BIAS EXTENSION TEST STANDARD

Size: px
Start display at page:

Download "BIAS EXTENSION TEST STANDARD"

Transcription

1 BIAS EXTENSION TEST STANDARD Xiongqi Peng and Jian Cao Advanced Materials Processing Laboratory Department of Mechanical Engineering Northwestern University Evanston, IL August 2003 For Internal Use 1. Purpose To measure the in-plane combined shearing and tensile response of textile composite materials to testing displacement and velocity. 2. Experimental Set-up and Sample Preparation A sample of material, with the dimension of the test sample in the loading direction relatively greater than the width, and the yarns initially oriented at ± 45-degrees to the loading direction, is gripped at two ends (see Fig. 1). A tensile force is applied at the gripper. The force required to deform the material is recorded at the gripper as a function of gripper displacement. Figure 1. Bias extension set-up Great care should be given to make sure that fiber yarns are oriented ± 45-degrees to the edges. Any small misalignment will lead to tensile or compressive forces in the fiber directions, resulting in large scatter in measured force readings. 1

2 K H D C I E B L F A G J Figure 2. Bias extension sample A special recommendation is made for the specimen preparing of balanced woven composites. Here, we provide a general procedure for preparing bias extension test specimen for balanced woven composites (refer to Fig. 2), based on our experience, by following this procedure, the sample will have an aspect ratio of two and it will greatly improve the repeatability of testing results. 1) On a composite fabric, draw a line along the weft direction from point A to point B. Count the yarn number in this direction, take 16 yarns as an example. 2) Extend line AB to point C along the weft yarn direction by another 16 yarns. 3) Count 16 yarns from point B in the warp direction to obtain point D and point G. 4) Follow the same procedure to draw lines DEF and AEH. 5) Draw lines connecting points C and H, H and F, F and G, and G and C. 6) Extend line HC in two ends to points K and I, respectively, and extend line FG in two ends to point J and L, respectively, to generate two grip regions for the grippers. 7) Connect KL and IJ. 8) Use tape to cover the grip regions before cutting the sample. This can prevent the fiber yarn loose of the sample. 9) Cut sample along lines KI, LJ, JL and LK. For dry textiles, pre-conditioning (pulling the specimen in the gripper several times prior to collecting data) is not recommended as this pre-conditioning will incur fiber yarn slippage along corners of the gripper regions (around H, F, C and G) and thus damage the testing specimen. 2

3 As a rule, the sample should be gripped to ensure no slippage between the tows of the sample and the gripper during the testing. No slackness of the sample before testing should be allowed. 3. Definitions For the purposes of this standard, the following definitions apply: The material shear angle is defined as (see Fig. 3), π θ = 2Φ (1) 2 where Φ is the central region (pure shear) angle and can be calculated from the gripper displacement using, W + D Φ = arccos (2) 2W where D is the gripper displacement and W is the width of the sample. D 2Ф H=2W W Figure 3. Deformation of bias samples 3

4 The angular shear rate in the material is defined as, & θ = 2D (3) 2 2 W + D W 2 where D & is the gripper displacement rate. It must be noted that the above derivation for the shear angle is based on some ideal assumptions. 4. Required Report Items Geometry: o W: sample width o H: sample height o N 1 and N 2 : Numbers of fiber yarns in the center shear zone in two directions Testing conditions: o Diagram and description of test device o Method of clamping o Special treatment applied to the sample if any o Test speed Test Results: o Raw data: Load versus head displacement of every test. CAUTION: Assuming that at the beginning of a test, every detail is taken care of, report all the test results. Do not delete any one of test results afterwards simply because it does not match the other similar tests. You may provide a justification and discard the result from a particular test when reporting processed data, but not when reporting the original raw data. o Processed data: Load versus shear angle o Temperature profile o Any slippage 4

5 o Measured shear angle if applicable. o Evolution of dimension AD (Fig.2) with respect to the head displacement Processing Method: o Measurement techniques, especially if strain is measured directly. o Definition of quantities to be measured and procedure for obtaining these from raw data 5. Apparatus Testing machine: any suitable tensile testing instrument. If the testing machine cannot provide grippers wide enough for the specimen, custom-made grippers are necessary. Environmental chamber or oven for heating of thermoplastic or thermoset prepreg samples if required. Computer to log measured displacement and force. 6. Test Procedure The alignment of the testing apparatus is crucial to the prevention of buckling of the testing specimen. Always do a good alignment before any tests. Specifically, make sure that surfaces X and Y are in the same plane (see Fig. 4) and coincide with the testing plane of the testing machine. Surface X Surface Y Figure 4. Alignment of grippers in bias extension 5

