That is, I 1 and hence B contains all archimedean valuations in R K T (H). If / T, H(R) is compact, and hence for all archimedean v I, H(K v ) is compact, that is, v T (H). Since G p (Q p ) has no compact factors, B R K T (H). Since M p = H(Z p ) H 2 p(q p ) for almost all finite p T and M has finite index in H 2 (R) in the case when T, the subgroup Rest K/Q H(K(B)) is commensurable with {x H(Q(T)) x H 1 p (Q p) M p for each p T }. Via the map Rest 0 (see 2.4), the group (H B, H(O v )) is isomorphic to (H 1 T, H(Z p) H 1 (Q p )) and the lattice H(K(B)) is mapped to a subgroup commensurable with the subgroup pr 1 δ T ( {x H(Q(T)) x H 1 p (Q p ) M p for each p T } ) where δ T denotes the diagonal embedding of H(Q) into (H T, H(Z p )) and pr 1 denotes the canonical projection (H T, H(Z p )) (H 1 T, H(Z p) H 1 p (Q p)).

14 14 HEE OH Note that Rest 0 ( v I H(O p 1 v )) = H(Z p ) Hp 1(Q p) for each finite p T. Hence if f 1 denotes the restriction of the map f to (HT 1, H(Z p) H 1 (Q p )), then f 1 Rest 0 is an isomorphism of (H B, H(O v )) to (G T, D p ) and the image of H(K(B)) under this isomorphism is commensurable with Γ. Hence Γ is a rational lattice in Definition B as well. To see the converse, if we let H = Rest K/Q H, then H is a connected semisimple adjoint Q-simple Q-group. Let T = {p R for some v B, K v is a finite extension of Q p }. Note that H(R) is non-compact if and only if H(K v ) is non-compact for an archimedean valuation v R K. Hence if H(R) is non-compact, then T, since B contains all archimedean valuations in R K T (H). Let Ip 1 = I p B and Ip 2 = I p Ip 1. Set Hp 1 = v I Rest p 1 Kv /Q p H and Hp 2 = v I Rest p 2 Kv /Q p H. Note that if T, H 2 (R) is compact. It follows from the lemma below that there exist Q p-isomorphisms h p : Hp 1 G p, p T such that h p (Hp 1(Q p) H p (Z p )) = D p for almost all finite p T and f = p T h p Rest 0 where f : (H B, H(O v )) (G T, D p ) is the given topological group isomorphism and Rest 0 : v I H(K p 1 v ) Hp 1(Q p) as in 2.4. If pr p denotes the natural projection H Hp, 1 then the map f p = h p pr p is a Q p -epimorphism from H G p with kerf p = Hp 2 and f p(h(z p )) = D p for almost all finite p T. Set M p = H(Z p ) Hp(Q 2 p ) for each finite p T. If T, set M = H (R). 2 Then H(K(B)), is commensurable to the subgroup {x H(K(B 0 )) Rest Kv /Q p x Hp 1 M p for each p T } v I p where B 0 = p T I p. Therefore via the map p T f p, Γ is commensurable to {x H(Q(T)) x Hp 1 (Q p) M p for each p T }. Hence Γ is rational as in Definition A. We formulate the lemma used in the above proof Lemma. Let S, T R. Let G p, p S (resp. H p, p T) be connected semisimple adjoint Q p -groups without any Q p -anisotropic factors and M p G p (Q p ) (resp. L p H p (Q p )) compact open subgroups for each finite prime p S (resp. p T). Assume that M p and L p are maximal compact subgroups for almost all finite p S. If f : (G S, M p ) (H T, L p ) is a topological group isomorphism, then S = T, there exist Q p - isomorphisms f p : G p H p, p S such that f p (M p ) = L p for almost all finite p S and f(x) = p S f p(x) for any x (G S, M p ).

15 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 15 Proof. For each p S and r T, consider the map f pr : G p (Q p ) H r (Q r ) defined by f pr (g) = pr r (f(g)) for each g G p (Q p ). Here pr r : (H T, L p ) H r (Q r ) denotes the natural projection map. Then f pr is a continuous homomorphism for each p and r. Since f is an isomorphism, for each p S, f pr (G r (Q r )) {e} for some r T. By [Ma2, Ch I, Proposition 2.6.1], we have f pr (G r (Q r )) {e} if and only if p = r, and when p = r, the topological group isomorphism f pp : G p (Q p ) H p (Q p ) extends to a rational Q p -isomorphism f p : G p H p. It follows that S = T. Since the restriction of f to (G S Rf, M p ) induces an isomorphism f : (G S Rf, M p ) (H T Rf, L p ), the image f ( p S R f M p ) is an open compact subgroup of (H T Rf, L p ). Since f ( p S R f M p ) = p S R f f p (M p ) and f p (M p ) H p (Q p ) for each p S R f, L p f p (M p ) for almost all finite p S. Since M p and L p are maximal compact for almost all finite p S, we have that L p = f p (M p ) for almost all finite p S Margulis s S-arithmeticity theorem states: Theorem. Let S R be a finite subset and let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors for each p S. If p S rank Q p (G p ) 2, any irreducible lattice in G S is an S-arithmetic lattice in G S. See [Ma2, Ch IX, Theorem 1.11 and the remark 1.3. (iii)] or [Zi, Theorem ] Before we give a proof of rationality theorem which works for uniform and nonuniform lattices simultaneously, we give an instructive simpler proof for an irreducible non-uniform lattice assuming that G is absolutely simple. Theorem 1.1 immediately follows from the following: Theorem. For each p R, let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors. For each p R f, let D p G p (Q p ) be a compact open subgroup. Assume that G is absolutely simple. Fix a finite subset S 0 R containing such that p S 0 rank Qp (G p ) 2. Let Γ be a subgroup of (G A, D p ) such that Γ S is an irreducible non-uniform lattice in G S for any finite S T including S 0. Then there exist a connected absolutely simple Q-isotropic Q-group H and a Q p -isomorphism f p : H G p for each p R with f p (H(Z p )) = D p for almost all p R f such that Γ f(h(q)) where f is the restriction of p R f p to (H A, H(Z p )). Proof. Set Ω = {S R S 0 S, S < }. Step 1. Obtain Q-forms H S for each S Ω. For any S Ω, by Theorem 4.4 and Definition A, there exist a connected absolutely simple Q-group H S, Q p -isomorphisms

