JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15

Size: px
Start display at page:

Download "JFET Operating Characteristics: V GS = 0 V 14. JFET Operating Characteristics: V GS = 0 V 15"

Transcription

1 J Operating Characteristics: V GS = 0 V 14 V GS = 0 and V DS increases from 0 to a more positive voltage: Gate and Source terminals: at the same potential Drain: at positive potential => reverse biased Gate: at negative potential => reverse biased Source: negative potential => forward biased difference of potential The depletion region is wider near the top of both p-type materials compared to lower parts J Operating Characteristics: V GS = 0 V 15 V GS = 0 and V DS increases from 0 to a more positive voltage: Gate and Source terminals: at the same potential Drain: at positive potential => reverse biased Gate: at negative potential => reverse biased Source: negative potential => forward biased difference of potential The p-n junction is reversed biased for the length of the channel results I G = 0A 1

2 J Operating Characteristics: V GS = 0 V 16 V GS = 0 and V DS increases from 0 to a more positive voltage: Gate and Source terminals: at the same potential Drain: at positive potential => reverse biased Gate: at negative potential => reverse biased Source: negative potential => forward biased difference of potential +V DS : I D 1. +V DS 0 to a few volts: I D linearly (channel resistance is essentially constant) 2. +V DS further to a level V P : depletion region widens => noticeable reduction in channel width => reduced channel resistance i.e., reduced path of conduction finally, I D stops increasing 3. +V DS V P and above: I D constant (saturation level) J Operating Characteristics: V GS = 0 V 17 V GS = 0 and V DS increases from 0 to a more positive voltage: 2

3 J Operating Characteristics: V GS = 0 V 18 V GS = 0 and V DS increases from 0 to a more positive voltage: With V P the region of close encounter b/w two depletion regions increases in length along the channel At V P in reality a very small channel still exists, with a very high density of current J Operating Characteristics: V GS = 0 V 19 V GS = 0 and V DS increases from 0 to a more positive voltage: V DS > V P J behaves like a current source I DSS : maximum drain current for a J and is defined by the conditions V GS = 0V and V DS > V P 3

4 J Operating Characteristics 20 V GS = -ve and V DS increases from 0 to a more positive voltage: V < 0 V; V = 0 to + ve value GS DS As V GS becomes more negative, the depletion region increases Saturation level of I D reduced For more ve V GS, saturation levels of I D reduced J Operating Characteristics 21 As V GS becomes more negative: The J experiences pinch-off at a lower voltage (V P ). I D decreases (I D < I DSS ) even though V DS is increased. Eventually I D reaches 0 A. V GS at this point is called V p or V GS(off) Also note that at high levels of V DS the J reaches a breakdown situation. I D increases uncontrollably if V DS > V DSmax 4

5 J Operating Characteristics 22. J Operating Characteristics 23 Voltage Controlled Resistor: The resistance at a particular level of V GS r d ro = VGS 1 VP The resistance with V GS = 0V 2 5

6 p-channel Js 24 The p-channel J behaves the same as the n-channel J, except the voltage polarities and current directions are reversed. p-channel Js 25 As V GS increases more positively The depletion zone increases I D decreases (I D < I DSS ) Eventually I D = 0 A Also note that at high levels of V DS the J reaches a breakdown situation: I D increases uncontrollably if V DS > V DSmax 6

7 Symbol 26 n-channel J symbol p-channel J symbol Summary 27 o The maximum current is defined as IDSS and occurs when V GS = 0V and V DS V P : o For gate-to-source voltage V GS less than (more negative than) the pinch-off level, the drain current is 0A (I D = 0A): 7

8 Summary 28 o For all levels of VGS between 0V and the pinch-off level, the current ID will range between IDSS and 0A, respectively: o A similar list can be developed for p-channel Js. 29 Transfer Characteristics 8

9 Transfer Characteristics of Js 30 o TC of a device: input-to-output characteristics o For BJT β relates the I B (input) and I C (output) o A linear relationship b/w both parameters IC = β I B Control variable constant relationship: o Defined by Shockley s equation o Non-linear relationship b/w I D and V GS (due to square) o The curve grows exponentially with decreasing magnitude of V GS I D = I DSS 1 V V P Control variable GS 2 constant Plotting Transfer Characteristics of Js 31 o Transfer characteristic curve of a J: a curve of I D vs V DS for V GS (0V to V P ) o Three methods: 1. Drain characteristic curve 2. Shockley s equation 3. Shortcut method 9

10 Plotting Transfer Characteristics of Js Uisng Drain characteristic curve: Plotting Transfer Characteristics of Js Using Drain characteristic curve : 10

11 Plotting Transfer Characteristics of Js Using Drain characteristic curve: Plotting Transfer Characteristics of Js Using Drain characteristic curve: 11