6 In the absence of an obvious preferred testing speed, a normalized gripper 1 displacement rate of 1 s is recommended, i.e. D & 1 1 (4) W = s For prepregs the material temperature during testing should be measured. As the oven temperature can often lag behind the material temperature, use of a temperature probe is recommended, i.e. a thermocouple embedded in the test material. Note that for thin materials, embedding the thermocouple can be difficult due to the narrow thickness of the material test sheet. In this case, sandwiching the thermocouple between two sheets of the material is recommended (the sheets can be held together using large staples). The probe should be positioned in the oven at the initial mid-way height of the sample. Data collection: monitor the force and crosshead displacement throughout the test. Test termination: usually the normalized gripper displacement should be greater than 0.35, i.e. W = before ending the test. This corresponds to a shear angle o of approximately55. Record the gripper displacement at the point of sample buckling if it happens. Measure the shrinkage between points A and D in Fig. 2. At least 5 repeats should be conducted under identical conditions. Ideally results should be presented for all tests; if not, the median curve should be presented along with error bars representing minimum and maximum force readings at 5 equally spaced displacements (or shear angles). 6

DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION

DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION DEFORMATION PATTERN AND FAILURE CRITERIA OF WOVEN COMPOSITE PREFORM IN GENERAL BIAS EXTENSION B. Zhu 1,2*, T.X. Yu 1, X.M. Tao 2 1 Department of Mechanical Engineering, Hong Kong University of Science

More information

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1

DRAPING SIMULATION. Recent achievements and future trends. Dr. Sylvain Bel LGCIE University Lyon 1 DRAPING SIMULATION Recent achievements and future trends 1 Dr. Sylvain Bel LGCIE University Lyon 1 2 DRAPING SIMULATION Why? How? What? DRAPING SIMULATION WHY? Clamps Punch Fabric Die 1 2 Resin 3 4 Fig.

More information

SHEAR TENSION COUPLING IN BIAXIAL BIAS EXTENSION TESTS

SHEAR TENSION COUPLING IN BIAXIAL BIAS EXTENSION TESTS SHER TENSION COUPLING IN IXIL IS EXTENSION TESTS P. Harrison *, P. Potluri Department of Mechanical Engineering, James Watt uilding (South), University of Glasgow, Glasgow G 8QQ, U.K. p.harrison@mech.gla.ac.uk

More information

This is an author-deposited version published in: Eprints ID: 18486

This is an author-deposited version published in:   Eprints ID: 18486 Open Archive Toulouse Archive Ouverte (OATAO) OATAO is an open access repository that collects the work of Toulouse researchers and makes it freely available over the web where possible. This is an author-deposited

More information

Physical Properties Testing Technical Bulletin

Physical Properties Testing Technical Bulletin Technical Bulletin MANUFACTURER Raven Lining Systems 13105 E. 61 st Street, Suite A Broken Arrow, OK 74012 (918) 615-0020 TENSILE TESTING OF PLASTICS ASTM D638, ISO 527 Tensile tests measure the force

More information

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS

INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS ISSN 1846-6168 (Print), ISSN 1848-5588 (Online) ID: TG-217816142553 Original scientific paper INFLUENCE KINDS OF MATERIALS ON THE POISSON S RATIO OF WOVEN FABRICS Željko PENAVA, Diana ŠIMIĆ PENAVA, Željko

More information

GB/T / ISO 527-1:1993

GB/T / ISO 527-1:1993 Translated English of Chinese Standard: GB/T1040.1-2006 www.chinesestandard.net Sales@ChineseStandard.net GB NATIONAL STANDARD OF THE PEOPLE S REPUBLIC OF CHINA ICS 83.080.01 G 31 GB/T 1040.1-2006 / ISO

More information

An overview of Carbon Fiber modeling in LS-DYNA. John Zhao October 23 th 2017

An overview of Carbon Fiber modeling in LS-DYNA. John Zhao October 23 th 2017 An overview of Carbon Fiber modeling in LS-DYNA John Zhao zhao@lstc.com October 23 th 2017 Outline Manufacturing of Carbon Fiber Compression molding *MAT_277 & 278 *MAT_293 *MAT_249 Resin transform molding

More information

A cooperative benchmark effort on testing of woven composites

A cooperative benchmark effort on testing of woven composites A cooperative benchmark effort on testing of woven composites J. Cao, H.S. Cheng, T.X. Yu, B. Zhu, X.M. Tao, S.V. Lomov, Tz Stoilova, I. Verpoest, P. Boisse, Jérôme Launay, et al. To cite this version:

More information

EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS

EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS EXPERIMENTAL EVALUATION OF SHEAR STRENGTH OF WOVEN WEBBINGS Kevin L. Peil +, Ever J. Barbero +, Eduardo M. Sosa* + Department of Mechanical and Aerospace Engineering, West Virginia University (WVU), Morgantown,

More information

Department of Textile Engineering. Curriculum for the Degree of Bachelor of Engineering in Textile: Textile Chemistry and Fiber Science

Department of Textile Engineering. Curriculum for the Degree of Bachelor of Engineering in Textile: Textile Chemistry and Fiber Science UNDERGRADUATE S Department of Textile Engineering Curriculum for the Degree of Bachelor of Engineering in Textile: Textile Chemistry and Fiber Science I (fall) 9-4- --5 -- --4 Calculus Calculus Physics

More information

Normalisation Of Shear Test Data For Rate- Independent Compressible Fabrics

Normalisation Of Shear Test Data For Rate- Independent Compressible Fabrics Normalisation Of Shear Test Data For Rate- Independent Compressible Fabrics Philip Harrison* 1, Jo Wiggers 2, Andrew C. Long 2 1 University of Glasgow - Room 09 James Watt (South) Building, Materials Engineering

