Axion Bosenova and. Gravitational Waves

Size: px
Start display at page:

Download "Axion Bosenova and. Gravitational Waves"

Transcription

1 Axion and Gravitational Waves Hirotaka Yoshino Hideo Kodama "KEK# PTP128, 153 (2012) PTEP2014, 043E02 (2014) arxiv:1406.xxxx (in progress) 3!day workshop "holographic YITP at Kyoto U. "May 26th, 2014#

2 CONTENTS Introduction PTP128, 153 (2012) PTEP2014, 043E02 (2014) Constraining string axion models from GW observations in Progress Summary

3 Introduction

4 Very interesting era of GR Advanced LIGO Advanced VIRGO KAGRA One of the interesting possibilities is to find new physics beyond GR!

5 Can we find a signal of string theory? Arvanitaki, Dimopoulos, Dubvosky, Kaloper, March!Russel, PRD81 "2010#, Maybe Yes, if there are String Axions with very tiny mass In string theory, many moduli appear when the extra dimensions get compactified. Some of them "10!100# are expected to behave like scalar fields with very tiny mass, which are called string axions. CMB Polarization Matter Power Spectrum Anthropically Constrained Black Hole Super-radiance Decays Inflated Away ! ! ! Axion Mass in ev 3! QCD axion AXIVERSE SCENARIO

6 Axion field around a rotating BH Axion field extracts BH rotational energy and forms an axion cloud Gravitational atom Detweiler, PRD22 "1980#, Zouros and Eardley, Ann. Phys. 118 "1979#, 139.

7 Kerr BH Metric ( a ds 2 2 sin 2 ) θ = dt 2 2a sin2 θ(r 2 + a 2 ) dtdφ Σ Σ [ (r 2 + a 2 ) 2 a 2 sin 2 ] θ + sin 2 θdφ 2 + Σ Σ dr2 + Σdθ 2 Σ = r 2 + a 2 cos 2 θ, = r 2 + a 2 2Mr. J = Ma Ergoregion ξ µ becomes spacelike Energy density can be T µν ξ µ n ν < 0 BH condition: ω <mω H

8 Gravitational Atom Massive Klein!Gordon field 2 Φ µ 2 Φ =0 Φ = Re[e iωt R(r)S(θ)e imφ ] R = u r2 + a 2 d 2 u dr 2 + [ ω 2 V (ω) ] u =0 ω = ω R + i ω I Unstable if positive I II III IV condition ω < Ω H m! r * /M V

9 Growth rate Growth rate "continued fraction method# Dolan, PRD76 "2007#, e-06 1e-07 l = 1, m = 1 l = 2, m = 2 a = a = 0.99 a = 0.95 a = 0.9 a = 0.8 a = 0.7 Im(! /!) 1e-08 1e-09 l = 3, m = 3 1e-10 Typical time scale: 1e M! M = M ω I M min. ω I M day

10 Scalar field amplitude Gross phenomena of the BH!axion system T sr 10 7 M Time

11 Gross phenomena of the axion!bh system Scalar field amplitude ϕ 1 T sr 10 7 M Time Yoshino and Kodama, PTP128, 153 "2012#

12 Gross phenomena of the axion!bh system Scalar field amplitude ϕ 1 T sr 10 7 M V = f 2 aµ 2 [1 cos(φ/f a )] 2 ϕ µ 2 sin ϕ =0 ϕ Φ f a Time Yoshino and Kodama, PTP128, 153 "2012#

13 Gross phenomena of the axion!bh system Scalar field amplitude ϕ 1 Φ T sr 10 7 M r Time Yoshino and Kodama, PTP128, 153 "2012#

14 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 T sr 10 7 M Time

15 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 T sr 10 7 M Time

16 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 GW GW GW T sr 10 7 M If the bosenova happens at Cygnus X!1 ω GW 10 2 Hz GW amplitude is marginal to be detected by 2nd generation ground based detectors "order estimate# Time Yoshino and Kodama, PTP128, 153 "2012#

17 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 GW GW GW T sr 10 7 M BH!axion system also emits continuous GWs ω GW 2µ Yoshino and Kodama, PTEP2014, 043E02 (2014) Gravitational Lihgthouse by Vitor s expression Time

18 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 GW GW GW T sr 10 7 M BH!axion system also emits continuous GWs ω GW 2µ ( ) 2 Ea = C nl (Mµ) 4l+10 de a dt M dt de GW Yoshino and Kodama, PTEP2014, 043E02 (2014) Gravitational Lihgthouse by Vitor s expression Time

19 Gross phenomena of the axion!bh system Scalar field amplitude T BN 100M ϕ 1 GW GW GW T sr 10 7 M Today, I discuss how to constrain the string axion models from observations of continuous GWs Gravitational Lihgthouse by Vitor s expression Time

20 Constraining string axion models from GW observation

21 LIGO s science runs "1# PRD69, "2004#; ; arxiv: $gr!qc% They looked for continuous waves from distorted pulsars Detectable amplitude can be made smaller by increasing observation time h rss h T obs