12 Plotting Transfer Characteristics of Js Using Drain characteristic curve: A parabolic curve results as the changes in V GS is uniform while the resulting current (I D ) changes nonlinearly Plotting Transfer Characteristics of Js Using Drain characteristic curve: Transfer Characteristic Curve of a J 12

13 Plotting Transfer Characteristics of Js Using Shockley s Equation: o Required: I DSS and V P (from data sheets) Solving for V GS = 0V Step 1 2 VGS I D I DSS 1 V = P I D = I DSS => (V GS, I DSS ) Step 2 Solving for V GS = V p (V GS(off) ) I D = 0A 2 VGS I D I DSS 1 V = P => (V P,0) Step 3 2 Solving for V GS = 0V to V V p GS I D I DSS 1 V = P Plotting Transfer Characteristics of Js Using Shockley s Equation (Shortcut method): o Required: I DSS and V P (from data sheets) V GS I D 0 I DSS 0.3V P I DSS /2 0.5V P I DSS /4 V P 0mA 13

14 Plotting Transfer Characteristics of Js 40 Example 6.1: Sketch the transfer function curve define by I DSS = 12 ma and V P = 6V. Example 6.2: Sketch the transfer function curve for a p-channel device with I DSS = 4 ma And V P = 3V. 14

Lecture 11: J-FET and MOSFET

Lecture 11: J-FET and MOSFET ENE 311 Lecture 11: J-FET and MOSFET FETs vs. BJTs Similarities: Amplifiers Switching devices Impedance matching circuits Differences: FETs are voltage controlled devices. BJTs are current controlled devices.

More information

Chapter 6: Field-Effect Transistors

Chapter 6: Field-Effect Transistors Chapter 6: Field-Effect Transistors slamic University of Gaza Dr. Talal Skaik FETs vs. BJTs Similarities: Amplifiers Switching devices mpedance matching circuits Differences: FETs are voltage controlled

More information

Chapter7. FET Biasing

Chapter7. FET Biasing Chapter7. J configurations Fixed biasing Self biasing & Common Gate Voltage divider MOS configurations Depletion-type Enhancement-type JFET: Fixed Biasing Example 7.1: As shown in the figure, it is the

More information

EE105 - Fall 2005 Microelectronic Devices and Circuits

EE105 - Fall 2005 Microelectronic Devices and Circuits EE105 - Fall 005 Microelectronic Devices and Circuits ecture 7 MOS Transistor Announcements Homework 3, due today Homework 4 due next week ab this week Reading: Chapter 4 1 ecture Material ast lecture

More information

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009

Capacitors Diodes Transistors. PC200 Lectures. Terry Sturtevant. Wilfrid Laurier University. June 4, 2009 Wilfrid Laurier University June 4, 2009 Capacitor an electronic device which consists of two conductive plates separated by an insulator Capacitor an electronic device which consists of two conductive

More information

MOS Transistor I-V Characteristics and Parasitics

MOS Transistor I-V Characteristics and Parasitics ECEN454 Digital Integrated Circuit Design MOS Transistor I-V Characteristics and Parasitics ECEN 454 Facts about Transistors So far, we have treated transistors as ideal switches An ON transistor passes

More information

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices

Electronic Circuits 1. Transistor Devices. Contents BJT and FET Characteristics Operations. Prof. C.K. Tse: Transistor devices Electronic Circuits 1 Transistor Devices Contents BJT and FET Characteristics Operations 1 What is a transistor? Three-terminal device whose voltage-current relationship is controlled by a third voltage

More information

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi

Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Electronics Fets and Mosfets Prof D C Dube Department of Physics Indian Institute of Technology, Delhi Module No. #05 Lecture No. #02 FETS and MOSFETS (contd.) In the previous lecture, we studied the working

More information

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012

CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN. Hà Nội, 9/24/2012 1 CHAPTER 3: TRANSISTOR MOSFET DR. PHAM NGUYEN THANH LOAN Hà Nội, 9/24/2012 Chapter 3: MOSFET 2 Introduction Classifications JFET D-FET (Depletion MOS) MOSFET (Enhancement E-FET) DC biasing Small signal

More information

Lecture 11: MOS Transistor

Lecture 11: MOS Transistor Lecture 11: MOS Transistor Prof. Niknejad Lecture Outline Review: MOS Capacitors Regions MOS Capacitors (3.8 3.9) CV Curve Threshold Voltage MOS Transistors (4.1 4.3): Overview Cross-section and layout

More information

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support

Chapter 3. FET Amplifiers. Spring th Semester Mechatronics SZABIST, Karachi. Course Support Chapter 3 Spring 2012 4 th Semester Mechatronics SZABIST, Karachi 2 Course Support humera.rafique@szabist.edu.pk Office: 100 Campus (404) Official: ZABdesk https://sites.google.com/site/zabistmechatronics/home/spring-2012/ecd