More information

Modeling non-isothermal thermoforming of fabricreinforced thermoplastic composites

Modeling non-isothermal thermoforming of fabricreinforced thermoplastic composites Modeling non-isothermal thermoforming of fabricreinforced thermoplastic composites Dominic Schommer, Miro Duhovic, Joachim Hausmann Institut für Verbundwerkstoffe GmbH, Erwin-Schrödinger-Str., Building

More information

The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review

The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review The bias-extension test for the analysis of in-plane shear properties of textile composite reinforcements and prepregs: a review P. Boisse, N. Hamila, E. Guzman-Maldonado, A Madeo, G. Hivet, F. Dell Isola

More information

AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE

AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE 7 th International LS-DYNA Users Conference Material Technology (1) AN LS-DYNA USER DEFINED MATERIAL MODEL FOR LOOSELY WOVEN FABRIC WITH NON-ORTHOGONAL VARYING WEFT AND WARP ANGLE Marlin Brueggert Romil

More information

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates

Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates Loughborough University Institutional Repository Analysis of nonlinear shear deformations in CFRP and GFRP textile laminates This item was submitted to Loughborough University's Institutional Repository

More information

Measurement of meso-scale deformations for modelling textile composites

Measurement of meso-scale deformations for modelling textile composites CompTest 2004 Measurement of meso-scale deformations for modelling textile composites P Potluri, D A Perez Ciurezu, R Ramgulam Textile Composites Group University of Manchester Institute of Science & Technology

More information

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES

DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES DAMAGE MECHANICS MODEL FOR OFF-AXIS FATIGUE BEHAVIOR OF UNIDIRECTIONAL CARBON FIBER-REINFORCED COMPOSITES AT ROOM AND HIGH TEMPERATURES M. Kawai Institute of Engineering Mechanics University of Tsukuba,

More information

LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS DURING FORMING

LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS DURING FORMING 10th International Conference on Composite Science and Technology ICCST/10 A.L. Araújo, J.R. Correia, C.M. Mota Soares, et al. (Editors) IDMEC 015 LOCKING AND STABILITY OF 3D TEXTILE COMPOSITE REINFORCEMENTS

More information

CHARACTERISING AND MODELLING TOOL-PLY FRICTION OF VISCOUS TEXTILE COMPOSITES

CHARACTERISING AND MODELLING TOOL-PLY FRICTION OF VISCOUS TEXTILE COMPOSITES 6 H INERNAIONAL CONFERENCE ON COMPOSIE MAERIALS CHARACERISING AND MODELLING OOL-PLY FRICION OF VISCOUS EXILE COMPOSIES Philip Harrison, Hua Lin 2, Mark Ubbink, Remko Akkerman, Karin van de Haar, Andrew

More information

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT

INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT INVESTIGATION OF THE PROCESSING PARAMETERS OF A 3D WOVEN REINFORCEMENT Andreas Endruweit, Dhiren K. Modi and Andrew C. Long School of Mechanical, Materials and Manufacturing Engineering, University of

More information

Reliable Test Results

Reliable Test Results Intelligent testing Johannes J.Bührle - Agenda Reliable test results are a fundamental and highly topical aspect of materials testing. Using suitable examples we would like to show you how we view this

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

Keywords: textile composites, braided fabric, dynamic property, fracture aspect, matrix hybrid

Keywords: textile composites, braided fabric, dynamic property, fracture aspect, matrix hybrid Mechanical Properties and Fracture Behavior of Hybrid Braided Composite Tube Yuki Sasaki, Yoshitaka Tanaka, Akio Ohtani, Asami Nakai, Hiroyuki Hamada Kyoto Institute of Technology Matsugasaki, Sakyo-ku,

More information

24 th October 2008 Glasgow eprints Service https://eprints.gla.ac.uk

24 th October 2008 Glasgow eprints Service https://eprints.gla.ac.uk Harrison, P. and Wiggers, J. and Long,.C. (008) Normalisation of shear test data for rate-independent compressible fabrics. Journal of Composite Materials 4():pp. 315-344. http://eprints.gla.ac.uk/4650/

More information

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6

1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 1.103 CIVIL ENGINEERING MATERIALS LABORATORY (1-2-3) Dr. J.T. Germaine MIT Spring 2004 LABORATORY ASSIGNMENT NUMBER 6 COMPRESSION TESTING AND ANISOTROPY OF WOOD Purpose: Reading: During this laboratory

More information

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina

Module III - Macro-mechanics of Lamina. Lecture 23. Macro-Mechanics of Lamina Module III - Macro-mechanics of Lamina Lecture 23 Macro-Mechanics of Lamina For better understanding of the macromechanics of lamina, the knowledge of the material properties in essential. Therefore, the

More information

A Novel Approach for Measurement of Fiber-on-fiber Friction

A Novel Approach for Measurement of Fiber-on-fiber Friction F98S-09 Page 1 A Novel Approach for Measurement of Fiber-on-fiber Friction Number: F98S-09 Competency: Fabrication Team Leader and members: Y. Qiu, NCSU; Y. Wang, Georgia Tech; J.Z. Mi, Cotton Inc. Graduate