22 LIGO s continuous wave search No GWs have been detected, upper limit on the amplitude is given.

23 Our idea "1# Consider continuous waves from BH!axion system 50 Hz f 1200 Hz ev µ ev If we assume M 15M, Mµ 0.3 We consider axion cloud in the l = m = 1 mode We use the approximate formula for small Mµ The wave form is same as the distorted pulsar case ( Ea ) ) Amplitude: h 0 M (µm) 6 ( M d

24 Our idea "2# We adopt the axion cloud energy when the nonlinear self! interaction becomes important Φ max f a 1 Ea 8πe 2 M ( fa M p ) 1 (µm) ( f a GeV ) 2 ( M 15M ) 3 ( µ ev ) ( ) 2 1 d <h UL 1kpc In order to exclude the situation where gravitational backreaction is significant, we require E a M < 0.05 f a GeV < 0.1 ( M 15M ) 2 ( µ ) ev

25 Let us consider Cygnus X!1 Cygnus X"1 M 15M! 17 a > 0.9 Log10! fa #GeV$" d 1.86 kpc!?" 16 Excluded LIGO 15 aligo 14 Allowed 13 0 McClintock, et al., arxiv: !3690&astro!ph' 5.! 10"13 Μ #ev$ 1.! 10"12 1.5! 10"12 2.! 10"12

26 Remark The result of the continuous wave search cannot be used in our case because In the data analysis, isolated pulsar is assumed. Cygnus X!1 is a binary system, and therefore, GW frequency fluctuates by the Doppler shift The data analysis strongly depend on the assumed situation If the target search of continuous waves from the Cygnus X!1 is carried out, that kind of constraint can be obtained.

27 Dependence on the distance M BH 15M Some estimates give the BH number in our galaxy as Timms, Woosley, Weaver, ApJ457, 834 "1996# ? Excluded The averaged distance in the neighbouring BHs is expected to be 7 15 pc Log 10 fa GeV d 1500 pc 150 pc 15 pc Allowed There might exist invisible isolated BH at relatively close position Μ ev

28 Summary

29 Summary It is possible to constrain string axion models from existing LIGO observational data. Target search from continuous GWs from Cygnus X!1 is required to obtain rigorous constraint. Invisible isolated solar mass BHs are likely to exist relatively close to us, and this suggests that string axions may be constrained more strongly.

Hideo Kodama (KEK) Cosmology Workshop IAS HKUST (26 May 2014) In collaboration with Hirotaka Yoshino, Kazunori Kohri and Kunihito Ioka

Hideo Kodama (KEK) Cosmology Workshop IAS HKUST (26 May 2014) In collaboration with Hirotaka Yoshino, Kazunori Kohri and Kunihito Ioka Hideo Kodama (KEK) In collaboration with Hirotaka Yoshino, Kazunori Kohri and Kunihito Ioka H Yoshino, HK: PTP128, 153 (2012) [arxiv:1203.5070] ibid: PTEP2014, 043E02 (2014) [arxiv:1312.2326] K Kohiri,

More information

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam)

Discovering new physics with GW observations. Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) Discovering new physics with GW observations Richard Brito Max Planck Institute for Gravitational Physics (Potsdam) New Physics? Pillars of modern physics: General Relativity + Standard Model of Particle

More information

Probing ultralight axion dark matter with gravitational-wave detectors

Probing ultralight axion dark matter with gravitational-wave detectors Probing ultralight axion dark matter with gravitational-wave detectors Arata Aoki (Kobe Univ.) with Jiro Soda (Kobe Univ.) A.A. and J. Soda, Phys. Rev. D 93 (2016) 083503. A.A. and J. Soda, arxiv:1608.05933.

More information

Gravitational waves from Cosmic strings

Gravitational waves from Cosmic strings Gravitational waves from Cosmic strings Sachiko Kuroyanagi Tokyo U. of Science 2013/12/6 62 References S. Kuroyanagi, K. Miyamoto, T. Sekiguchi, K. Takahashi, J. Silk, PRD 86, 023503 (2012) and PRD 87,

More information

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC)

COSMOLOGY AND GRAVITATIONAL WAVES. Chiara Caprini (APC) COSMOLOGY AND GRAVITATIONAL WAVES Chiara Caprini (APC) the direct detection of GW by the LIGO interferometers has opened a new era in Astronomy - we now have a new messenger bringing complementary informations

More information

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons

Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Towards a Search for Stochastic Gravitational-Wave Backgrounds from Ultra-light Bosons Leo Tsukada RESCEU, Univ. of Tokyo The first annual symposium "Gravitational Wave Physics and Astronomy: Genesis"

More information

Gravitational waves from Massive Primordial Black Holes as Dark Matter

Gravitational waves from Massive Primordial Black Holes as Dark Matter Gravitational waves from Massive Primordial Black Holes as Dark Matter based on S. Clesse & JGB, arxiv:1603.05234 S. Clesse & JGB, Phys Rev D92 (2015) 023524 JGB, Linde & Wands, Phys Rev D54 (1996) 6040