More information

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002

The Devices. Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. July 30, 2002 Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The Devices July 30, 2002 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits

EE105 - Fall 2006 Microelectronic Devices and Circuits EE105 - Fall 2006 Microelectronic Devices and Circuits Prof. Jan M. Rabaey (jan@eecs) Lecture 7: MOS Transistor Some Administrative Issues Lab 2 this week Hw 2 due on We Hw 3 will be posted same day MIDTERM

More information

Lecture 3: CMOS Transistor Theory

Lecture 3: CMOS Transistor Theory Lecture 3: CMOS Transistor Theory Outline Introduction MOS Capacitor nmos I-V Characteristics pmos I-V Characteristics Gate and Diffusion Capacitance 2 Introduction So far, we have treated transistors

More information

Lecture 12: MOSFET Devices

Lecture 12: MOSFET Devices Lecture 12: MOSFET Devices Gu-Yeon Wei Division of Engineering and Applied Sciences Harvard University guyeon@eecs.harvard.edu Wei 1 Overview Reading S&S: Chapter 5.1~5.4 Supplemental Reading Background

More information

ECE315 / ECE515 Lecture-2 Date:

ECE315 / ECE515 Lecture-2 Date: Lecture-2 Date: 04.08.2016 NMOS I/V Characteristics Discussion on I/V Characteristics MOSFET Second Order Effect NMOS I-V Characteristics ECE315 / ECE515 Gradual Channel Approximation: Cut-off Linear/Triode

More information

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions. " Resistive. " Saturation. " Subthreshold (next class)

! PN Junction. ! MOS Transistor Topology. ! Threshold. ! Operating Regions.  Resistive.  Saturation.  Subthreshold (next class) ESE370: ircuitlevel Modeling, Design, and Optimization for Digital Systems Lec 7: September 20, 2017 MOS Transistor Operating Regions Part 1 Today! PN Junction! MOS Transistor Topology! Threshold! Operating

More information

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th

MOSFET. Id-Vd curve. I DS Transfer curve V G. Lec. 8. Vd=1V. Saturation region. V Th MOSFET Id-Vd curve Saturation region I DS Transfer curve Vd=1V V Th V G 1 0 < V GS < V T V GS > V T V Gs >V T & Small V D > 0 I DS WQ inv WC v WC i V V VDS V V G i T G n T L n I D g V D (g conductance

More information

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices.

Digital Integrated Circuits A Design Perspective. Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic. The Devices. July 30, Devices. Digital Integrated Circuits A Design Perspective Jan M. Rabaey Anantha Chandrakasan Borivoje Nikolic The July 30, 2002 1 Goal of this chapter Present intuitive understanding of device operation Introduction

More information

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET:

Lecture 15: MOS Transistor models: Body effects, SPICE models. Context. In the last lecture, we discussed the modes of operation of a MOS FET: Lecture 15: MOS Transistor models: Body effects, SPICE models Context In the last lecture, we discussed the modes of operation of a MOS FET: oltage controlled resistor model I- curve (Square-Law Model)

More information

DATA SHEET. BF246A; BF246B; BF246C; BF247A; BF247B; BF247C N-channel silicon junction field-effect transistors DISCRETE SEMICONDUCTORS

DATA SHEET. BF246A; BF246B; BF246C; BF247A; BF247B; BF247C N-channel silicon junction field-effect transistors DISCRETE SEMICONDUCTORS DISCRETE SEMICONDUCTORS DATA SHEET Supersedes data of April 1995 File under Discrete Semiconductors, SC07 1996 Jul 29 FEATURES Interchangeability of drain and source connections High I DSS range Frequency

More information

MOSFET Physics: The Long Channel Approximation

MOSFET Physics: The Long Channel Approximation MOSFET Physics: The ong Channel Approximation A basic n-channel MOSFET (Figure 1) consists of two heavily-doped n-type regions, the Source and Drain, that comprise the main terminals of the device. The

More information

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS

5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5. EXPERIMENT 5. JFET NOISE MEASURE- MENTS 5.1 Object The objects of this experiment are to measure the spectral density of the noise current output of a JFET, to compare the measured spectral density

More information

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors

ECE 342 Electronic Circuits. Lecture 6 MOS Transistors ECE 342 Electronic Circuits Lecture 6 MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2

More information

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University

SECTION: Circle one: Alam Lundstrom. ECE 305 Exam 5 SOLUTIONS: Spring 2016 April 18, 2016 M. A. Alam and M.S. Lundstrom Purdue University NAME: PUID: SECTION: Circle one: Alam Lundstrom ECE 305 Exam 5 SOLUTIONS: April 18, 2016 M A Alam and MS Lundstrom Purdue University This is a closed book exam You may use a calculator and the formula

