j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k

Size: px
Start display at page:

Download "j j 0 , j 0 A k Y k,0 = Q k k A k+(m 1)d, λ k (n) 1 n Y k+(m 1)d j,j Q k+(m 1)d = 1 n Y k+(m 1)d,j, j 0, Ȳ k,j (n) 1 n j=0 j=0 Y k j,j = k"

Transcription

1 L = λw L = λw L λ W 25

2 l 1 R l 1 l 1 k j j 0 X {X k,j : k 0; j 0} X k,j k j 0 Y k,j i=j X k,i k j j 0 A k Y k,0 = X k,j k Q k k Y k j,j = k, j 0 A k j Y k j,j A k j k 0 0/0 1 0 n λ k (n) 1 n Q k (n) 1 n Ȳ k,j (n) 1 n n A k+(m 1)d, m=1 n Q k+(m 1)d = 1 n m=1 n m=1 n Y k+(m 1)d,j, j 0, m=1 k+(m 1)d Y k+(m 1)d j,j F k,j(n) c Ȳk,j(n) n λ k (n) = m=1 Y k+(m 1)d,j n m=1 A, j 0, k+(m 1)d W k (n) F k,j(n), c 0 k d 1. λ k (n) k (m 1)d + k 0 k d 1 m 1 Qk (n) k,

3 Ȳk,j(n) k j F c k,j (n) k j n Wk (n) k n n n [k] k mod d k d ( ) (A1) λk (n) λ k, n, 0 k d 1, c (A2) F k,j (n) Fk,j, c n, 0 k d 1, j 0, (A3) Wk (n) W k Fk,j c n, 0 k d 1, k Z [k] k mod d λ k = λ [k], F c k,j = F c [k],j, j 0, W k = W [k], 0 k d 1 ( Q k (n), L k (n)) (L k, L k ) n, L k λ k j Fk j,j c < L k (n) = k λ k j (n) F k j,j(n) c + m=1 j=1 d λ d j (n) F d j,(m 1)d+j+k c (n) λ [k j] F c [k j],j, n 1, λ k (n) F k,j c (n) W k (n) F k,j c (n) d k Q k (n) L k (n)) L k L k

4 R d d R x = (x 0, x 1, ) l 1 R R l R R l 1 {x = (x 0, x 1, ) R : x 1 x i < }, i=0 l {x = (x 0, x 1, ) R : x sup x i < } i l 1 l 1 l 1 l l 1 l (l 1 ) d l 1 y (y 0, y 1,, y d 1 ) (l 1 ) d y i (y i,0, y i,1, ) l 1 y 1,d = max i=0,,d 1 { y i 1 } 0 k d 1 F c k(n) ( F c k,0(n), F c k,1(n), F c k,2(n), ) l 1, F c k (F c k,0, F c k,1, F c k,2, ) R. λ λ λ(n) ( λ0 (n), λ 1 (n),, λ d 1 (n)) R d, F c (n) ( F 0 c (n), F 1 c (n),, F d 1(n)) c (l 1 ) d, W W W (n) ( W 0 (n), W 1 (n),, W d 1 (n)) R d, Q Q Q(n) ( Q 0 (n), Q 1 (n),, Q d 1 (n)) R d, L L L(n) ( L 0 (n), L 1 (n),, L d 1 (n)) R d, R R R(n) L L L(n) Q Q Q(n) R d, ˆλˆλˆλ(n) n( λ λ λ(n) λ) R d, ˆF c (n) n( F c (n) F c ) (R ) d, ŴŴŴ (n) n( W W W (n) W ) R d, ˆQˆQˆQ(n) n( Q Q Q(n) L) R d, ˆLˆLˆL(n) n( L L L(n) L) R d, ˆRˆRˆR(n) ˆLˆLˆL(n) ˆQˆQˆQ(n) R d, λ (λ 0, λ 1,, λ d 1 ) R d, F c (F0 c, F1 c,, Fd 1) c (R ) d, W (W 0, W 1,, W d 1 ) R d, L (L 0, L 1,, L d 1 ) R d,