More information

Laboratory 4 Topic: Buckling

Laboratory 4 Topic: Buckling Laboratory 4 Topic: Buckling Objectives: To record the load-deflection response of a clamped-clamped column. To identify, from the recorded response, the collapse load of the column. Introduction: Buckling

More information

Simulated Effect of Fiber Mesh Wrap Angle on Composite Pressure Hose Behavior. David Nelson MSC.Software

Simulated Effect of Fiber Mesh Wrap Angle on Composite Pressure Hose Behavior. David Nelson MSC.Software Simulated Effect of Fiber Mesh Wrap Angle on Composite Pressure Hose Behavior David Nelson MSC.Software Overview and Objective Fibre reinforced hoses are a common component in automotive, aerospace and

More information

STANDARD SAMPLE. Reduced section " Diameter. Diameter. 2" Gauge length. Radius

STANDARD SAMPLE. Reduced section  Diameter. Diameter. 2 Gauge length. Radius MATERIAL PROPERTIES TENSILE MEASUREMENT F l l 0 A 0 F STANDARD SAMPLE Reduced section 2 " 1 4 0.505" Diameter 3 4 " Diameter 2" Gauge length 3 8 " Radius TYPICAL APPARATUS Load cell Extensometer Specimen

More information

Equilibrium. the linear momentum,, of the center of mass is constant

Equilibrium. the linear momentum,, of the center of mass is constant Equilibrium is the state of an object where: Equilibrium the linear momentum,, of the center of mass is constant Feb. 19, 2018 the angular momentum,, about the its center of mass, or any other point, is

More information

THERMOFORMING SIMULATION OF THERMOPLASTIC TEXTILE COMPOSITES

THERMOFORMING SIMULATION OF THERMOPLASTIC TEXTILE COMPOSITES ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Seville, Spain, 22-26 June 204 THERMOFORMING SIMULATION OF THERMOPLASTIC TEXTILE COMPOSITES P. Boisse *, P. Wang, 2, N. Hamila, Laboratoire de Mécanique

More information

TENSILE TESTS (ASTM D 638, ISO

TENSILE TESTS (ASTM D 638, ISO MODULE 4 The mechanical properties, among all the properties of plastic materials, are often the most important properties because virtually all service conditions and the majority of end-use applications

More information

INDUSTRIAL FORMING SIMULATION OF MULTI-LAYERED UD NON-CRIMP-FABRICS. 13. LS-DYNA FORUM, , BAMBERG.

INDUSTRIAL FORMING SIMULATION OF MULTI-LAYERED UD NON-CRIMP-FABRICS. 13. LS-DYNA FORUM, , BAMBERG. Sebastian Kreissl, Thomas Senner, Arnulf Lipp, Josef Meinhardt. INDUSTRIAL FORMING SIMULATION OF MULTI-LAYERED UD NON-CRIMP-FABRICS. 13. LS-DYNA FORUM, 07.10.2014, BAMBERG. OUTLINE. BMW i. Production Process

More information

Single fibre tensile testing

Single fibre tensile testing Single fibre tensile testing Justine Beauson Section of Composites and Materials Mechanics, Department of Wind Energy Introduction Fibre properties Fibre orientation Matrix properties Mechanical performance

More information

3-dimensional joint torque calculation of compression sportswear using 3D-CG human model

3-dimensional joint torque calculation of compression sportswear using 3D-CG human model 3-dimensional joint torque calculation of compression sportswear using 3D-CG human model Akihiro Matsuda, University of Tsukuba Hirokazu Tanaka, University of Tsukuba Hitoshi Aoki, University of Tsukuba

More information

A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST

A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST A SELF-INDICATING MODE I INTERLAMINAR TOUGHNESS TEST P. Robinson The Composites Centre, Department of Aeronautics, Imperial College London South Kensington, London, SW7 2AZ, UK p.robinson@imperial.ac.uk

More information

MODELLING OF DRAPING AND DEFORMATION FOR TEXTILE COMPOSITES

MODELLING OF DRAPING AND DEFORMATION FOR TEXTILE COMPOSITES MODELLING OF DRAPING AND DEFORMATION FOR TEXTILE COMPOSITES A. C. Long, M. J. Clifford, P. Harrison, C. D. Rudd School of Mechanical, Materials, Manufacturing Engineering and Management University of Nottingham,

More information

FRICTION TESTING OF THERMOPLASTIC COMPOSITES

FRICTION TESTING OF THERMOPLASTIC COMPOSITES FRICTION TESTING OF THERMOPLASTIC COMPOSITES ULRICH SACHS MSc (a), SEBASTIAAN HAANAPPEL MSc (a), Dr. BERT RIETMAN (b) and Prof. REMKO AKKERMAN (a),(b) a) TPRC, University of Twente, Drienerlolaan 5, P.O.