More information

Chapter 13 Small-Signal Modeling and Linear Amplification

Chapter 13 Small-Signal Modeling and Linear Amplification Chapter 13 Small-Signal Modeling and Linear Amplification Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 1/4/12 Chap 13-1 Chapter Goals Understanding of concepts related to: Transistors

More information

MOS Transistor Theory

MOS Transistor Theory MOS Transistor Theory So far, we have viewed a MOS transistor as an ideal switch (digital operation) Reality: less than ideal EE 261 Krish Chakrabarty 1 Introduction So far, we have treated transistors

More information

The Gradual Channel Approximation for the MOSFET:

The Gradual Channel Approximation for the MOSFET: 6.01 - Electronic Devices and Circuits Fall 003 The Gradual Channel Approximation for the MOSFET: We are modeling the terminal characteristics of a MOSFET and thus want i D (v DS, v GS, v BS ), i B (v

More information

Spring Semester 2012 Final Exam

Spring Semester 2012 Final Exam Spring Semester 2012 Final Exam Note: Show your work, underline results, and always show units. Official exam time: 2.0 hours; an extension of at least 1.0 hour will be granted to anyone. Materials parameters

More information

Lecture 4: CMOS Transistor Theory

Lecture 4: CMOS Transistor Theory Introduction to CMOS VLSI Design Lecture 4: CMOS Transistor Theory David Harris, Harvey Mudd College Kartik Mohanram and Steven Levitan University of Pittsburgh Outline q Introduction q MOS Capacitor q

More information

ECE 497 JS Lecture - 12 Device Technologies

ECE 497 JS Lecture - 12 Device Technologies ECE 497 JS Lecture - 12 Device Technologies Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 NMOS Transistor 2 ρ Source channel charge density

More information

ECE 342 Electronic Circuits. 3. MOS Transistors

ECE 342 Electronic Circuits. 3. MOS Transistors ECE 342 Electronic Circuits 3. MOS Transistors Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jschutt@emlab.uiuc.edu 1 NMOS Transistor Typically L = 0.1 to 3 m, W = 0.2 to

More information

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact

ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems. Today. Refinement. Last Time. No Field. Body Contact ESE370: Circuit-Level Modeling, Design, and Optimization for Digital Systems Day 10: September 6, 01 MOS Transistor Basics Today MOS Transistor Topology Threshold Operating Regions Resistive Saturation

More information

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6

R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition. Figures for Chapter 6 R. Ludwig and G. Bogdanov RF Circuit Design: Theory and Applications 2 nd edition Figures for Chapter 6 Free electron Conduction band Hole W g W C Forbidden Band or Bandgap W V Electron energy Hole Valence

More information

MOS Transistor Properties Review

MOS Transistor Properties Review MOS Transistor Properties Review 1 VLSI Chip Manufacturing Process Photolithography: transfer of mask patterns to the chip Diffusion or ion implantation: selective doping of Si substrate Oxidation: SiO

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering

GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering NAME: GEORGIA INSTITUTE OF TECHNOLOGY School of Electrical and Computer Engineering ECE 4430 First Exam Closed Book and Notes Fall 2002 September 27, 2002 General Instructions: 1. Write on one side of

More information

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.)

Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Lecture 9 MOSFET(II) MOSFET I V CHARACTERISTICS(contd.) Outline 1. The saturation region 2. Backgate characteristics Reading Assignment: Howe and Sodini, Chapter 4, Section 4.4 6.012 Spring 2009 Lecture

More information

Figure 1: MOSFET symbols.

Figure 1: MOSFET symbols. c Copyright 2008. W. Marshall Leach, Jr., Professor, Georgia Institute of Technology, School of Electrical and Computer Engineering. The MOSFET Device Symbols Whereas the JFET has a diode junction between

More information

2N5545/46/47/JANTX/JANTXV

2N5545/46/47/JANTX/JANTXV N//7/JANTX/JANTXV Monolithic N-Channel JFET Duals Product Summary Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv) N. to.. N. to.. N7. to.. Features Benefits Applications

More information

Chapter 4 Field-Effect Transistors

Chapter 4 Field-Effect Transistors Chapter 4 Field-Effect Transistors Microelectronic Circuit Design Richard C. Jaeger Travis N. Blalock 5/5/11 Chap 4-1 Chapter Goals Describe operation of MOSFETs. Define FET characteristics in operation

More information

Practice 3: Semiconductors

Practice 3: Semiconductors Practice 3: Semiconductors Digital Electronic Circuits Semester A 2012 VLSI Fabrication Process VLSI Very Large Scale Integration The ability to fabricate many devices on a single substrate within a given