16 16 HEE OH r Sp : H S G p, p S such that Γ S is commensurable with the subgroup {(r Sp (x)) x H S (Z S )}. Since the groups G p, p S and H S are adjoint, we may assume that Γ S is a finite index subgroup of {(r Sp (x)) x H S (Z S )}. Step 2. The Q-forms H S are all Q-isomorphic. Set H = H S0 and r = r S0. By the assumption and Lemma 3.1, Γ is a lattice in G (R) and hence is Zariski dense in G by Borel density theorem. For any S Ω, since Γ r S (H S (Q)) r(h(q)) and r r 1 S, (Γ ) H S (Q), the map r r 1 S : H H S is defined over Q [Ma2, Ch I, 0.11]. Since both H and H S are absolutely simple, the map r r 1 S is indeed a Q-isomorphism. Step 3. Define a Q p -isomorphism f p : H G p for each p R. For each p R, we define a map f p : H G p by f p = r Sp (r S ) 1 r for any S Ω containing p. To show that this is independent of the choice of S, we claim that for any p R and for any S 1, S 2 Ω such that p S 1 S 2, r S1 p r 1 S 1 = r S 2 p r 1 S 2. Since Γ,p {(r S1 (x), r S1 p(x)) x H S1 (Q)} {(r S2 (x), r S2 p(x)) x H S2 (Q)}, we have that r S1 p r 1 S 1 (z) = r S 2 p r 1 S 2 (z) for any z pr (Γ {,p} ). Since pr (Γ {,p} ) is a Zariski dense subset in G, r S1 p r 1 S 1 = r S 2 p r 1 S 2 and hence the map f p is well defined for each p R. Since r Sp is a Q p -isomorphism and (r S ) 1 r is a Q-isomorphism, f p is a Q p -isomorphism. Step 4. Show Γ f(h(q)) where f = p R f p. We now claim that Γ f(h(q)) where f = p R f p and f(h(q)) = {(f p (x)) x H(Q)}. It suffices to show that Γ S f S (H(Q)) = {(f p (x)) p S x H(Q)} for each S Ω. But Γ S {(r Sp (x)) p S x H S (Q)}. If x H S (Q), then there exists a unique y H(Q) such that x = r 1 S r(y). Hence r Sp (x) = f p (y) for each p S. Therefore Γ S f S (H(Q)) for any S Ω. Step 5. Show f p (H(Z p )) = D p for almost all p R f. The product map f induces a topological group isomorphism from (H A, fp 1(D p)) to (G A, D p ). Note that f 1 (Γ) H(Q) (H A, fp 1 (D p )). Since f 1 (Γ) S is a lattice in p S H(Q p) for any S Ω, by Theorem 3.10, we have fp 1(D p) = H(Z p ), or equivalently f p (H(Z p )) = D p, for almost all p R f. This finishes the proof The proof of Theorem 1.3 is more involved in general cases. We will need the following preparation before giving its proof. In view of the equivalence of the two definitions given in 4.1, the following is a direct corollary of [Ma2, Ch VIII, Theorem 3.6]:

17 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 17 Proposition. Let H be a connected semisimple adjoint Q-simple Q-group. Let S be a finite subset of R. Assume that S if H(R) is non-compact. For each p S, let H = Hp 1 Hp 2 where the subgroups Hp 1 and Hp 2 are connected normal Q p -subgroups of H, Hp 1 has no Q p-anisotropic factors and M p Hp 2(Q p) a compact open subgroup. Let F be a connected adjoint semisimple Q-group, Λ a subgroup of H commensurable with {x H(Q(S)) x (Hp 1(Q p) M p ) for each p S} and δ : Λ F(Q) a homomorphism with a Zariski dense image in F. Assume that p S rank Q p (Hp) 1 2. Then there exists a (unique) Q-isomorphism j : H F which extends δ Lemma. Let S and G p be as on Theorem 4.4. If Γ is an irreducible lattice in G S. Then for any p S, the restriction of pr p : G S G p to Γ is injective. Proof. If S = {p}, the statement is trivial. Suppose not. Set N = {γ Γ pr p (γ) = e}. Then N is a normal subgroup of Γ. Since the lattice Γ is irreducible, the image of Γ under pr p is infinite. Hence N is not commensurable with Γ. By Margulis s normal subgroup theorem [Ma2, Ch VIII, Theorem 2.6], N is contained in the center of G S. Since the groups G p are adjoint, the center of G S is trivial, proving the claim Lemma. For any p R, let G be a connected reductive Q p -group. Then any compact open subgroup of G p (Q p ) is contained in only a finitely number of compact subgroups of G p (Q p ). Proof. If G(R) contains a compact open subgroup, say U, it follows that G(R) itself is compact and U has a finite index in G(R). Hence the claim follows. For a finite prime p, see [PR, Proposition 3.6, P 136] We are now ready to prove the main theorem: Theorem. Let T R. For each p T, let G p be a connected semisimple adjoint Q p - group without any Q p -anisotropic factors. For almost all finite p T, let D p G p (Q p ) be a maximal compact open subgroup. Fix a finite subset S 0 T (containing if T) such that p S 0 rank Qp (G p ) 2. Let Γ be a subgroup of (G T, D p ) such that Γ S is an irreducible lattice in G S for any finite S T including S 0. Then Γ is contained in some rational lattice in (G T, D p ). Proof. Set p 0 = if T, and otherwise let p 0 be any fixed prime in S 0. Set Ω = {S T S 0 S, S < }. Step 1. Obtain the Q-forms H S, S Ω. For each S Ω, we denote by H S, HSp 1, HSp 2, M Sp, f Sp, pr Sp as in Theorem 4.4 and Definition A in 4.1. Also set r Sp to be the

18 18 HEE OH composition map f Sp pr Sp : H S G p. Since the groups G p, p S and H S are adjoint, we may assume that Γ S is a subgroup of finite index in {(r Sp (x)) p S x H S (Z S ) (HSp 1 M Sp ) for each p S}. Step 2. The Q-forms H S are all Q-isomorphic. Set H = H S0 and r = r S0 p 0. We first claim that the group H S is Q-isomorphic to H for any S Ω. Consider the maps r : H G p0 and r Sp0 : H S G. For simplicity, we set pr p0 = pr 0. Since pr 0 (Γ S ) r Sp0 (H S (Z S )) for any S Ω, the set r 1 Sp 0 (pr 0 (Γ S )) = {x H S (Z S ) r(x) pr Sp0 (Γ S )} is contained in H S (Z S ). Since the map r Sp0 is injective over r 1 Sp 0 (pr 0 (Γ S 0 )) by Lemma 4.7, the composition map r 1 Sp 0 r is well defined on r 1 (pr 0 (Γ S 0 )), which we denote by j Sp0 : r 1 (pr 0 (Γ S 0 )) H S (Q). By Proposition 4.6, the map j Sp0 extends to a Q-rational isomorphism j S : H H S, proving our claim. Step 3. Define Q p -epimorphisms f p : H G p. For each p T, we define a map f p : H G p by f p = r Sp j S for any S Ω containing p. To show that this is independent of the choice of S, we claim that for any p T and for any S 1, S 2 Ω such that p S 1 S 2, r S1 p j S1 = r S2 p j S2. Note that r is injective over H(Z S0 ) by Lemma 4.7. We let r 1 (Γ S 0 ) = {x H(Z S0 ) r(x) Γ S 0 }. Since H S0 is Q-simple, it follows that r 1 (pr 0 (Γ S 0 )) is Zariski dense in H S0. Hence it suffices to verify this equality for any x r 1 (pr 0 (Γ S 0 )). There exists a unique (see Lemma 4.7) element y Γ S 0 such that r(x) = pr 0 (y), and there exist elements z i H Si (Q), i = 1, 2 such that y = pr S0 (r S1 q(z 1 )) = pr S0 (r S2 q(z 2 )). Again by Lemma 4.7, we have r S1 p(z 1 ) = r S2 p(z 2 ). Then r S1 p j S1 (x) = r S1 p r 1 S 1 p 0 r(x) = r S1 p(z 1 ) which is equal to r S2 p(z 2 ) = r S2 p r 1 S 2 p 0 r(x) = r S2 p j S2 (x). This proves our claim, yielding that f p is well defined for each p T. Since r Sp is a Q p -epimorphism and j S is a Q-isomorphism, f p is a Q p -epimorphism. Step 4. The groups H 1 p, H2 p and M p. Note that kerf p is a connected semisimple adjoint Q p -group, as is any connected normal Q p -subgroup of H. Letting Hp 2 = kerf p for each p T, there exists a connected semisimple adjoint Q p -group Hp 1 such that H = Hp 1 Hp. 2 Note that the restriction f p : Hp 1 G p is a Q p -isomorphism. Since j S is a Q-isomorphism, Hp 1 = j 1 S (H1 Sp ) and H2 p = j 1 S (H2 Sp ) for each S Ω containing p. We claim that there exists a compact open subgroup, say, M p, of Hp(Q 2 p ) such that f 1 p f 1 p (pr p(γ S )) M p for each S Ω containing p. Note that fp 1(pr p(γ S 0 )) (pr p(γ S )) for each S Ω containing p. On the other hand, the latter subgroup is