More information

INSPIRE GK12 Lesson Plan. Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson

INSPIRE GK12 Lesson Plan. Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson Lesson Title Elastic Deformation of Materials: An Investigation of Hooke s Law Length of Lesson 1.5 hours Created By Justin Warren Subject Physics Grade Level 11-12 State Standards Physics: 1 c, d, f;

More information

Measurement of Bone Strength and Stiffness using 3-Point Bending

Measurement of Bone Strength and Stiffness using 3-Point Bending BME 315 Biomechanics, U. Wisconsin Adapted by R. Lakes from D. Thelen and C. Decker, 09, adapted from Lakes 06 Experimental Details I. Laboratory equipment The load frame that we will use to perform our

More information

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO

Project PAJ2 Dynamic Performance of Adhesively Bonded Joints. Report No. 3 August Proposed Draft for the Revision of ISO NPL Report CMMT(A)81 Project PAJ2 Dynamic Performance of Adhesively Bonded Joints Report No. 3 August 1997 Proposed Draft for the Revision of ISO 11003-2 Adhesives - Determination of Shear Behaviour of

More information

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates

A rate-dependent Hosford-Coulomb model for predicting ductile fracture at high strain rates EPJ Web of Conferences 94, 01080 (2015) DOI: 10.1051/epjconf/20159401080 c Owned by the authors, published by EDP Sciences, 2015 A rate-dependent Hosford-Coulomb model for predicting ductile fracture at

More information

Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method 1

Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method 1 Designation: D 4595 09 Standard Test Method for Tensile Properties of Geotextiles by the Wide-Width Strip Method 1 This standard is issued under the fixed designation D 4595; the number immediately following

More information

Slow Velocity Flow Fields in Composite Materials

Slow Velocity Flow Fields in Composite Materials Slow Velocity Flow Fields in Composite Materials A Coupled Problem by the Homogenization Method Noboru Kikuchi and His Associates The University of Michigan Ann Arbor, MI 48109, USA Major Contributors

More information

HexPly F655 Resin Systems for Advanced Composites

HexPly F655 Resin Systems for Advanced Composites HexPly F655 Resin Systems for Advanced Composites Product Data Description HexPly F655 is a bismaleimide resin that cures via an addition reaction in a toughened two-phase thermoset matrix with no condensation

More information

HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES

HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS HIGH VELOCITY IMPACT ON TEXTILE REINFORCED COMPOSITES Warnet L., Akkerman R., Ravensberg M. University of Twente, Faculty of Engineering Technology,

More information

Pullout Tests of Geogrids Embedded in Non-cohesive Soil

Pullout Tests of Geogrids Embedded in Non-cohesive Soil Archives of Hydro-Engineering and Environmental Mechanics Vol. 51 (2004), No. 2, pp. 135 147 Pullout Tests of Geogrids Embedded in Non-cohesive Soil Angelika Duszyńska, Adam F. Bolt Gdansk University of

More information

Strain Measurement Techniques for Composite Coupon Testing

Strain Measurement Techniques for Composite Coupon Testing Strain Measurement Techniques for Composite Coupon Testing Introduction Characterization of the properties of anisotropic and inhomogeneous composite materials for use in demanding structural applications

More information

Flexural properties of polymers

Flexural properties of polymers A2 _EN BUDAPEST UNIVERSITY OF TECHNOLOGY AND ECONOMICS FACULTY OF MECHANICAL ENGINEERING DEPARTMENT OF POLYMER ENGINEERING Flexural properties of polymers BENDING TEST OF CHECK THE VALIDITY OF NOTE ON

More information

DESIGN OF GRIPPER IN UNIVERSAL TESTING MACHINE

DESIGN OF GRIPPER IN UNIVERSAL TESTING MACHINE DESIGN OF GRIPPER IN UNIVERSAL TESTING MACHINE BAIJU R DABHI 1, PROF.(DR.) V. D. CHAUHAN 2, PROF.P.G.CHOKSI 3 1 M.E. (Machine Design), Department of Mechanical Engineering, B.V.M Engineering College, V.V.

More information

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP)

KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) KINK BAND FORMATION OF FIBER REINFORCED POLYMER (FRP) 1 University of Science & Technology Beijing, China, niukm@ustb.edu.cn 2 Tsinghua University, Department of Engineering Mechanics, Beijing, China,

More information

SIMULATION OF THE PREFORMING STEP FOR FLAX DRY WOVEN FABRICS

SIMULATION OF THE PREFORMING STEP FOR FLAX DRY WOVEN FABRICS SIMULATION OF THE PREFORMING STEP FOR FLAX DRY WOVEN FABRICS C. Tephany a*, D. Soulat b, P. Ouagne a, J. Gillibert a a Laboratoire PRISME, Université d Orléans, 8 rue Léonard de Vinci, 45072 Orléans cedex

More information

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France

Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. F Talence, France Le Cheylard, France 20 th International Conference on Composite Materials Copenhagen, 19-24th July 2015 Non-conventional Glass fiber NCF composites with thermoset and thermoplastic matrices. Thierry Lorriot 1, Jalal El Yagoubi

More information

OPTIMAL FIBER PLACEMENT INCLUDING EFFECTS OF EMBROIDERY

OPTIMAL FIBER PLACEMENT INCLUDING EFFECTS OF EMBROIDERY THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS OPTIMAL FIBER PLACEMENT INCLUDING EFFECTS OF EMBROIDERY T. Nishida 1 T. Ieda 2 * A. Senba 2 1 Department of Aerospace Engineering Nagoya University