More information

SENSITIVITIES OF GRAVITATIONAL-WAVE DETECTION: A CENTURY OUTLOOK

SENSITIVITIES OF GRAVITATIONAL-WAVE DETECTION: A CENTURY OUTLOOK SENSITIVITIES OF GRAVITATIONAL-WAVE DETECTION: A CENTURY OUTLOOK Wei-Tou Ni National Tsing Hua University Ref. arxiv:1511.00231 K Kuroda, WTN, WP Pan 2015/12/14 GW detection sensitivities: a century outlook

More information

Modelling the evolution of small black holes

Modelling the evolution of small black holes Modelling the evolution of small black holes Elizabeth Winstanley Astro-Particle Theory and Cosmology Group School of Mathematics and Statistics University of Sheffield United Kingdom Thanks to STFC UK

More information

Fundamental Physics with Atomic Interferometry

Fundamental Physics with Atomic Interferometry Fundamental Physics with Atomic Interferometry Peter Graham Stanford with Savas Dimopoulos Jason Hogan Mark Kasevich Surjeet Rajendran PRL 98 (2007) PRD 78 (2008) PRD 78 (2008) PLB 678 (2009) arxiv:1009.2702

More information

Searching for gravitational waves. with LIGO detectors

Searching for gravitational waves. with LIGO detectors Werner Berger, ZIB, AEI, CCT Searching for gravitational waves LIGO Hanford with LIGO detectors Gabriela González Louisiana State University On behalf of the LIGO Scientific Collaboration KITP Colloquium,

More information

Cosmology with Gravitational Wave Detectors. Maya Fishbach

Cosmology with Gravitational Wave Detectors. Maya Fishbach Cosmology with Gravitational Wave Detectors Maya Fishbach Part I: Cosmography Compact Binary Coalescenses are Standard Sirens The amplitude* of a GW from a CBC is The timescale is Measuring amplitude,

More information

Gravitational Waves modes in Extended Teleparallel Gravity

Gravitational Waves modes in Extended Teleparallel Gravity Gravitational Waves modes in Extended Teleparallel Gravity Salvatore Capozziello based on H. Abedi & S. Capozziello EPJC78(2018)474 Plan of the talk Ø Gravitational waves in General Relativity Ø Extended

More information

Primordial Black holes and Gravitational Waves

Primordial Black holes and Gravitational Waves Primordial Black holes and Gravitational Waves Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University COSMO-17, 1 September, 2017 Primordial Black Holes 2 What are Primorial BHs? PBH =

More information

Synergy with Gravitational Waves

Synergy with Gravitational Waves Synergy with Gravitational Waves Alexandre Le Tiec and Jérôme Novak Laboratoire Univers et Théories Observatoire de Paris / CNRS LIGO, Virgo, ( elisa, ET,... ( What is a gravitational wave? A gravitational

More information

arxiv: v2 [gr-qc] 14 Jun 2017

arxiv: v2 [gr-qc] 14 Jun 2017 Superradiant Instability and Backreaction of Massive Vector Fields around Kerr Black Holes William E. East 1 and Frans Pretorius 2 1 Perimeter Institute for Theoretical Physics, Waterloo, Ontario N2L 2Y5,

More information

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04

LIGO Status and Advanced LIGO Plans. Barry C Barish OSTP 1-Dec-04 LIGO Status and Advanced LIGO Plans Barry C Barish OSTP 1-Dec-04 Science Goals Physics» Direct verification of the most relativistic prediction of general relativity» Detailed tests of properties of gravitational

More information

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA

GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA GRAVITATIONAL WAVE SOURCES AND RATES FOR LISA W. Z. Korth, PHZ6607, Fall 2008 Outline Introduction What is LISA? Gravitational waves Characteristics Detection (LISA design) Sources Stochastic Monochromatic

More information

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity

Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Black-hole binaries in Einstein-dilaton Gauss Bonnet gravity Helvi Witek Theoretical Particle Physics and Cosmology Department of Physics, King s College London work in progress with L. Gualtieri, P. Pani,

More information

Phenomenology of Axion Inflation

Phenomenology of Axion Inflation Phenomenology of Axion Inflation based on Flauger & E.P. 1002.0833 Flauger, McAllister, E.P., Westphal & Xu 0907.2916 Barnaby, EP & Peloso to appear Enrico Pajer Princeton University Minneapolis Oct 2011

More information

Kent Yagi BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY. (Montana State University)

Kent Yagi BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY. (Montana State University) BLACK HOLE SOLUTION AND BINARY GRAVITATIONAL WAVES IN DYNAMICAL CHERN-SIMONS GRAVITY JGRG22 @ University of Tokyo November 13 th 2012 Kent Yagi (Montana State University) Collaborators: Nicolas Yunes (Montana

More information

Testing astrophysical black holes. Cosimo Bambi Fudan University

Testing astrophysical black holes. Cosimo Bambi Fudan University Testing astrophysical black holes Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 29 October 2015 Interdisciplinary Center for Theoretical Studies (USTC, Hefei) Plan of

More information

The Unifying Dark Fluid Model

The Unifying Dark Fluid Model The Model Centre de Recherche Astrophysique de Lyon Invisible Universe Paris July 2nd, 2009 s Dark Matter Problem Dark Matter Dark Energy Dark Fluids? Different scales involved Galactic scale Galaxy Rotation