19 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 19 contained in the compact open subgroup j 1 S (M Sp) HSp 2 (Q p). Since fp 1(pr p(γ S 0 )) S Ω j 1 S (M Sp), S Ω j 1 S (M Sp) is a compact open subgroup of Hp 2(Q p). Hence by Lemma 4.8, p S Ω j 1 S (M Sp) = j 1 S m (M Sm p) for some S m Ω. It suffices to set M p to be a maximal compact open subgroup of Hp 2(Q p) containing j 1 S m (M Sm p). Step 5. Show Γ f(h(q)) where f = p T f p. We now claim that Γ f(h(q) p T (H1 p M p)) where f = p T f p. It suffices to show that Γ S f S (H(Q) p R (H1 p M p )) for each S Ω, where f S = p S f p. For any γ Γ S, we have γ = (r Sp (x)) p S for some x H S (Q) and in the decomposition x = x 1 p x2 p for x1 p H1 Sp and HSp 2, we have x2 p M p. Since x H S (Q), then there exists a unique y H(Q) such that x = j S (y). Hence r Sp (x) = f p (y) and y = j 1 S (x1 p )j 1 S (x2 p ) where j 1 S (x1 p ) H1 p and j 1 S (x2 p ) j 1 S (ker pr Sp) M p for each p S. Therefore Γ S f S (H(Q) p R (H1 p M p )) for any S Ω. Step 6. f p (H(Z p )) = D p for almost all finite p T. For each p T, set D p = {x H 1 p(q p ) f p (x) D p }. For p T, set L p = D p M p and for p R f T, L p = H(Z p ). Consider the adele group (H A, L p ). Now the subgroup {x H(Q) f T (x) Γ} satisfies the property (2) in Theorem 3.8 where f T = p T f p. Hence L p = H(Z p ) for almost all p R f, and hence we have D p M p = H(Z p ) and M p = H(Z p ) H 2 p (Q p) for almost all finite p T. Therefore f p (H(Z p )) = D p for almost all finite p T. Therefore we have constructed (H, f p, M p ) as required in Definition A Corollary. Let T R. For each p T, let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors. For each finite p T, let D p G p (Q p ) be a compact open subgroup. If p T rank Q p (G p ) 2. then any irreducible lattice in (G T, D p ) is rational. Proof. The condition on maximality of D p s was used only in Step 6 in the above proof. Here instead of referring to Theorem 3.9, it suffices to refer to Theorem 3.10 to deduce L p = H(Z p ) for almost all p R f. Then the rest proceeds exactly the same way Without the assumption of G p being adjoint, we can deduce the following from Theorem 4.5 and Theorem 3.9: Proposition. For each p R, let G p be a connected semisimple Q p -group without any Q p -anisotropic factors and let G be absolutely almost simple. Let D p be a compact open subgroup of G p (Q p ) for each p R f. If Γ is an irreducible non-uniform lattice in (G A, D p ), then there exists a connected absolutely simple Q-group H and a Q p -isogeny f p : G p H for each p R such that π( H(Z p )) f p (D p ) H(Z p ) for almost p R

20 20 HEE OH and p R f p(γ) H(Q) where H is the simply connected covering of H and π : H H is the Q-isogeny. Example. Let n 2 and G p = SL n for each p R. Let D p be a (not necessarily maximal) compact open subgroup of SL n (Q p ) for each p R. If (G A, D p ) has an nonuniform irreducible lattice, then for almost all p R f, D p is conjugate to SL n (Z p ) by an element of GL n (Q p ) Remark. We remark that the subgroup Γ need not be a lattice in G A to satisfy the assumptions in Theorem 4.5 or 4.9. Let G be a connected absolutely simple Q-isotropic Q-group. If G(Q) + Λ G(Q), Λ S is an irreducible lattice in G S for any finite set S containing such that p S rank Q p (G p ) 2. Indeed, Λ S is a discrete subgroup of G S such that G(Q) +S Λ S G(Q) S. Note that G(Z S ) = G(Q) S and G(Q) +S is an infinite normal subgroup of G(Z S ). Hence by Margulis s normal subgroup theorem, G(Q) +S has finite index in G(Z S ) ([Ma2, Ch VIII, Theorem 2.6]). Therefore Λ S is a lattice in G S. From the assumption that G is absolutely simple, the subgroup G(Z S ) and hence Λ S is an irreducible lattices in G S. However G(Q) + does not have finite index in G(Q) in general. If we denote by G the simply connected covering of G and π : G G is the Q-isogeny, then G(Q) + = π( G(Q)). Suppose that H 1 (Q, G) is trivial, this happens for example if G = SL n. Let C denote the kernel of π. From the exact sequence 1 C G G 1 it follows that G(Q)/ G(Q) + = G(Q)/π( G(Q)) H 1 (Q, C). If G = PGL n and G = SL n, then H 1 (Q, C) = H 1 (Q, µ n ) = Q /(Q ) n where µ n is the n-th root of unity For a connected semisimple Q-group H, for almost all p R f, H is unramified over Q p, that is, quasi-split over Q p and split over an unramified extension of Q p. For such primes p R f, H(Z p ) is a hyperspecial subgroup of H(Q p ) or equivalently, a compact subgroup whose volume is maximum among all compact subgroups of H(Q p ). Hyperspecial subgroups of H(Q p ) are conjugate to each other by an element of H ad (Q p ) where H ad is the adjoint group of H [Ti, 3.8]. Theorem. Let T R and let G p be a connected semisimple adjoint Q p -group without any Q p -anisotropic factors for each p T. Assume that p T rank Q p (G p ) 2. Then