More information

Testing and Analysis

Testing and Analysis Testing and Analysis Testing Elastomers for Hyperelastic Material Models in Finite Element Analysis 2.6 2.4 2.2 2.0 1.8 1.6 1.4 Biaxial Extension Simple Tension Figure 1, A Typical Final Data Set for Input

More information

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion

ISO 178 INTERNATIONAL STANDARD. Plastics Determination of flexural properties. Plastiques Détermination des propriétés en flexion INTERNATIONAL STANDARD ISO 178 Fourth edition 2001-12-15 Plastics Determination of flexural properties Plastiques Détermination des propriétés en flexion Reference number ISO 2001 PDF disclaimer This PDF

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

Prediction of fabric hand characteristics using extraction principle

Prediction of fabric hand characteristics using extraction principle Indian Journal of Fibre & Textile Research Vol. 41, March 2016, pp. 33-39 Prediction of fabric hand characteristics using extraction principle Apurba Das a, Abhijit Majumdar & Sukumar Roy Department of

More information

USE OF DIGITAL IMAGE CORRELATION TO OBTAIN MATERIAL MODEL PARAMETERS FOR COMPOSITES

USE OF DIGITAL IMAGE CORRELATION TO OBTAIN MATERIAL MODEL PARAMETERS FOR COMPOSITES USE OF DIGITAL IMAGE CORRELATION TO OBTAIN MATERIAL MODEL PARAMETERS FOR COMPOSITES Brian Croop, Hubert Lobo (DatapointLabs, USA). Presenter: Hubert Lobo, President SUMMARY The development of material

More information

A simplified finite element model for draping of woven material

A simplified finite element model for draping of woven material Composites: Part A 35 (2004) 637 643 www.elsevier.com/locate/compositesa A simplified finite element model for draping of woven material S.B. Sharma, M.P.F. Sutcliffe* Department of Engineering, Cambridge

More information

RESPONSE SURFACES OF MECHANICAL BEHAVIOR OF DRY WOVEN FABRICS UNDER COMBINED LOADINGS

RESPONSE SURFACES OF MECHANICAL BEHAVIOR OF DRY WOVEN FABRICS UNDER COMBINED LOADINGS THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS RESPONSE SURFACES OF MECHANICAL BEHAVIOR OF DRY WOVEN FABRICS UNDER COMBINED LOADINGS M. Komeili, A.S. Milani* School of Engineering, University

More information

Agnieszka Bondyra, Pawe Gotowicki

Agnieszka Bondyra, Pawe Gotowicki Journal of KONES Powertrain and Transport, Vol. 17, No. 1 21 INFLUENCE OF A CROSSHEAD RATE AND A NUMBER OF STRESS CYCLES ON MEASUREMENT RESULTS IN THE IN-PLANE SHEAR TEST FOR A CROSS-PLY VINYLESTER-CARBON

More information

STATISTICAL BEHAVIOR OF HEMP AND SISAL FIBER REINFORCED POLYPROPYLENE COMPOSITES ABSTRACT

STATISTICAL BEHAVIOR OF HEMP AND SISAL FIBER REINFORCED POLYPROPYLENE COMPOSITES ABSTRACT STATISTICAL BEHAVIOR OF HEMP AND SISAL FIBER REINFORCED POLYPROPYLENE COMPOSITES Guillaumat. Laurent 1 and Baley Christophe 2 1 LAMEFIP ENSAM, Esplanade des Arts et Métiers, 33405 Talence cedex, France

More information

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES

ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES ELASTIC STAIBILITY CIF TUE FACINGS Of HAT SANDWICI-1 PANELS WIASI SUBJECTED TO COMBINED EDGEWISE STRESSES Information Reviewed and Reaffirmed Aucust 1955 NFORMA-tiON RE'4,E\AE.'L; n PE.1-17;9';f2,. This!Report

More information

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE

GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE GEOSYNTHETICS ENGINEERING: IN THEORY AND PRACTICE Prof. J. N. Mandal Department of Civil Engineering, IIT Bombay, Powai, Mumbai 400076, India. Tel.022-25767328 email: cejnm@civil.iitb.ac.in Module-13 LECTURE-

More information

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test

BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test BioMechanics and BioMaterials Lab (BME 541) Experiment #5 Mechanical Prosperities of Biomaterials Tensile Test Objectives 1. To be familiar with the material testing machine(810le4) and provide a practical

More information

DYNAMIC MECHANICAL ANALYZER DMA 2980

DYNAMIC MECHANICAL ANALYZER DMA 2980 Prepared by Russell R. Ulbrich Sujan E. Bin Wadud DYNAMIC MECHANICAL ANALYZER DMA 2980 Getting Started Guide for Thermal Advantage Users TABLE OF CONTENTS Mearurement Principles of the DMA 2980 1 Force

More information

Elastic Properties of Solids (One or two weights)

Elastic Properties of Solids (One or two weights) Elastic properties of solids Page 1 of 8 Elastic Properties of Solids (One or two weights) This is a rare experiment where you will get points for breaking a sample! The recommended textbooks and other