More information

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth

Observational evidence and cosmological constant. Kazuya Koyama University of Portsmouth Observational evidence and cosmological constant Kazuya Koyama University of Portsmouth Basic assumptions (1) Isotropy and homogeneity Isotropy CMB fluctuation ESA Planck T 5 10 T Homogeneity galaxy distribution

More information

Gravitational Waves from Coalescing Binaries and the post-newtonian Theory

Gravitational Waves from Coalescing Binaries and the post-newtonian Theory Gravitational Waves from Coalescing Binaries and the post-newtonian Theory Riccardo Sturani Instituto de Física Teórica UNESP/ICTP-SAIFR São Paulo (Brazil) Ubu - Anchieta, April 16 th 2015 Riccardo Sturani

More information

Gravitational waves from the early Universe

Gravitational waves from the early Universe Gravitational waves from the early Universe Part 1 Sachiko Kuroyanagi (Nagoya University) 26 Aug 2017 Summer Institute 2017 What is a Gravitational Wave? What is a Gravitational Wave? 11 Feb 2016 We have

More information

Colliding black holes

Colliding black holes Colliding black holes U. Sperhake DAMTP, University of Cambridge Holographic vistas on Gravity and Strings Kyoto, 26 th May 2014 U. Sperhake (DAMTP, University of Cambridge) Colliding black holes 26/05/2014

More information

Parameterizing and constraining scalar corrections to GR

Parameterizing and constraining scalar corrections to GR Parameterizing and constraining scalar corrections to GR Leo C. Stein Einstein Fellow Cornell University Texas XXVII 2013 Dec. 12 The takeaway Expect GR needs correction Look to compact binaries for corrections

More information

LIGO Observational Results

LIGO Observational Results LIGO Observational Results Patrick Brady University of Wisconsin Milwaukee on behalf of LIGO Scientific Collaboration LIGO Science Goals Direct verification of two dramatic predictions of Einstein s general

More information

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017

Misao Sasaki. KIAS-YITP joint workshop 22 September, 2017 Misao Sasaki KIAS-YITP joint workshop September, 017 Introduction Inflation: the origin of Big Bang Brout, Englert & Gunzig 77, Starobinsky 79, Guth 81, Sato 81, Linde 8, Inflation is a quasi-exponential

More information

Black-hole binary inspiral and merger in scalar-tensor theory of gravity

Black-hole binary inspiral and merger in scalar-tensor theory of gravity Black-hole binary inspiral and merger in scalar-tensor theory of gravity U. Sperhake DAMTP, University of Cambridge General Relativity Seminar, DAMTP, University of Cambridge 24 th January 2014 U. Sperhake

More information

Gravitational waves, solitons, and causality in modified gravity

Gravitational waves, solitons, and causality in modified gravity Gravitational waves, solitons, and causality in modified gravity Arthur Suvorov University of Melbourne December 14, 2017 1 of 14 General ideas of causality Causality as a hand wave Two events are causally

More information

What happens at the horizon of an extreme black hole?

What happens at the horizon of an extreme black hole? What happens at the horizon of an extreme black hole? Harvey Reall DAMTP, Cambridge University Lucietti and HSR arxiv:1208.1437 Lucietti, Murata, HSR and Tanahashi arxiv:1212.2557 Murata, HSR and Tanahashi,

More information

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA

Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Probing Cosmology and measuring the peculiar acceleration of binary black holes with LISA Institut de Physique Théorique CEA-Saclay CNRS Université Paris-Saclay Probing cosmology with LISA Based on: Tamanini,

More information

Instabilities in neutron stars and gravitational waves

Instabilities in neutron stars and gravitational waves Instabilities in neutron stars and gravitational waves Andrea Passamonti INAF-Osservatorio di Roma AstroGR@Rome 2014 Rotational instabilities Non-axisymmetric instabilities of a rotating fluid star What

More information

Detection of Gravitational Waves and Neutrinos from Astronomical Events

Detection of Gravitational Waves and Neutrinos from Astronomical Events Detection of Gravitational Waves and Neutrinos from Astronomical Events Jia-Shu Lu IHEP,CAS April 18, 216 JUNO Neutrino Astronomy and Astrophysics Seminar 1 / 24 Outline Sources of both GW and neutrinos.

More information

Kerr black hole and rotating wormhole

Kerr black hole and rotating wormhole Kerr Fest (Christchurch, August 26-28, 2004) Kerr black hole and rotating wormhole Sung-Won Kim(Ewha Womans Univ.) August 27, 2004 INTRODUCTION STATIC WORMHOLE ROTATING WORMHOLE KERR METRIC SUMMARY AND

More information

Triple unification of inflation, dark matter and dark energy

Triple unification of inflation, dark matter and dark energy Triple unification of inflation, dark matter and dark energy May 9, 2008 Leonard Susskind, The Anthropic Landscape of String Theory (2003) A. Liddle, A. Ureña-López, Inflation, dark matter and dark energy

More information

Future underground gravitational wave observatories. Michele Punturo INFN Perugia