21 ADELIC VERSION OF MARGULIS ARITHMETICITY THEOREM 21 the group (G T, D p ) admits an irreducible lattice if and only if there exist a connected semisimple Q-simple Q-group H such that G p is Q p -isomorphic to a connected normal Q p -subgroup of H for each p T and D p is a subgroup whose volume is maximum among all compact subgroups of G p (Q p ) for almost all finite p T. Proof. The only if direction follows from Corollary 4.10, Definition A in 4.1 and the above remark. To see the other direction, denote by f p : H G p a Q p -epimorphism for each p T. Let S be a finite subset of R f such that for any p R f S, H unramified over Q p and H(Z p ) is a hyperspecial subgroup of H(Q p ). By the hypothesis on D p, we can find a hyperspecial subgroup D p H(Q p) such that D p f(d p ) for each p (R f S) T. Hence for each p (R f S) T, there exists g p H ad (Q p ) such that g p D p g 1 p = H(Z p ). Let φ p = intg p if p (R f S) T and φ p = id if p R {S, } T. Then φ = p T φ p yields a topological group isomorphism between (H T, D p) and (H T, H(Z p )). Since H(Q(T)) is an irreducible (H being almost Q-simple) lattice in (H T, H(Z p )), φ 1 (H(Q(T))) is an irreducible lattice in (H T, D p). For each p T, write H = Hp 1 kerf p and D p = M1 p M2 p so that M1 p H1 p (Q p) and Mp 2 kerf p(q p ). Since p T (H1 p (Q p) Mp 2) (H T,D p ) is an open subgroup of (H T, D p ), the intersection φ 1 (H(Q)) p T (H1 p(q p ) Mp) 2 is a lattice in p T (H1 p(q p ) Mp) 2 (H T, D p). Now the canonical projection pr : p T (H1 p (Q p) M 2 p ) (H T,D p ) (H1 T, M1 p ) has compact kernel, the subgroup pr(φ 1 (H(Q)) p T (H1 p(q p ) M 2 p)) is a lattice in (H 1 T, M1 p ). Since the restriction of p T f p provides a topological group isomorphism from (H 1 T, M1 p) onto (G T, D p ), we obtain a lattice in (G T, D p ). Since H is Q-simple, the lattice obtained this way is irreducible, otherwise, it would yield a proper Q-subgroup of H Corollary. Let H be a connected absolutely simple Q-group. Let D p H(Q p ) be a compact open subgroup for each p R f. If (H A, D p ) admits an irreducible lattice, then D p is conjugate to H(Z p ) for almost all p R f. 5. Discrete subgroups containing lattices in horospherical subgroups In the whole section 5, for each p R, let G p be a connected semisimple adjoint Q p - group without any Q p -anisotropic factors and D p a maximal compact open subgroup for almost all p R f. We will say that (G A, D p ) has a Q-form (resp. Q-isotropic form) if there exists a connected semisimple adjoint (resp. Q-isotropic) Q-group H and a Q p -isomorphism f p : H G p for each p R such that f p (D p ) = H(Z p ) for almost all p R f. If (G A, D p ) has a Q-form, we denote by G A (Q) (resp. G A (Q) + ) the image of H(Q) (resp. H(Q) + ) under the restriction of p R f p to (G A, D p ).

ON DISCRETE SUBGROUPS CONTAINING A LATTICE IN A HOROSPHERICAL SUBGROUP HEE OH. 1. Introduction

ON DISCRETE SUBGROUPS CONTAINING A LATTICE IN A HOROSPHERICAL SUBGROUP HEE OH. 1. Introduction ON DISCRETE SUBGROUPS CONTAINING A LATTICE IN A HOROSPHERICAL SUBGROUP HEE OH Abstract. We showed in [Oh] that for a simple real Lie group G with real rank at least 2, if a discrete subgroup Γ of G contains

More information

ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS

ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS ON THE CLASSIFICATION OF RANK 1 GROUPS OVER NON ARCHIMEDEAN LOCAL FIELDS LISA CARBONE Abstract. We outline the classification of K rank 1 groups over non archimedean local fields K up to strict isogeny,

More information

The Margulis-Zimmer Conjecture

The Margulis-Zimmer Conjecture The Margulis-Zimmer Conjecture Definition. Let K be a global field, O its ring of integers, and let G be an absolutely simple, simply connected algebraic group defined over K. Let V be the set of all inequivalent

More information

Math 249B. Tits systems

Math 249B. Tits systems Math 249B. Tits systems 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ + Φ, and let B be the unique Borel k-subgroup

More information

Margulis Superrigidity I & II

Margulis Superrigidity I & II Margulis Superrigidity I & II Alastair Litterick 1,2 and Yuri Santos Rego 1 Universität Bielefeld 1 and Ruhr-Universität Bochum 2 Block seminar on arithmetic groups and rigidity Universität Bielefeld 22nd

More information

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS

LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS LECTURES ON SHIMURA CURVES: ARITHMETIC FUCHSIAN GROUPS PETE L. CLARK 1. What is an arithmetic Fuchsian group? The class of Fuchsian groups that we are (by far) most interested in are the arithmetic groups.

More information

On the structure and arithmeticity of lattice envelopes

On the structure and arithmeticity of lattice envelopes On the structure and arithmeticity of lattice envelopes Uri Bader a, Alex Furman b, Roman Sauer c a Technion, Haifa, Israel b University of Illinois at Chicago, Chicago, USA c Karlsruhe Institute of Technology,

More information

Irreducible subgroups of algebraic groups

Irreducible subgroups of algebraic groups Irreducible subgroups of algebraic groups Martin W. Liebeck Department of Mathematics Imperial College London SW7 2BZ England Donna M. Testerman Department of Mathematics University of Lausanne Switzerland

More information

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields. [Parts from Chapter 16. Also applications of FTGT] Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

More information

ALGEBRAIC GROUPS J. WARNER

ALGEBRAIC GROUPS J. WARNER ALGEBRAIC GROUPS J. WARNER Let k be an algebraically closed field. varieties unless otherwise stated. 1. Definitions and Examples For simplicity we will work strictly with affine Definition 1.1. An algebraic

More information

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture

Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Rigidity, locally symmetric varieties and the Grothendieck-Katz Conjecture Benson Farb and Mark Kisin May 8, 2009 Abstract Using Margulis s results on lattices in semisimple Lie groups, we prove the Grothendieck-

More information

The Grothendieck-Katz Conjecture for certain locally symmetric varieties

The Grothendieck-Katz Conjecture for certain locally symmetric varieties The Grothendieck-Katz Conjecture for certain locally symmetric varieties Benson Farb and Mark Kisin August 20, 2008 Abstract Using Margulis results on lattices in semi-simple Lie groups, we prove the Grothendieck-