More information

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES

THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS THE MUTUAL EFFECTS OF SHEAR AND TRANSVERSE DAMAGE IN POLYMERIC COMPOSITES L.V. Smith 1 *, M. Salavatian 1 1 School of Mechanical and Materials

More information

In-situ local strain measurement in textile composites with embedded optical fibre sensors

In-situ local strain measurement in textile composites with embedded optical fibre sensors In-situ local strain measurement in textile composites with embedded optical fibre sensors S. Daggumati, E. Voet, I. De Baere, W. Van Paepegem & J. Degrieck Ghent University, Department of Materials Science

More information

POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON

POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON POLYURETHANE SURFACE TREATMENT ON TWO KINDS OF BASALT FIBER COMPOSITE AND MECHANICAL PROPERTIES COMPARISON Ting YANG 1, Zhenjin CUI 1,Jiahui YANG 2, Yuqiu YANG 2, Hiroyuki HAMADA 1 1 Kyoto Institute of

More information

THE SHEAR BEHAVIOR OBTAINED FROM THE DIRECT SHEAR AND PULLOUT TESTS FOR DIFFERENT POOR GRADED SOIL-GEOSYNTHETIC SYSTEMS

THE SHEAR BEHAVIOR OBTAINED FROM THE DIRECT SHEAR AND PULLOUT TESTS FOR DIFFERENT POOR GRADED SOIL-GEOSYNTHETIC SYSTEMS Journal of Hsieh GeoEngineering, and Ham: The Vol. Shear 6, No. Behavior 1, pp. Obtained 15-26, April from 211 the Direct Shear and Pullout Tests for Different Poor Graded Soil-Geosynthetic Systems 15

More information

Acta Materiae Compositae Sinica Vol123 No12 April 2006

Acta Materiae Compositae Sinica Vol123 No12 April 2006 Acta Materiae Compositae Sinica Vol123 No12 April 2006 : 1000 3851 (2006) 02 0059 06 23 2 4 2006 3, (, 300160) :, 4 / 3D 2 0 30 45 60 90 :,, ; 4,, ;,, : ; ; : TB332 ; V258. 3 : A Mechanical anisotropy

More information

Nonlinearities in mechanical behavior of textile composites

Nonlinearities in mechanical behavior of textile composites Composite Structures 71 (25) 61 67 www.elsevier.com/locate/compstruct Nonlinearities in mechanical behavior of textile composites Enrico DÕAmato Energetics Departement, L Aquila University, 674 Monteluco

More information

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004

Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. Fall 2004 Homework No. 1 MAE/CE 459/559 John A. Gilbert, Ph.D. 1. A beam is loaded as shown. The dimensions of the cross section appear in the insert. the figure. Draw a complete free body diagram showing an equivalent

More information

Lab Exercise #3: Torsion

Lab Exercise #3: Torsion Lab Exercise #3: Pre-lab assignment: Yes No Goals: 1. To evaluate the equations of angular displacement, shear stress, and shear strain for a shaft undergoing torsional stress. Principles: testing of round

More information

Project MMS13 Task 5 Report No 3 (M6/D3)

Project MMS13 Task 5 Report No 3 (M6/D3) Project MMS13 Task 5 Report No 3 (M6/D3) Material Data Requirements and Recommended Test Methods for the Predictive Modelling of Defect Criticality in Composite Material Systems M R L Gower and G D Sims

More information

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G

1 of 12. Given: Law of Cosines: C. Law of Sines: Stress = E = G ES230 STRENGTH OF MATERIALS FINAL EXAM: WEDNESDAY, MAY 15 TH, 4PM TO 7PM, AEC200 Closed book. Calculator and writing supplies allowed. Protractor and compass required. 180 Minute Time Limit You must have

More information

Supplementary Information. Multifunctional graphene woven fabrics

Supplementary Information. Multifunctional graphene woven fabrics Supplementary Information Multifunctional graphene woven fabrics Xiao Li 1, Pengzhan Sun 1, Lili Fan 1, Miao Zhu 1,2, Kunlin Wang 1, Dehai Wu 1, Yao Cheng 2,3 and Hongwei Zhu 1,2* 1 Department of Mechanical

More information

Experiment: Torsion Test Expected Duration: 1.25 Hours

Experiment: Torsion Test Expected Duration: 1.25 Hours Course: Higher Diploma in Civil Engineering Unit: Structural Analysis I Experiment: Expected Duration: 1.25 Hours Objective: 1. To determine the shear modulus of the metal specimens. 2. To determine the

More information

CTC 460 kcmil ACCC Conductor Stress Strain Tests

CTC 460 kcmil ACCC Conductor Stress Strain Tests CTC 46 kcmil ACCC Conductor Stress Strain Tests NEETRAC Project Number: 8-45 March, 28 Requested by: Doug Pilling CTC Principal Investigator: Paul Springer, PE Reviewed by: Graham Price CTC 46 kcmil Conductor

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-214 29 An Experimental Analysis of Stress Relaxation in Nonwoven Fabrics Sajid Ahmed Qureshi ABSTRACT - The current

More information

Crashworthiness of Composite Structures with Various Fiber Architectures

Crashworthiness of Composite Structures with Various Fiber Architectures 11 th International L-DYNA Users Conference Crash afety Crashworthiness of Composite tructures with Various Fiber Architectures Nageswara R. Janapala 1, Fu-Kuo Chang, Robert K. Goldberg 3, Gary D. Roberts

More information

Interface properties between a steel pre-stressing strand and an epoxy matrix.