More information

Metal-oxide-semiconductor field effect transistors (2 lectures)

Metal-oxide-semiconductor field effect transistors (2 lectures) Metal-ide-semiconductor field effect transistors ( lectures) MOS physics (brief in book) Current-voltage characteristics - pinch-off / channel length modulation - weak inversion - velocity saturation -

More information

Monolithic N-Channel JFET Duals

Monolithic N-Channel JFET Duals Monolithic N-Channel JFET Duals N96/97/98/99 Part Number V GS(off) (V) V (BR)GSS Min (V) Min (ms) I G Max (pa) V GS V GS Max (mv) N96.7 to N97.7 to N98.7 to N99.7 to Monolithic Design High Slew Rate Low

More information

SOME USEFUL NETWORK THEOREMS

SOME USEFUL NETWORK THEOREMS APPENDIX D SOME USEFUL NETWORK THEOREMS Introduction In this appendix we review three network theorems that are useful in simplifying the analysis of electronic circuits: Thévenin s theorem Norton s theorem

More information

à FIELD EFFECT TRANSISTORS

à FIELD EFFECT TRANSISTORS Prof.M.G.Guvench à FIELD EFFECT TRANSISTORS ü FET: CONTENTS Principles of Operation Models: DC, S.S.A.C. and SPICE Applications: AC coupled S.S. Amplifiers ü FET: NAMES JFET Junction Field Effect Transistor

More information

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS (CONT D)

KOM2751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU - Control and Automation Dept. 1 7 DC BIASING FETS (CONT D) KOM751 Analog Electronics :: Dr. Muharrem Mercimek :: YTU Control and Automation Dept. 1 7 DC BIASING FETS (CONT D) Most of the content is from the textbook: Electronic devices and circuit theory, Robert

More information

Introduction and Background

Introduction and Background Analog CMOS Integrated Circuit Design Introduction and Background Dr. Jawdat Abu-Taha Department of Electrical and Computer Engineering Islamic University of Gaza jtaha@iugaza.edu.ps 1 Marking Assignments

More information

Biasing the CE Amplifier

Biasing the CE Amplifier Biasing the CE Amplifier Graphical approach: plot I C as a function of the DC base-emitter voltage (note: normally plot vs. base current, so we must return to Ebers-Moll): I C I S e V BE V th I S e V th

More information

N- & P-Channel Enhancement Mode Field Effect Transistor

N- & P-Channel Enhancement Mode Field Effect Transistor PRODUCT SUMMARY V (BR)DSS R DS(ON) I D annel 30 27.5m 7A annel -30 34m -6A G : GATE D : DRAIN S : SOURCE ABSOLUTE MAXIMUM RATINGS (T C = 25 C Unless Otherwise Noted) PARAMETERS/TEST CONDITIONS SYMBOL annel

More information

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current.

Quantitative MOSFET. Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. Quantitative MOSFET Step 1. Connect the MOS capacitor results for the electron charge in the inversion layer Q N to the drain current. V DS _ n source polysilicon gate y = y * 0 x metal interconnect to

More information

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline

Introduction to CMOS VLSI. Chapter 2: CMOS Transistor Theory. Harris, 2004 Updated by Li Chen, Outline Introduction to MOS VLSI Design hapter : MOS Transistor Theory copyright@david Harris, 004 Updated by Li hen, 010 Outline Introduction MOS apacitor nmos IV haracteristics pmos IV haracteristics Gate and

More information

Current mechanisms Exam January 27, 2012

Current mechanisms Exam January 27, 2012 Current mechanisms Exam January 27, 2012 There are four mechanisms that typically cause currents to flow: thermionic emission, diffusion, drift, and tunneling. Explain briefly which kind of current mechanisms

More information

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues

EE105 - Fall 2006 Microelectronic Devices and Circuits. Some Administrative Issues EE105 - Fall 006 Microelectronic evices and Circuits Prof. Jan M. Rabaey (jan@eecs Lecture 8: MOS Small Signal Model Some Administrative Issues REIEW Session Next Week Tu Sept 6 6:00-7:30pm; 060 alley

More information

Device Models (PN Diode, MOSFET )

Device Models (PN Diode, MOSFET ) Device Models (PN Diode, MOSFET ) Instructor: Steven P. Levitan steve@ece.pitt.edu TA: Gayatri Mehta, José Martínez Book: Digital Integrated Circuits: A Design Perspective; Jan Rabaey Lab Notes: Handed

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) 2SK2610 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSIII) Chopper Regulator, DC DC Converter and Motor Drive Applications Unit: mm Low drain source ON resistance : RDS (ON) = 2.3 Ω (typ.) High