More information

arxiv: v1 [math.ds] 9 May 2016

arxiv: v1 [math.ds] 9 May 2016 Distribution of orbits of unipotent groups on S-arithmetic homogeneous spaces Keivan Mallahi-Karai April 9, 208 arxiv:605.02436v [math.ds] 9 May 206 Abstract We will prove an S-arithmetic version of a

More information

Math 676. A compactness theorem for the idele group. and by the product formula it lies in the kernel (A K )1 of the continuous idelic norm

Math 676. A compactness theorem for the idele group. and by the product formula it lies in the kernel (A K )1 of the continuous idelic norm Math 676. A compactness theorem for the idele group 1. Introduction Let K be a global field, so K is naturally a discrete subgroup of the idele group A K and by the product formula it lies in the kernel

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Math 249B. Nilpotence of connected solvable groups

Math 249B. Nilpotence of connected solvable groups Math 249B. Nilpotence of connected solvable groups 1. Motivation and examples In abstract group theory, the descending central series {C i (G)} of a group G is defined recursively by C 0 (G) = G and C

More information

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109

An introduction to arithmetic groups. Lizhen Ji CMS, Zhejiang University Hangzhou , China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 An introduction to arithmetic groups Lizhen Ji CMS, Zhejiang University Hangzhou 310027, China & Dept of Math, Univ of Michigan Ann Arbor, MI 48109 June 27, 2006 Plan. 1. Examples of arithmetic groups

More information

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II

COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II COHOMOLOGY OF ARITHMETIC GROUPS AND EISENSTEIN SERIES: AN INTRODUCTION, II LECTURES BY JOACHIM SCHWERMER, NOTES BY TONY FENG Contents 1. Review 1 2. Lifting differential forms from the boundary 2 3. Eisenstein

More information

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u. 5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

More information

algebraic groups. 1 See [1, 4.2] for the definition and properties of the invariant differential forms and the modulus character for

algebraic groups. 1 See [1, 4.2] for the definition and properties of the invariant differential forms and the modulus character for LECTURE 2: COMPACTNESS AND VOLUME FOR ADELIC COSET SPACES LECTURE BY BRIAN CONRAD STANFORD NUMBER THEORY LEARNING SEMINAR OCTOBER 11, 2017 NOTES BY DAN DORE Let k be a global field with adele ring A, G

More information

A NEW APPROACH TO UNRAMIFIED DESCENT IN BRUHAT-TITS THEORY. By Gopal Prasad

A NEW APPROACH TO UNRAMIFIED DESCENT IN BRUHAT-TITS THEORY. By Gopal Prasad A NEW APPROACH TO UNRAMIFIED DESCENT IN BRUHAT-TITS THEORY By Gopal Prasad Dedicated to my wife Indu Prasad with gratitude Abstract. We give a new approach to unramified descent in Bruhat-Tits theory of

More information

YVES BENOIST AND HEE OH. dedicated to Professor Atle Selberg with deep appreciation

YVES BENOIST AND HEE OH. dedicated to Professor Atle Selberg with deep appreciation DISCRETE SUBGROUPS OF SL 3 (R) GENERATED BY TRIANGULAR MATRICES YVES BENOIST AND HEE OH dedicated to Professor Atle Selberg with deep appreciation Abstract. Based on the ideas in some recently uncovered

More information

BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP

BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP Trends in Mathematics Information Center for Mathematical Sciences Volume 4, Number 1, June 2001, Pages 71 75 BRUHAT-TITS BUILDING OF A p-adic REDUCTIVE GROUP HI-JOON CHAE Abstract. A Bruhat-Tits building

More information

Isogeny invariance of the BSD formula

Isogeny invariance of the BSD formula Isogeny invariance of the BSD formula Bryden Cais August 1, 24 1 Introduction In these notes we prove that if f : A B is an isogeny of abelian varieties whose degree is relatively prime to the characteristic

More information

THE RESIDUAL EISENSTEIN COHOMOLOGY OF Sp 4 OVER A TOTALLY REAL NUMBER FIELD

THE RESIDUAL EISENSTEIN COHOMOLOGY OF Sp 4 OVER A TOTALLY REAL NUMBER FIELD THE RESIDUAL EISENSTEIN COHOMOLOGY OF Sp 4 OVER A TOTALLY REAL NUMBER FIELD NEVEN GRBAC AND HARALD GROBNER Abstract. Let G = Sp 4 /k be the k-split symplectic group of k-rank, where k is a totally real

More information

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ).

Lemma 1.1. The field K embeds as a subfield of Q(ζ D ). Math 248A. Quadratic characters associated to quadratic fields The aim of this handout is to describe the quadratic Dirichlet character naturally associated to a quadratic field, and to express it in terms

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

Addendum to Fake Projective Planes Inventiones Math. 168, (2007) By Gopal Prasad and Sai-Kee Yeung

Addendum to Fake Projective Planes Inventiones Math. 168, (2007) By Gopal Prasad and Sai-Kee Yeung Addendum to Fake Projective Planes Inventiones Math. 168, 321-370 (2007) By Gopal Prasad and Sai-Kee Yeung We will use the notions and notations introduced in [1]. A.1. As in [1], let k be a totally real

More information

On a question of B.H. Neumann

On a question of B.H. Neumann On a question of B.H. Neumann Robert Guralnick Department of Mathematics University of Southern California E-mail: guralnic@math.usc.edu Igor Pak Department of Mathematics Massachusetts Institute of Technology

More information

arxiv:math/ v1 [math.rt] 1 Jul 1996

arxiv:math/ v1 [math.rt] 1 Jul 1996 SUPERRIGID SUBGROUPS OF SOLVABLE LIE GROUPS DAVE WITTE arxiv:math/9607221v1 [math.rt] 1 Jul 1996 Abstract. Let Γ be a discrete subgroup of a simply connected, solvable Lie group G, such that Ad G Γ has

More information

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset

where Σ is a finite discrete Gal(K sep /K)-set unramified along U and F s is a finite Gal(k(s) sep /k(s))-subset Classification of quasi-finite étale separated schemes As we saw in lecture, Zariski s Main Theorem provides a very visual picture of quasi-finite étale separated schemes X over a henselian local ring

More information

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers

Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop. Eric Sommers Notes on nilpotent orbits Computational Theory of Real Reductive Groups Workshop Eric Sommers 17 July 2009 2 Contents 1 Background 5 1.1 Linear algebra......................................... 5 1.1.1

More information

Lemma 1.3. The element [X, X] is nonzero.