Future underground gravitational wave observatories. Michele Punturo INFN Perugia Future underground gravitational wave observatories Michele Punturo INFN Perugia Terrestrial Detectors Advanced detectors 2015-2025 GEO, Hannover, 600 m aligo Hanford, 4 km 2015 2016 AdV, Cascina, 3 km

More information

Effective field theory for axion monodromy inflation

Effective field theory for axion monodromy inflation Effective field theory for axion monodromy inflation Albion Lawrence Brandeis University Based on work in progress with Nemanja Kaloper and L.orenzo Sorbo Outline I. Introduction and motivation II. Scalar

More information

Gravitational waves from bubble dynamics: Beyond the Envelope

Gravitational waves from bubble dynamics: Beyond the Envelope Gravitational waves from bubble dynamics: Beyond the Envelope Masahiro Takimoto (WIS, KEK) Based on arxiv:1605.01403 (PRD95, 024009) & 1707.03111 with Ryusuke Jinno (IBS-CTPU) Aug.09, TevPa2017 01 / 22

More information

Gravitational radiation from compact binaries in scalar-tensor gravity

Gravitational radiation from compact binaries in scalar-tensor gravity Gravitational radiation from compact binaries in scalar-tensor gravity Ryan Lang University of Florida 10th International LISA Symposium May 23, 2014 Testing general relativity General relativity has withstood

More information

Gravitational Waves. Masaru Shibata U. Tokyo

Gravitational Waves. Masaru Shibata U. Tokyo Gravitational Waves Masaru Shibata U. Tokyo 1. Gravitational wave theory briefly 2. Sources of gravitational waves 2A: High frequency (f > 10 Hz) 2B: Low frequency (f < 10 Hz) (talk 2B only in the case

More information

New experiment for axion dark matter

New experiment for axion dark matter New experiment for axion dark matter J. Redondo and J. Jaeckel Feb 27th 2014 Outline - x-summary of Axion and ALP DM - Axion DM waves in Magnetic fields - Dish experiment - Understanding cavity experiments

More information

Testing relativity with gravitational waves

Testing relativity with gravitational waves Testing relativity with gravitational waves Michał Bejger (CAMK PAN) ECT* workshop New perspectives on Neutron Star Interiors Trento, 10.10.17 (DCC G1701956) Gravitation: Newton vs Einstein Absolute time

More information

Inflation, Primordial Black holes and Gravitational Waves

Inflation, Primordial Black holes and Gravitational Waves Inflation, Primordial Black holes and Gravitational Waves -- Dawn of Gravitational Wave Cosmology -- Misao Sasaki Yukawa Institute for Theoretical Physics, Kyoto University 21 February, 2018 Yukawa International

More information

Constraints on the deviations from general relativity

Constraints on the deviations from general relativity 14/10/2010 Minneapolis Constraints on the deviations from general relativity From local to cosmological scales Jean-Philippe UZAN GR in a nutshell Underlying hypothesis Equivalence principle Universality

More information

The Advanced LIGO detectors at the beginning of the new gravitational wave era

The Advanced LIGO detectors at the beginning of the new gravitational wave era The Advanced LIGO detectors at the beginning of the new gravitational wave era Lisa Barsotti MIT Kavli Institute LIGO Laboratory on behalf of the LIGO Scientific Collaboration LIGO Document G1600324 LIGO

More information

Distinguishing boson stars from black holes and neutron stars with tidal interactions

Distinguishing boson stars from black holes and neutron stars with tidal interactions Distinguishing boson stars from black holes and neutron stars with tidal interactions Noah Sennett Max Planck Institute for Gravitational Physics (Albert Einstein Institute) Department of Physics, University

More information

Massive gravitons in arbitrary spacetimes

Massive gravitons in arbitrary spacetimes Massive gravitons in arbitrary spacetimes Mikhail S. Volkov LMPT, University of Tours, FRANCE Kyoto, YITP, Gravity and Cosmology Workshop, 6-th February 2018 C.Mazuet and M.S.V., Phys.Rev. D96, 124023

More information

Gravitational Wave Detectors: Back to the Future

Gravitational Wave Detectors: Back to the Future Gravitational Wave Detectors: Back to the Future Raffaele Flaminio National Astronomical Observatory of Japan University of Tokyo, March 12th, 2017 1 Summary Short introduction to gravitational waves (GW)

More information

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1

Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 1 Binary Black Holes, Gravitational Waves, & Numerical Relativity Part 1 Joan Centrella Chief, Gravitational Astrophysics Laboratory NASA/GSFC Summer School on Nuclear and Particle Astrophysics: Connecting

More information

The impact of relativistic effects on cosmological parameter estimation

The impact of relativistic effects on cosmological parameter estimation The impact of relativistic effects on cosmological parameter estimation arxiv:1710.02477 (PRD) with David Alonso and Pedro Ferreira Christiane S. Lorenz University of Oxford Rencontres de Moriond, La Thuile,

More information

Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham

Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham Can you detect dark energy in the laboratory? Clare Burrage University of Nottingham 2 (Planck 2013 Results. XVI. Cosmological Parameters) The Universe today 3 Credit: ESA/Planck The cosmological constant