More information

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7

HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 HW 5 posted due in two weeks Lab this week Midterm graded Project to be launched in week 7 2 What do digital IC designers need to know? 5 EE4 EECS4 6 3 0< V GS - V T < V DS Pinch-off 7 For (V GS V T )

More information

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications

TPC8116-H TPC8116-H. High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter Applications TOSHIBA Field Effect Transistor Silicon P-Channel MOS Type (Ultra-High-Speed U-MOSIII) High Efficiency DC/DC Converter Applications Notebook PC Applications Portable Equipment Applications CCFL Inverter

More information

Field-Effect (FET) transistors

Field-Effect (FET) transistors Field-Effect (FET) transistors References: Barbow (Chapter 8), Rizzoni (chapters 8 & 9) In a field-effect transistor (FET), the width of a conducting channel in a semiconductor and, therefore, its current-carrying

More information

DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS

DATA SHEET. BF245A; BF245B; BF245C N-channel silicon field-effect transistors DISCRETE SEMICONDUCTORS DISCRETE SEMICONDUCTORS DATA SHEET N-channel silicon field-effect transistors Supersedes data of April 995 File under Discrete Semiconductors, SC7 996 Jul FEATURES Interchangeability of drain and source

More information

ECE 546 Lecture 10 MOS Transistors

ECE 546 Lecture 10 MOS Transistors ECE 546 Lecture 10 MOS Transistors Spring 2018 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu NMOS Transistor NMOS Transistor N-Channel MOSFET Built on p-type

More information

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using

400V N-Channel MOSFET GENERAL DESCRIPTION VDSS RDS(ON) ID. Features. Ordering Information 400V 0.55Ω 10.5A. This Power MOSFET is produced using 400V N-Channel MOSFET GENERAL DESCRIPTION This Power MOSFET is produced using advanced planar stripe DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,

More information

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3

ECE 523/421 - Analog Electronics University of New Mexico Solutions Homework 3 ECE 523/42 - Analog Electronics University of New Mexico Solutions Homework 3 Problem 7.90 Show that when ro is taken into account, the voltage gain of the source follower becomes G v v o v sig R L r o

More information

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 600 V V GS Gate-Source Voltage ±30 V

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 600 V V GS Gate-Source Voltage ±30 V General Description These N-Channel enhancement mode power field effect transistors are planar stripe, DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,

More information

Monolithic N-Channel JFET Dual

Monolithic N-Channel JFET Dual N9 Monolithic N-Channel JFET Dual V GS(off) (V) V (BR)GSS Min (V) g fs Min (ms) I G Max (pa) V GS V GS Max (mv). to. Monolithic Design High Slew Rate Low Offset/Drift Voltage Low Gate Leakage: pa Low Noise:

More information

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 30 V V GS Gate-Source Voltage ±20 V

Features. Symbol Parameter Rating Units V DS Drain-Source Voltage 30 V V GS Gate-Source Voltage ±20 V General Description These N-Channel enhancement mode power field effect transistors are using trench DMOS technology. This advanced technology has been especially tailored to minimize on-state resistance,

More information

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance

CMOS INVERTER. Last Lecture. Metrics for qualifying digital circuits. »Cost» Reliability» Speed (delay)»performance CMOS INVERTER Last Lecture Metrics for qualifying digital circuits»cost» Reliability» Speed (delay)»performance 1 Today s lecture The CMOS inverter at a glance An MOS transistor model for manual analysis

More information

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/592

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/592 ,, & Compliant N-CHANNEL MOSFET Qualified per MIL-PRF-19500/592 Qualified Levels: JAN, JANTX, and JANTXV DESCRIPTION This family of switching transistors is military qualified up to the JANTXV level for

More information

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/595

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/595 Compliant P-CHANNEL MOSFET Qualified per MIL-PRF-19500/595 Qualified Levels: JAN, JANTX, and JANTXV DESCRIPTION This 2N7236U switching transistor is military qualified up to the JANTXV level for highreliability

More information

CLASS 12&13 JFET PARAMETERS AND BIASING

CLASS 12&13 JFET PARAMETERS AND BIASING CLASS 12&13 JFET PARAMETERS AN BIASING The family of drain characteristic curves shows that when GS becomes more negative, Sp (or S(sat) )andi S become smaller. I is dependent on the width of the channel.