Lemma 1.3. The element [X, X] is nonzero. Math 210C. The remarkable SU(2) Let G be a non-commutative connected compact Lie group, and assume that its rank (i.e., dimension of maximal tori) is 1; equivalently, G is a compact connected Lie group

More information

Chapter 8. P-adic numbers. 8.1 Absolute values

Chapter 8. P-adic numbers. 8.1 Absolute values Chapter 8 P-adic numbers Literature: N. Koblitz, p-adic Numbers, p-adic Analysis, and Zeta-Functions, 2nd edition, Graduate Texts in Mathematics 58, Springer Verlag 1984, corrected 2nd printing 1996, Chap.

More information

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra

Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra Course 311: Michaelmas Term 2005 Part III: Topics in Commutative Algebra D. R. Wilkins Contents 3 Topics in Commutative Algebra 2 3.1 Rings and Fields......................... 2 3.2 Ideals...............................

More information

Spherical varieties and arc spaces

Spherical varieties and arc spaces Spherical varieties and arc spaces Victor Batyrev, ESI, Vienna 19, 20 January 2017 1 Lecture 1 This is a joint work with Anne Moreau. Let us begin with a few notations. We consider G a reductive connected

More information

10. Smooth Varieties. 82 Andreas Gathmann

10. Smooth Varieties. 82 Andreas Gathmann 82 Andreas Gathmann 10. Smooth Varieties Let a be a point on a variety X. In the last chapter we have introduced the tangent cone C a X as a way to study X locally around a (see Construction 9.20). It

More information

Linear representations and arithmeticity of lattices in products of trees

Linear representations and arithmeticity of lattices in products of trees Linear representations and arithmeticity of lattices in products of trees Marc Burger, Shahar Mozes, Robert J. Zimmer 0 Prolegomenon In this paper we continue our study of lattices in the automorphisms

More information

Adelic Profinite Groups

Adelic Profinite Groups Ž. JOURNAL OF ALGEBRA 193, 757763 1997 ARTICLE NO. JA967011 Adelic Profinite Groups V. P. Platonov* Department of Pure Mathematics, Uniersity of Waterloo, Ontario, N2L 3G1, Canada and B. Sury School of

More information

arxiv: v1 [math.rt] 14 Nov 2007

arxiv: v1 [math.rt] 14 Nov 2007 arxiv:0711.2128v1 [math.rt] 14 Nov 2007 SUPPORT VARIETIES OF NON-RESTRICTED MODULES OVER LIE ALGEBRAS OF REDUCTIVE GROUPS: CORRIGENDA AND ADDENDA ALEXANDER PREMET J. C. Jantzen informed me that the proof

More information

Shimura varieties and moduli

Shimura varieties and moduli Shimura varieties and moduli J.S. Milne Abstract. Connected Shimura varieties are the quotients of hermitian symmetric domains by discrete groups defined by congruence conditions. We examine their relation

More information

Tamagawa Numbers in the Function Field Case (Lecture 2)

Tamagawa Numbers in the Function Field Case (Lecture 2) Tamagawa Numbers in the Function Field Case (Lecture 2) February 5, 204 In the previous lecture, we defined the Tamagawa measure associated to a connected semisimple algebraic group G over the field Q

More information

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma Chapter 2 Integral Extensions 2.1 Integral Elements 2.1.1 Definitions and Comments Let R be a subring of the ring S, and let α S. We say that α is integral over R if α isarootofamonic polynomial with coefficients

More information

CRITICAL VARIETIES AND MOTIVIC EQUIVALENCE FOR ALGEBRAS WITH INVOLUTION

CRITICAL VARIETIES AND MOTIVIC EQUIVALENCE FOR ALGEBRAS WITH INVOLUTION CRITICAL VARIETIES AND MOTIVIC EQUIVALENCE FOR ALGEBRAS WITH INVOLUTION CHARLES DE CLERCQ, ANNE QUÉGUINER-MATHIEU AND MAKSIM ZHYKHOVICH Abstract. Motivic equivalence for algebraic groups was recently introduced

More information

INVERSE LIMITS AND PROFINITE GROUPS

INVERSE LIMITS AND PROFINITE GROUPS INVERSE LIMITS AND PROFINITE GROUPS BRIAN OSSERMAN We discuss the inverse limit construction, and consider the special case of inverse limits of finite groups, which should best be considered as topological

More information

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS

SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS 1 SYMMETRIC SUBGROUP ACTIONS ON ISOTROPIC GRASSMANNIANS HUAJUN HUANG AND HONGYU HE Abstract. Let G be the group preserving a nondegenerate sesquilinear form B on a vector space V, and H a symmetric subgroup

More information

Some algebraic properties of. compact topological groups

Some algebraic properties of. compact topological groups Some algebraic properties of compact topological groups 1 Compact topological groups: examples connected: S 1, circle group. SO(3, R), rotation group not connected: Every finite group, with the discrete

More information

Exercises on chapter 1

Exercises on chapter 1 Exercises on chapter 1 1. Let G be a group and H and K be subgroups. Let HK = {hk h H, k K}. (i) Prove that HK is a subgroup of G if and only if HK = KH. (ii) If either H or K is a normal subgroup of G

More information

ALGEBRAIC GROUPS JEROEN SIJSLING

ALGEBRAIC GROUPS JEROEN SIJSLING ALGEBRAIC GROUPS JEROEN SIJSLING The goal of these notes is to introduce and motivate some notions from the theory of group schemes. For the sake of simplicity, we restrict to algebraic groups (as defined

More information

Rings and Fields Theorems

Rings and Fields Theorems Rings and Fields Theorems Rajesh Kumar PMATH 334 Intro to Rings and Fields Fall 2009 October 25, 2009 12 Rings and Fields 12.1 Definition Groups and Abelian Groups Let R be a non-empty set. Let + and (multiplication)

More information

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism

1 Rings 1 RINGS 1. Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism 1 RINGS 1 1 Rings Theorem 1.1 (Substitution Principle). Let ϕ : R R be a ring homomorphism (a) Given an element α R there is a unique homomorphism Φ : R[x] R which agrees with the map ϕ on constant polynomials

More information

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3... Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

More information

A BRIEF INTRODUCTION TO LOCAL FIELDS

A BRIEF INTRODUCTION TO LOCAL FIELDS A BRIEF INTRODUCTION TO LOCAL FIELDS TOM WESTON The purpose of these notes is to give a survey of the basic Galois theory of local fields and number fields. We cover much of the same material as [2, Chapters

More information

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008

ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 ALGEBRA PH.D. QUALIFYING EXAM September 27, 2008 A passing paper consists of four problems solved completely plus significant progress on two other problems; moreover, the set of problems solved completely

More information

Parameterizing Conjugacy Classes of Maximal Unramified Tori via Bruhat Tits Theory

Parameterizing Conjugacy Classes of Maximal Unramified Tori via Bruhat Tits Theory Michigan Math. J. 54 (2006) Parameterizing Conjugacy Classes of Maximal Unramified Tori via Bruhat Tits Theory Stephen DeBacker 0. Introduction The main result of this paper is a uniform parameterization

More information

Math 210C. A non-closed commutator subgroup

Math 210C. A non-closed commutator subgroup Math 210C. A non-closed commutator subgroup 1. Introduction In Exercise 3(i) of HW7 we saw that every element of SU(2) is a commutator (i.e., has the form xyx 1 y 1 for x, y SU(2)), so the same holds for

More information

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES

CHAPTER 1. AFFINE ALGEBRAIC VARIETIES CHAPTER 1. AFFINE ALGEBRAIC VARIETIES During this first part of the course, we will establish a correspondence between various geometric notions and algebraic ones. Some references for this part of the

More information

U a n w = ( U a )n w. U a n w

U a n w = ( U a )n w. U a n w Math 249B. Tits systems, root groups, and applications 1. Motivation This handout aims to establish in the general case two key features of the split case: the applicability of BN-pair formalism (a.k.a.