More information

Cosmological tests of ultra-light axions

Cosmological tests of ultra-light axions Cosmological tests of ultra-light axions Daniel Grin University of Chicago IAU General Assembly, Honolulu, 8/11/2015 FM5 The legacy of Planck R.Hlozek, DG, D.J. E. Marsh, P.Ferreira, arxiv:1410.2896, PRD

More information

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL. Laser Interferometer Space Antenna LISA

LISA: Probing the Universe with Gravitational Waves. Tom Prince Caltech/JPL.  Laser Interferometer Space Antenna LISA : Probing the Universe with Gravitational Waves Tom Caltech/JPL Laser Interferometer Space Antenna http://lisa.nasa.gov Gravitational Wave Astronomy is Being Born LIGO, VIRGO, GEO, TAMA 4000m, 3000m, 2000m,

More information

Strong gravity and relativistic accretion disks around supermassive black holes

Strong gravity and relativistic accretion disks around supermassive black holes Strong gravity and relativistic accretion disks around supermassive black holes Predrag Jovanović Astronomical Observatory, Volgina 7, 11060 Belgrade 38, SERBIA Abstract Here we used numerical simulations

More information

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator.

You may not start to read the questions printed on the subsequent pages until instructed to do so by the Invigilator. MATHEMATICAL TRIPOS Part III Friday 8 June 2001 1.30 to 4.30 PAPER 41 PHYSICAL COSMOLOGY Answer any THREE questions. The questions carry equal weight. You may not start to read the questions printed on

More information

Axiverse Cosmology and the Energy Scale of Inflation

Axiverse Cosmology and the Energy Scale of Inflation Axiverse Cosmology and the Energy Scale of Inflation David J. E. Marsh Wits, 25 th March 2013 arxiv:1303.3008 Collaborators Pedro G. Ferreira (Oxford) Daniel Grin (IAS) Renée Hlozek (Princeton) ULA = ultralight

More information

Superradiant sca.ering in astrophysical binary systems

Superradiant sca.ering in astrophysical binary systems Gr@v Superradiant sca.ering in astrophysical binary systems João G. Rosa University of Aveiro Phys. Le.. B749, 226 (2015) [arxiv:1501.07605 [gr- qc]] + work in progress VIII Black Holes Workshop, IST Lisbon,

More information

Gravity Waves and Black Holes

Gravity Waves and Black Holes Gravity Waves and Black Holes Mike Whybray Orwell Astronomical Society (Ipswich) 14 th March 2016 Overview Introduction to Special and General Relativity The nature of Black Holes What to expect when Black

More information

Scalar field dark matter and the Higgs field

Scalar field dark matter and the Higgs field Scalar field dark matter and the Higgs field Catarina M. Cosme in collaboration with João Rosa and Orfeu Bertolami Phys. Lett., B759:1-8, 2016 COSMO-17, Paris Diderot University, 29 August 2017 Outline

More information

Gravitational waves from binary neutron stars

Gravitational waves from binary neutron stars Gravitational waves from binary neutron stars Koutarou Kyutoku High Energy Accelerator Research Organization (KEK), Institute of Particle and Nuclear Studies 2018/11/12 QNP2018 satellite at Tokai 1 Plan

More information

Tests of cosmological gravity

Tests of cosmological gravity Tests of cosmological gravity Jeremy Sakstein University of Pennsylvania Astrophysics Seminar UC Irvine 23 rd January 2018 Who am I? Particle-cosmology (baryogenesis, early universe) Modified gravity (dark

More information

Searching for Intermediate Mass Black Holes mergers

Searching for Intermediate Mass Black Holes mergers Searching for Intermediate Mass Black Holes mergers G. A. Prodi, Università di Trento and INFN for the LIGO Scientific collaboration and the Virgo collaboration special credits to Giulio Mazzolo and Chris

More information

Chern-Simons Gravity:

Chern-Simons Gravity: Chern-Simons Gravity: its effects on bodies orbiting the Earth Adrienne Erickcek (Caltech) Tristan Smith (Caltech) Robert Caldwell (Dartmouth) Marc Kamionkowski (Caltech) arxiv: 0708.0001, to appear in

More information

Detecting Cosmic Superstrings

Detecting Cosmic Superstrings Detecting Cosmic Superstrings Mark G. Jackson Fermilab MGJ, N. Jones and J. Polchinski, hep-th th/0405229 MGJ and G. Shiu, hep-th th/0506nnn Rutgers University, 5/17/05 Breaking U(1) in Cosmology A field

More information

Introduction to General Relativity and Gravitational Waves

Introduction to General Relativity and Gravitational Waves Introduction to General Relativity and Gravitational Waves Patrick J. Sutton Cardiff University International School of Physics Enrico Fermi Varenna, 2017/07/03-04 Suggested reading James B. Hartle, Gravity:

More information

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos

Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Kinetic Sunyaev-Zel dovich effect: Dark Energy, Modified gravity, Massive Neutrinos Eva-Maria Mueller Work in collaboration with Francesco De Bernardis, Michael D. Niemack, Rachel Bean [arxiv:1408.6248,