More information

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor

Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor JFETs AND MESFETs Introduction Field effect = Induction of an electronic charge due to an electric field Example: Planar capacitor Why would an FET made of a planar capacitor with two metal plates, as

More information

Charge-Storage Elements: Base-Charging Capacitance C b

Charge-Storage Elements: Base-Charging Capacitance C b Charge-Storage Elements: Base-Charging Capacitance C b * Minority electrons are stored in the base -- this charge q NB is a function of the base-emitter voltage * base is still neutral... majority carriers

More information

Matched N-Channel JFET Pairs

Matched N-Channel JFET Pairs Matched N-Channel JFET Pairs N// PRODUCT SUMMARY Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min I G Typ (pa) V GS V GS Max (mv) N. to 7. N. to 7. N. to 7. FEATURES BENEFITS APPLICATIONS Two-Chip

More information

J/SST111 Series. N-Channel JFETs. Vishay Siliconix J111 SST111 J112 SST112 J113 SST113

J/SST111 Series. N-Channel JFETs. Vishay Siliconix J111 SST111 J112 SST112 J113 SST113 N-Channel JFETs J SST J SST J SST Part Number V GS(off) (V) r DS(on) Max ( ) I D(off) Typ (pa) t ON Typ (ns) J/SST to 5 4 J/SST to 5 5 5 4 J/SST 5 4 Low On-Resistance: < Fast Switching t ON : 4 ns Low

More information

(Refer Slide Time: 1:49)

(Refer Slide Time: 1:49) Analog Electronic Circuits Professor S. C. Dutta Roy Department of Electrical Engineering Indian Institute of Technology Delhi Lecture no 14 Module no 01 Midband analysis of FET Amplifiers (Refer Slide

More information

MOSFET: Introduction

MOSFET: Introduction E&CE 437 Integrated VLSI Systems MOS Transistor 1 of 30 MOSFET: Introduction Metal oxide semiconductor field effect transistor (MOSFET) or MOS is widely used for implementing digital designs Its major

More information

MOS Transistor Theory

MOS Transistor Theory CHAPTER 3 MOS Transistor Theory Outline 2 1. Introduction 2. Ideal I-V Characteristics 3. Nonideal I-V Effects 4. C-V Characteristics 5. DC Transfer Characteristics 6. Switch-level RC Delay Models MOS

More information

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 -

Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - 6.012 - Microelectronic Devices and Circuits Lecture 9 - MOS Capacitors I - Outline Announcements Problem set 5 - Posted on Stellar. Due net Wednesday. Qualitative description - MOS in thermal equilibrium

More information

Homework Assignment 08

Homework Assignment 08 Homework Assignment 08 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. Give one phrase/sentence that describes the primary advantage of an active load. Answer: Large effective resistance

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK3497

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) 2SK3497 TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π MOSV) High Power Amplifier Application Unit: mm High breakdown voltage: V DSS = 8 V Complementary to SJ68.. MAX. 5.9 MAX. Ф. ±... 9..5. ±..

More information

Metal-Oxide-Semiconductor Field Effect Transistor

Metal-Oxide-Semiconductor Field Effect Transistor Symbols Structure Operating principle Terminal characteristics Operating regions Quiescent point position Metal-Oxide-Semiconductor Field Effect Transistor n-channel and p-channel enhancement-type MOSFET

More information

Circle the one best answer for each question. Five points per question.

Circle the one best answer for each question. Five points per question. ID # NAME EE-255 EXAM 3 November 8, 2001 Instructor (circle one) Talavage Gray This exam consists of 16 multiple choice questions and one workout problem. Record all answers to the multiple choice questions

More information

Matched N-Channel JFET Pairs

Matched N-Channel JFET Pairs Matched N-Channel JFET Pairs N// PRODUCT SUMMARY Part Number V GS(off) (V) V (BR)GSS Min (V) g fs Min I G Typ (pa) V GS V GS Max (mv) N. to 7. N. to 7. N. to 7. FEATURES BENEFITS APPLICATIONS Two-Chip

More information

Homework Assignment 09

Homework Assignment 09 Homework Assignment 09 Question 1 (Short Takes) Two points each unless otherwise indicated. 1. What is the 3-dB bandwidth of the amplifier shown below if r π = 2.5K, r o = 100K, g m = 40 ms, and C L =

More information

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET

EE 230 Lecture 33. Nonlinear Circuits and Nonlinear Devices. Diode BJT MOSFET EE 230 Lecture 33 Nonlinear Circuits and Nonlinear Devices Diode BJT MOSFET Review from Last Time: n-channel MOSFET Source Gate L Drain W L EFF Poly Gate oxide n-active p-sub depletion region (electrically

More information

Electronics II. Midterm II

Electronics II. Midterm II The University of Toledo f4ms_elct7.fm - Section Electronics II Midterm II Problems Points. 7. 7 3. 6 Total 0 Was the exam fair? yes no The University of Toledo f4ms_elct7.fm - Problem 7 points Given in