More information

p-adic fields Chapter 7

p-adic fields Chapter 7 Chapter 7 p-adic fields In this chapter, we study completions of number fields, and their ramification (in particular in the Galois case). We then look at extensions of the p-adic numbers Q p and classify

More information

SOME REMARKS ON REPRESENTATIONS OF QUATERNION DIVISION ALGEBRAS

SOME REMARKS ON REPRESENTATIONS OF QUATERNION DIVISION ALGEBRAS SOME REMARKS ON REPRESENTATIONS OF QUATERNION DIVISION ALGEBRAS DIPENDRA PRASAD Abstract. For the quaternion division algebra D over a non-archimedean local field k, and π an irreducible finite dimensional

More information

Lifting Galois Representations, and a Conjecture of Fontaine and Mazur

Lifting Galois Representations, and a Conjecture of Fontaine and Mazur Documenta Math. 419 Lifting Galois Representations, and a Conjecture of Fontaine and Mazur Rutger Noot 1 Received: May 11, 2001 Revised: November 16, 2001 Communicated by Don Blasius Abstract. Mumford

More information

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation

Quadratic reciprocity (after Weil) 1. Standard set-up and Poisson summation (December 19, 010 Quadratic reciprocity (after Weil Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ I show that over global fields k (characteristic not the quadratic norm residue symbol

More information

CONNECTEDNESS OF CLASSES OF FIELDS AND ZERO CYCLES ON PROJECTIVE HOMOGENEOUS VARIETIES

CONNECTEDNESS OF CLASSES OF FIELDS AND ZERO CYCLES ON PROJECTIVE HOMOGENEOUS VARIETIES CONNECTEDNESS OF CLASSES OF FIELDS AND ZERO CYCLES ON PROJECTIVE HOMOGENEOUS VARIETIES VLADIMIR CHERNOUSOV AND ALEXANDER MERKURJEV Abstract. We study Chow group of zero-dimensional cycles for projective

More information

ON AN EXACT MASS FORMULA OF SHIMURA

ON AN EXACT MASS FORMULA OF SHIMURA ON AN EXACT MASS FORMULA OF SHIMURA WEE TECK GAN, JONATHAN P. HANKE, and JIU-KANG YU Abstract In a series of recent papers, G. Shimura obtained an exact formula for the mass of a maximal lattice in a quadratic

More information

ON BASE SIZES FOR ALGEBRAIC GROUPS

ON BASE SIZES FOR ALGEBRAIC GROUPS ON BASE SIZES FOR ALGEBRAIC GROUPS TIMOTHY C. BURNESS, ROBERT M. GURALNICK, AND JAN SAXL Abstract. For an algebraic group G and a closed subgroup H, the base size of G on the coset variety of H in G is

More information

The Proj Construction

The Proj Construction The Proj Construction Daniel Murfet May 16, 2006 Contents 1 Basic Properties 1 2 Functorial Properties 2 3 Products 6 4 Linear Morphisms 9 5 Projective Morphisms 9 6 Dimensions of Schemes 11 7 Points of

More information

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY

MAT 445/ INTRODUCTION TO REPRESENTATION THEORY MAT 445/1196 - INTRODUCTION TO REPRESENTATION THEORY CHAPTER 1 Representation Theory of Groups - Algebraic Foundations 1.1 Basic definitions, Schur s Lemma 1.2 Tensor products 1.3 Unitary representations

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

1. Group Theory Permutations.

1. Group Theory Permutations. 1.1. Permutations. 1. Group Theory Problem 1.1. Let G be a subgroup of S n of index 2. Show that G = A n. Problem 1.2. Find two elements of S 7 that have the same order but are not conjugate. Let π S 7

More information

Places of Number Fields and Function Fields MATH 681, Spring 2018

Places of Number Fields and Function Fields MATH 681, Spring 2018 Places of Number Fields and Function Fields MATH 681, Spring 2018 From now on we will denote the field Z/pZ for a prime p more compactly by F p. More generally, for q a power of a prime p, F q will denote

More information

0 A. ... A j GL nj (F q ), 1 j r

0 A. ... A j GL nj (F q ), 1 j r CHAPTER 4 Representations of finite groups of Lie type Let F q be a finite field of order q and characteristic p. Let G be a finite group of Lie type, that is, G is the F q -rational points of a connected

More information

Isogeny invariance of the BSD conjecture

Isogeny invariance of the BSD conjecture Isogeny invariance of the BSD conjecture Akshay Venkatesh October 30, 2015 1 Examples The BSD conjecture predicts that for an elliptic curve E over Q with E(Q) of rank r 0, where L (r) (1, E) r! = ( p

More information

The Galois Representation Attached to a Hilbert Modular Form

The Galois Representation Attached to a Hilbert Modular Form The Galois Representation Attached to a Hilbert Modular Form Gabor Wiese Essen, 17 July 2008 Abstract This talk is the last one in the Essen seminar on quaternion algebras. It is based on the paper by

More information

Quasi-isometries of rank one S-arithmetic lattices

Quasi-isometries of rank one S-arithmetic lattices Quasi-isometries of rank one S-arithmetic lattices evin Wortman December 7, 2007 Abstract We complete the quasi-isometric classification of irreducible lattices in semisimple Lie groups over nondiscrete

More information

Sets of Completely Decomposed Primes in Extensions of Number Fields

Sets of Completely Decomposed Primes in Extensions of Number Fields Sets of Completely Decomposed Primes in Extensions of Number Fields by Kay Wingberg June 15, 2014 Let p be a prime number and let k(p) be the maximal p-extension of a number field k. If T is a set of primes

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada

Winter School on Galois Theory Luxembourg, February INTRODUCTION TO PROFINITE GROUPS Luis Ribes Carleton University, Ottawa, Canada Winter School on alois Theory Luxembourg, 15-24 February 2012 INTRODUCTION TO PROFINITE ROUPS Luis Ribes Carleton University, Ottawa, Canada LECTURE 2 2.1 ENERATORS OF A PROFINITE ROUP 2.2 FREE PRO-C ROUPS

More information

Topological dynamics: basic notions and examples

Topological dynamics: basic notions and examples CHAPTER 9 Topological dynamics: basic notions and examples We introduce the notion of a dynamical system, over a given semigroup S. This is a (compact Hausdorff) topological space on which the semigroup