More information

Gravitational lensing of gravitational waves

Gravitational lensing of gravitational waves Gravitational lensing of gravitational waves In collaboration with M. Hattori & T. Futamase (Tohoku Univ.). Yousuke Itoh (RESCEU, U. of Tokyo) seminar@icrr, 2012 June 26 Affiliation:Tohoku U.(Prof. Futamase)

More information

Testing the nature of astrophysical black hole candidates. Cosimo Bambi Fudan University

Testing the nature of astrophysical black hole candidates. Cosimo Bambi Fudan University Testing the nature of astrophysical black hole candidates Cosimo Bambi Fudan University http://www.physics.fudan.edu.cn/tps/people/bambi/ 26 September 2013, National Astronomical Observatories, Beijing

More information

Mathematical and Physical Foundations of Extended Gravity (II)

Mathematical and Physical Foundations of Extended Gravity (II) Mathematical and Physical Foundations of Extended Gravity (II) -The Gravitational Waves era- Salvatore Capozziello Università di Napoli Federico II INFN sez. di Napoli SIGRAV Open Fundamental Issues! What

More information

Observational signatures of holographic models of inflation

Observational signatures of holographic models of inflation Observational signatures of holographic models of inflation Paul McFadden Universiteit van Amsterdam First String Meeting 5/11/10 This talk I. Cosmological observables & non-gaussianity II. Holographic

More information

Beyond Einstein: gravitational waves from extended gravities

Beyond Einstein: gravitational waves from extended gravities Beyond Einstein: gravitational waves from extended gravities Salvatore Capozziello Università di Napoli Federico II and INFN sez. di Napoli in collaboration with Mariafelicia De Laurentis Institute for

More information

Seeking Non-GR Signatures in GW Bursts

Seeking Non-GR Signatures in GW Bursts ????????????? Seeking Non-GR Signatures in GW Bursts Peter Shawhan (U. of Maryland) AltGrav workshop Montana State Univ. April 7, 2013 LIGO-G1300426-v2 GOES-8 image produced by M. Jentoft-Nilsen, F. Hasler,

More information

Law of Gravity and Gravitational Radiation

Law of Gravity and Gravitational Radiation Law of Gravity and Gravitational Radiation Tian Ma, Shouhong Wang Supported in part by NSF and ONR http://www.indiana.edu/ fluid Blog: https://physicalprinciples.wordpress.com I. Laws of Gravity, Dark

More information

THE ENERGY-MOMENTUM PSEUDOTENSOR T µν of matter satisfies the (covariant) divergenceless equation

THE ENERGY-MOMENTUM PSEUDOTENSOR T µν of matter satisfies the (covariant) divergenceless equation THE ENERGY-MOMENTUM PSEUDOTENSOR T µν of matter satisfies the (covariant) divergenceless equation T µν ;ν = 0 (3) We know it is not a conservation law, because it cannot be written as an ordinary divergence.

More information

Naturally inflating on steep potentials through electromagnetic dissipation

Naturally inflating on steep potentials through electromagnetic dissipation Naturally inflating on steep potentials through electromagnetic dissipation Lorenzo Sorbo UMass Amherst IPhT IPMU, 05/02/14 M. Anber, LS, PRD 2010, PRD 2012 V(φ) INFLATION very early Universe filled by

More information

The New Relationship between Inflation & Gravitational Waves

The New Relationship between Inflation & Gravitational Waves The New Relationship between Inflation & Gravitational Waves Tomohiro Fujita (Stanford) Based on arxiv:1608.04216 w/ Dimastrogiovanni(CWRU) & Fasiello(Stanford) In prep w/ Komatsu&Agrawal(MPA); Shiraishi(KIPMU)&Thone(Cambridge);

More information

Wei-Tou Ni. Department of Physics National Tsing Hua University Hsinchu, Taiwan, ROC

Wei-Tou Ni. Department of Physics National Tsing Hua University Hsinchu, Taiwan, ROC Cosmic Polarization Rotation (CPR) induced from Pseudoscalar-Photon interaction and New CPR Constraints from BICEP2 & SPTpol Detections of CMB B-Mode Polarization Wei-Tou Ni Department of Physics National

More information

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves. Gravitational Wave Astronomy With LISA Rajesh Kumble Nayak, IISER-Kolkata Over View LISA - Laser Interferometer Space Antenna, is a ESA- NASA joint space mission to detect low-frequency gravitational waves.

More information

Pulsar timing and the properties of Gravitational Waves

Pulsar timing and the properties of Gravitational Waves Pulsar timing and the properties of Gravitational Waves Fredrick A. Jenet Center for Gravitational Wave Astronomy University of Texas at Brownsville Executive Summary of G-wave detection with Pulsar timing:

More information

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton

Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Parity violation in the Cosmic Microwave Background from a pseudoscalar inflaton Lorenzo Sorbo UMass Amherst Padova, 17/02/2011 LS, 1101.1525 Plan of the talk Inflation, radiative stability and pseudo-nambu-goldstone

More information

arxiv: v3 [gr-qc] 23 Nov 2016

arxiv: v3 [gr-qc] 23 Nov 2016 BA-TH/706-16 Observable gravitational waves in pre-big bang cosmology: an update M Gasperini 1,2 1 Dipartimento di Fisica, Università di Bari, Via G Amendola 173, 70126 Bari, Italy 2 Istituto Nazionale