More information

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA

MOS Transistors. Prof. Krishna Saraswat. Department of Electrical Engineering Stanford University Stanford, CA MOS Transistors Prof. Krishna Saraswat Department of Electrical Engineering S Stanford, CA 94305 saraswat@stanford.edu 1 1930: Patent on the Field-Effect Transistor! Julius Lilienfeld filed a patent describing

More information

PPM3T60V2 P-Channel MOSFET

PPM3T60V2 P-Channel MOSFET P-Channel MOSFET Description The enhancement mode MOS is extremely high density cell and low on-resistance. D(3) MOSFET Product Summary V DS (V) R DS(on) (Ω) I D (A) 0.11 @ V GS =-10V -60 0.13 @ V GS =-4.5V

More information

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538

TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) 2SK3538 SK TOSHIBA Field Effect Transistor Silicon N Channel MOS Type (π-mosv) SK Switching Regulator, DC-DC Converter Applications Unit: mm Low drain-source ON resistance: RDS (ON) = 7 mω (typ.) High forward

More information

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015

JFET Homework. Nov. 4, 2007, rev. Nov. 12, 2015 Nov. 4, 2007, rev. Nov. 12, 2015 These homework problems provide practice with analysis and design involving the most common type of JFET circuits. There is one problem for each type of circuit. Answers

More information

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section

Announcements. EE105 - Fall 2005 Microelectronic Devices and Circuits. Lecture Material. MOS CV Curve. MOSFET Cross Section Announcements EE0 - Fall 00 Microelectronic evices and Circuits ecture 7 Homework, due today Homework due net week ab this week Reading: Chapter MO Transistor ecture Material ast lecture iode currents

More information

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS

P-Channel Enhancement Mode Field Effect Transistor PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS PRODUCT SUMMARY D V (BR)DSS R DS(ON) I D -4V 15mΩ -45A G 1. GATE 2. DRAIN 3. SOURCE ABSOLUTE MAXIMUM RATINGS (T A = 25 C Unless Otherwise Noted) PARAMETERS/TEST CONDITIONS SYMBOL LIMITS UNITS Drain-Source

More information

AOP606 Complementary Enhancement Mode Field Effect Transistor

AOP606 Complementary Enhancement Mode Field Effect Transistor AOP66 Complementary Enhancement Mode Field Effect Transistor General Description The AOP66 uses advanced trench technology MOSFETs to provide excellent and low gate charge. The complementary MOSFETs may

More information

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS

Operation and Modeling of. The MOS Transistor. Second Edition. Yannis Tsividis Columbia University. New York Oxford OXFORD UNIVERSITY PRESS Operation and Modeling of The MOS Transistor Second Edition Yannis Tsividis Columbia University New York Oxford OXFORD UNIVERSITY PRESS CONTENTS Chapter 1 l.l 1.2 1.3 1.4 1.5 1.6 1.7 Chapter 2 2.1 2.2

More information

2SJ332(L), 2SJ332(S)

2SJ332(L), 2SJ332(S) Silicon P-Channel MOS FET November 1996 Application High speed power switching Features Low on-resistance High speed switching Low drive current 4 V gate drive device can be driven from V source Suitable

More information

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J

Product Summary: BVDSS 30V RDSON (MAX.) 50mΩ 4.5A I D. Pb Free Lead Plating & Halogen Free EMB50P03J P Channel Logic Level Enhancement Mode Field Effect Transistor Product Summary: BVDSS V RDSON (MAX.) ID 5mΩ.5A Pb Free Lead Plating & Halogen Free D G S ABSOLUTE MAXIMUM RATINGS (T A = 5 C Unless Otherwise

More information

Electronic Circuits Laboratory EE462G Lab #2

Electronic Circuits Laboratory EE462G Lab #2 Electronic Circuits Laboratory EE46G Lab # Characterizing Nonlinear Elements, Curve Tracers, Transfer Characteristics, Curve Fit Programs Original slides prepared by Kevin D. Donohue (Spring 007) Modified

More information

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/557

N-CHANNEL MOSFET Qualified per MIL-PRF-19500/557 ,,, Available on commercial versions N-CHANNEL MOSFET Qualified per MIL-PRF-19500/557 DESCRIPTION This family of switching transistors is military qualified up to the JANTXV level for highreliability applications.

More information

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/564

P-CHANNEL MOSFET Qualified per MIL-PRF-19500/564 Available on commercial versions P-CHANNEL MOSFET Qualified per MIL-PRF-19500/564 DESCRIPTION This switching transistor is military qualified up to the JANS level for high-reliability applications. This

More information

6.012 Electronic Devices and Circuits

6.012 Electronic Devices and Circuits Page 1 of 12 YOUR NAME Department of Electrical Engineering and Computer Science Massachusetts Institute of Technology 6.012 Electronic Devices and Circuits FINAL EXAMINATION Open book. Notes: 1. Unless

More information