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation

School of Mathematics and Statistics. MT5824 Topics in Groups. Problem Sheet I: Revision and Re-Activation MRQ 2009 School of Mathematics and Statistics MT5824 Topics in Groups Problem Sheet I: Revision and Re-Activation 1. Let H and K be subgroups of a group G. Define HK = {hk h H, k K }. (a) Show that HK

More information

On lengths on semisimple groups

On lengths on semisimple groups On lengths on semisimple groups Yves de Cornulier May 21, 2009 Abstract We prove that every length on a simple group over a locally compact field, is either bounded or proper. 1 Introduction Let G be a

More information

COMMUTATIVE SUBRINGS OF CERTAIN NON-ASSOCIATIVE RINGS

COMMUTATIVE SUBRINGS OF CERTAIN NON-ASSOCIATIVE RINGS COMMUTATIVE SUBRINGS OF CERTAIN NON-ASSOCIATIVE RINGS BENEDICT H. GROSS AND WEE TECK GAN The title of this paper was chosen more in homage to Drinfeld s famous note [D] than as a precise description of

More information

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES

ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES ASIAN J. MATH. c 2008 International Press Vol. 12, No. 3, pp. 289 298, September 2008 002 ARITHMETICITY OF TOTALLY GEODESIC LIE FOLIATIONS WITH LOCALLY SYMMETRIC LEAVES RAUL QUIROGA-BARRANCO Abstract.

More information

The kernel of the Rost invariant, Serre s Conjecture II and the Hasse principle for quasi-split groups 3,6 D 4, E 6, E 7

The kernel of the Rost invariant, Serre s Conjecture II and the Hasse principle for quasi-split groups 3,6 D 4, E 6, E 7 The kernel of the Rost invariant, Serre s Conjecture II and the Hasse principle for quasi-split groups 3,6 D 4, E 6, E 7 V. Chernousov Forschungsinstitut für Mathematik ETH Zentrum CH-8092 Zürich Switzerland

More information

On Dense Embeddings of Discrete Groups into Locally Compact Groups

On Dense Embeddings of Discrete Groups into Locally Compact Groups QUALITATIVE THEORY OF DYNAMICAL SYSTEMS 4, 31 37 (2003) ARTICLE NO. 50 On Dense Embeddings of Discrete Groups into Locally Compact Groups Maxim S. Boyko Institute for Low Temperature Physics and Engineering,

More information

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL

ALGEBRA EXERCISES, PhD EXAMINATION LEVEL ALGEBRA EXERCISES, PhD EXAMINATION LEVEL 1. Suppose that G is a finite group. (a) Prove that if G is nilpotent, and H is any proper subgroup, then H is a proper subgroup of its normalizer. (b) Use (a)

More information

Injective Modules and Matlis Duality

Injective Modules and Matlis Duality Appendix A Injective Modules and Matlis Duality Notes on 24 Hours of Local Cohomology William D. Taylor We take R to be a commutative ring, and will discuss the theory of injective R-modules. The following

More information

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold.

12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold. 12. Projective modules The blanket assumptions about the base ring k, the k-algebra A, and A-modules enumerated at the start of 11 continue to hold. 12.1. Indecomposability of M and the localness of End

More information

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander

A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander A GLIMPSE OF ALGEBRAIC K-THEORY: Eric M. Friedlander During the first three days of September, 1997, I had the privilege of giving a series of five lectures at the beginning of the School on Algebraic

More information

IN POSITIVE CHARACTERISTICS: 3. Modular varieties with Hecke symmetries. 7. Foliation and a conjecture of Oort

IN POSITIVE CHARACTERISTICS: 3. Modular varieties with Hecke symmetries. 7. Foliation and a conjecture of Oort FINE STRUCTURES OF MODULI SPACES IN POSITIVE CHARACTERISTICS: HECKE SYMMETRIES AND OORT FOLIATION 1. Elliptic curves and their moduli 2. Moduli of abelian varieties 3. Modular varieties with Hecke symmetries

More information

Volumes of arithmetic locally symmetric spaces and Tamagawa numbers

Volumes of arithmetic locally symmetric spaces and Tamagawa numbers Volumes of arithmetic locally symmetric spaces and Tamagawa numbers Peter Smillie September 10, 2013 Let G be a Lie group and let µ G be a left-invariant Haar measure on G. A discrete subgroup Γ G is called

More information

Proof of a simple case of the Siegel-Weil formula. 1. Weil/oscillator representations

Proof of a simple case of the Siegel-Weil formula. 1. Weil/oscillator representations (March 6, 2014) Proof of a simple case of the Siegel-Weil formula Paul Garrett garrett@math.umn.edu http://www.math.umn.edu/ garrett/ First, I confess I never understood Siegel s arguments for his mass

More information

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA

COURSE SUMMARY FOR MATH 504, FALL QUARTER : MODERN ALGEBRA COURSE SUMMARY FOR MATH 504, FALL QUARTER 2017-8: MODERN ALGEBRA JAROD ALPER Week 1, Sept 27, 29: Introduction to Groups Lecture 1: Introduction to groups. Defined a group and discussed basic properties

More information

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory.

Fields and Galois Theory. Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. Fields and Galois Theory Below are some results dealing with fields, up to and including the fundamental theorem of Galois theory. This should be a reasonably logical ordering, so that a result here should

More information

descends to an F -torus S T, and S M since S F ) 0 red T F

descends to an F -torus S T, and S M since S F ) 0 red T F Math 249B. Basics of reductivity and semisimplicity In the previous course, we have proved the important fact that over any field k, a non-solvable connected reductive group containing a 1-dimensional

More information

Parabolic subgroups Montreal-Toronto 2018

Parabolic subgroups Montreal-Toronto 2018 Parabolic subgroups Montreal-Toronto 2018 Alice Pozzi January 13, 2018 Alice Pozzi Parabolic subgroups Montreal-Toronto 2018 January 13, 2018 1 / 1 Overview Alice Pozzi Parabolic subgroups Montreal-Toronto

More information

On the equality case of the Ramanujan Conjecture for Hilbert modular forms

On the equality case of the Ramanujan Conjecture for Hilbert modular forms On the equality case of the Ramanujan Conjecture for Hilbert modular forms Liubomir Chiriac Abstract The generalized Ramanujan Conjecture for unitary cuspidal automorphic representations π on GL 2 posits

More information

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F)

LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) LECTURE 4: REPRESENTATION THEORY OF SL 2 (F) AND sl 2 (F) IVAN LOSEV In this lecture we will discuss the representation theory of the algebraic group SL 2 (F) and of the Lie algebra sl 2 (F), where F is

More information

ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS

ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS ALGEBRA QUALIFYING EXAM, FALL 2017: SOLUTIONS Your Name: Conventions: all rings and algebras are assumed to be unital. Part I. True or false? If true provide a brief explanation, if false provide a counterexample

More information