More information

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004

The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The Early Universe John Peacock ESA Cosmic Vision Paris, Sept 2004 The history of modern cosmology 1917 Static via cosmological constant? (Einstein) 1917 Expansion (Slipher) 1952 Big Bang criticism (Hoyle)

More information

The direct detection of gravitational waves: The first discovery, and what the future might bring

The direct detection of gravitational waves: The first discovery, and what the future might bring The direct detection of gravitational waves: The first discovery, and what the future might bring Chris Van Den Broeck Nikhef - National Institute for Subatomic Physics Amsterdam, The Netherlands Physics

More information

Vacuum Energy and. Cosmological constant puzzle:

Vacuum Energy and. Cosmological constant puzzle: Vacuum Energy and the cosmological constant puzzle Steven Bass Cosmological constant puzzle: (arxiv:1503.05483 [hep-ph], MPLA in press) Accelerating Universe: believed to be driven by energy of nothing

More information

How do we really look for gravitational waves?

How do we really look for gravitational waves? How do we really look for gravitational waves? A tour of some applied mathematical tools used within the LIGO and Virgo collaborations Ra Inta (Texas Tech University) for the LIGO Scientific Collaboration

More information

The early and late time acceleration of the Universe

The early and late time acceleration of the Universe The early and late time acceleration of the Universe Tomo Takahashi (Saga University) March 7, 2016 New Generation Quantum Theory -Particle Physics, Cosmology, and Chemistry- @Kyoto University The early

More information

The nonlinear dynamical stability of infrared modifications of gravity

The nonlinear dynamical stability of infrared modifications of gravity The nonlinear dynamical stability of infrared modifications of gravity Aug 2014 In collaboration with Richard Brito, Vitor Cardoso and Matthew Johnson Why Study Modifications to Gravity? General relativity

More information

Cosmological Tests of Gravity

Cosmological Tests of Gravity Cosmological Tests of Gravity Levon Pogosian Simon Fraser University, Canada VIA Lecture, 16 May, 2014 Workshop on Testing Gravity at SFU Harbour Centre January 15-17, 2015 Alternative theories of gravity

More information

TeV Quantum Gravity in 4-Dimensions?

TeV Quantum Gravity in 4-Dimensions? TeV Quantum Gravity in 4-Dimensions? Xavier Calmet University of Oregon Institute of Theoretical Science Outline Brief review of models with extra-dimensions and TeV gravity TeV quantum gravity in four

More information

Dark Energy from Antigravitons in Stringy Black Holes

Dark Energy from Antigravitons in Stringy Black Holes Advanced Studies in Theoretical Physics Vol. 13, 2019, no. 3, 127-132 HIKARI Ltd, www.m-hikari.com https://doi.org/10.12988/astp.2019.929 Dark Energy from Antigravitons in Stringy Black Holes Karim Douhou

More information

Varying constants and a view on an evolutionary universe

Varying constants and a view on an evolutionary universe Varying constants and a view on an evolutionary universe Wim Ubachs TULIP Summer School IV 2009 Noordwijk,, April 15-18 18 Constants of Nature and the Structure of Matter Dimensionless numbers E n = 1

More information

An Introduction to Gravitational Waves

An Introduction to Gravitational Waves An Introduction to Gravitational Waves Michael Nickerson Abstract This paper presents a brief overview of gravitational waves. Their propagation and generation are presented in more detail, with references

More information

Cosmic Inflation Lecture 16 - Monday Mar 10

Cosmic Inflation Lecture 16 - Monday Mar 10 Physics 224 Spring 2008 Origin and Evolution of the Universe Cosmic Inflation Lecture 16 - Monday Mar 10 Joel Primack University of California, Santa Cruz Outline L15 L16 WMAP 5-year Data and Papers Released

More information

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University

PPP11 Tamkang University 13,14 May, Misao Sasaki. Yukawa Institute for Theoretical Physics Kyoto University PPP11 Tamkang University 13,14 May, 015 Misao Sasaki Yukawa Institute for Theoretical Physics Kyoto University General Relativity 1 8 G G R g R T ; T 0 4 c Einstein (1915) GR applied to homogeneous & isotropic

More information

Sterl Phinney Caltech

Sterl Phinney Caltech Beauty, the beast, and gravitational waves Sterl Phinney Caltech Beauty, Beauty, The black holes of nature are the most perfect macroscopic objects there are in the universe: the only elements in their

More information

Radiation from the non-extremal fuzzball

Radiation from the non-extremal fuzzball adiation from the non-extremal fuzzball Borun D. Chowdhury The Ohio State University The Great Lakes Strings Conference 2008 work in collaboration with Samir D. Mathur (arxiv:0711.4817) Plan Describe non-extremal

More information

Cosmology II: The thermal history of the Universe

Cosmology II: The thermal history of the Universe .. Cosmology II: The thermal history of the Universe Ruth Durrer Département de Physique Théorique et CAP Université de Genève Suisse August 6, 2014 Ruth Durrer (Université de Genève) Cosmology II August

More information