Interface properties between a steel pre-stressing strand and an epoxy matrix. Interface properties between a steel pre-stressing strand and an epoxy matrix. J. Van Vooren 1, B. Van Vooren 2, D. Van Hemelrijck 1, 1 Free University of Brussel, Dept. of Mechanics of Materials and Constructions,

More information

Lab 5. Current Balance

Lab 5. Current Balance Lab 5. Current Balance Goals To explore and verify the right-hand rule governing the force on a current-carrying wire immersed in a magnetic field. To determine how the force on a current-carrying wire

More information

3 Materials and methods

3 Materials and methods 33 3 Materials and methods This chapter presents the processing and experimental procedures implemented to generate results on micro-structural, meso-structural and macrostructural characteristics of peach

More information

A Friction-Test Benchmark with Twintex PP

A Friction-Test Benchmark with Twintex PP A Friction-Test Benchmark with Twintex PP lrich Sachs, Konstantine Fetfatsidis, Josefine Schumacher, Gerhard Ziegmann, Samir Allaoui, Gilles Hivet, Emmanuelle Vidal-Salle, Remko Akkerman To cite this version:

More information

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars

AERO 214. Lab II. Measurement of elastic moduli using bending of beams and torsion of bars AERO 214 Lab II. Measurement of elastic moduli using bending of beams and torsion of bars BENDING EXPERIMENT Introduction Flexural properties of materials are of interest to engineers in many different

More information

Torsion Wheel. Assembly Instructions. Parts

Torsion Wheel. Assembly Instructions. Parts Torsion Wheel Assembly Instructions Your package should contain the following components: Torsion Wheel with string already attached, two () rubber hook holders, wire hook, and lab instructions. Assemble

More information

An Analytical Study of Initial Shear Behavior of Plain Woven Hybrid Fabrics

An Analytical Study of Initial Shear Behavior of Plain Woven Hybrid Fabrics JOURNAL OF TEXTILES AND POLYMERS, VOL. 4, NO., JANUARY 206 9 An Analytical Study of Initial Shear Behavior of Plain Woven Hybrid Fabrics Majid Tehrani-Dehkor and Hooshang Nosraty Abstract During recent

More information

MULTI-SCALE MODELLING OF FIBRE BUNDLES

MULTI-SCALE MODELLING OF FIBRE BUNDLES THE 19 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS MULTI-SCALE MODELLING OF FIBRE BUNDLES N. D. Chakladar 1, P. Mandal 1 *, P. Potluri 2 1 School of Mechanical, Aerospace and Civil Engineering,

More information

The Relationship between the Applied Torque and Stresses in Post-Tension Structures

The Relationship between the Applied Torque and Stresses in Post-Tension Structures ECNDT 6 - Poster 218 The Relationship between the Applied Torque and Stresses in Post-Tension Structures Fui Kiew LIEW, Sinin HAMDAN * and Mohd. Shahril OSMAN, Faculty of Engineering, Universiti Malaysia

More information

2 Experiment of GFRP bolt

2 Experiment of GFRP bolt 16 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS FATIGUE LIFE EVALUATION OF BOLT MADE OF WOVEN FABRIC FRP Takeshi INOUE*, Hiroaki NAKAI**, Tetsusei KURASHIKI**, Masaru ZAKO**, Yuji KOMETANI*** *Graduate

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION

NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION NUMERICAL MODELLING OF COMPOSITE PIN- JOINTS AND EXPERIMENTAL VALIDATION Fabrice PIERRON*, François CERISIER*, and Michel GRÉDIAC** * SMS/ Département Mécanique et Matériaux, École Nationale Supérieure

More information

Experiments and prediction of the spreading behavior of fibrous tows by means of the Discrete Element Method

Experiments and prediction of the spreading behavior of fibrous tows by means of the Discrete Element Method Experiments and prediction of the spreading behavior of fibrous tows by means of the Discrete Element Method Master Thesis Amir Ahmad Bakhtiary Davijani June 2012 University of Twente Faculty of Engineering

More information

Difference Between Fixed and Floating Reference Points AASHTO T-321

Difference Between Fixed and Floating Reference Points AASHTO T-321 Difference Between Fixed and Floating Reference Points AASHTO T-321 Fixed Reference LVDT with Target Attached to the Beam Neutral Axis (Mid-Height, Mid-Length) 2 Old ASTM D7460 Graph Improper Representation

More information

For ASME Committee use only.

For ASME Committee use only. ð15þ KD-232 PROTECTION AGAINST LOCAL FAILURE In addition to demonstrating protection against plastic collapse as defined in KD-231, the local failure criteria below shall be satisfied. KD-232.1 Elastic

More information