5 πk 1 : Rd R k = 0, 1,, d 1 R d (k + 1) πj 2 : l 1 R j 0 l 1 (j + 1) πk 1(λ) = λ k πj 2( F k c(n)) = F k,j c (n) k = 0, 1,, d 1 Π 1 k : Rd l Π 2 k : (l 1) d l 1 Π 1 k(x) (π 1 k(x), π 1 k 1(x),, π 1 0(x), π 1 d 1(x), π 1 d 2(x),, π 1 0(x), π 1 d 1(x), π 1 d 2(x), ) = (x k, x k 1,, x 0, x d 1, x d 2,, x 0, x d 1, x d 2, ), Π 2 k(y) (π 2 0 π 1 k(y), π 2 1 π 1 k 1(y),, π 2 k π 1 0(y), π 2 k+1 π 1 d 1(y), π 2 k+1 π 1 d 2(y), ) = (y k,0, y k 1,1,, y 0,k, y d 1,k+1, y d 2,k+2,, y 0,k+d, y d 1,k+d+1, y d 2,k+d+2, ). Π 1 k ( ) Π 2 k ( ) Π 1 k(x) Π 2 k(y) = x [k j] y [k j],j, Π 1 k ( ) Π 2 k ( ) : l l 1 R z (l 1 ) d f z : R d R d (l 1 ) d R d g : (l 1 ) d R d f z (x (1), x (2), y) (f z,0 (x (1), x (2), y), f z,1 (x (1), x (2), y),, f z,d 1 (x (1), x (2), y)), g(y) ( y 0,j, y 1,j,, y d 1,j ), f z,k : R d R d (l 1 ) d R f z,k (x (1), x (2), y) Π 1 k(x (1) ) Π 2 k(y) + Π 1 k(x (2) ) Π 2 k(z), 0 k d 1. f z (x (1), x (2), y) g(y) f g y (R ) d g 0 (y 0 ) y 0,j R R y (i) 0,j I {i=j} i, j 0 y (i) 0 (y (i) 0,0, y(i) 0,1, ) 0 i R y (i) 0 0 i lim g 0(y (i) 0 ) = 1 0 = g 0(0) i 0 R d 0 k = 0 k ( ) (C1) (ˆλˆλˆλ(n), ˆF c (n)) (Λ, Γ ) R d (l 1 ) d n, (C2) ˆRˆRˆR(n) 0 n, (C3) W = g(f F c ) L = f F c (0, λ, 0).

6 (C1) (C2) ˆF c (n) (l 1 ) d Γ (l 1 ) d (C3) f z g ( ( λ λ λ(n), F c (n), Q Q Q(n), ) L L L(n), W W W (n), (ˆλˆλˆλ(n), ˆF c (n), ˆQˆQˆQ(n), ˆLˆLˆL(n), ŴŴŴ (n), ˆRˆRˆR(n) )) (( λ,f F c, L, L, W ), ( Λ, Γ, Υ, Υ, Ω, 0 )) (R d (l 1 ) d R 3d ) (R d (l 1 ) d R 4d ), Ω = g(γ ) Υ = f F c (λ, Λ, Γ ) Ω k = Γ k,j Υ k = λ [k j] Γ [k j],j + Λ [k j] F c [k j],j k 0. (l 1 ) d (C1) ˆF c (n) Γ (l 1 ) d l 1 B B (l 1 ) d (l 1 ) d l 1 l 1 l 1 l 1 l 1 (l 1 ) d 1,d (l 1 ) = l (l 1 ) d (l ) d (l 1 ) d U (n) (U (n) 0,..., U (n) d 1 ) (l 1) d U (n) k (U (n) k,j : j 0) l 1 U {U (n) } U h(u (n) ) h(u) h ((l 1 ) d ) = (l ) d {U (n) } ϵ > 0 K (l 1 ) d P (U (n) K) 1 ϵ n (l 1 ) d n 1 O n {(y (R ) d : y k,j = 0, 0 k d 1, j n 1}, O = n=1o n (l ) d O (l ) d (l ) d y (l ) d {y (i) } O y { y (i) k,j = y k,j, j < i, 0,, 0 k d 1 i 1 y (i) O y ((l ) d ) = (l,s ) d l,s {x = (x 0, x 1, ) R : i=0 x i < } x ((l ) d ) = (l,s ) d x(y (i) ) = d 1 k=0 d 1 x k,j y (i) k,j = i 1 k=0 x k,j y k,j d 1 k=0 x k,j y k,j = x(y) i, y (i) y O (l ) d

7 (l 1 ) d ( (l 1 ) d ) K (l 1 ) d K ϵ > 0 J ϵ y K d 1 k=0 j=j ϵ y k,j < ϵ K (l 1 ) d K ϵ > 0 {y (i) } N K K N ϵ J ϵ d 1 k=0 j=j ϵ y (i) k,j < ϵ y(i) K y K y (i) y y (i) 1,d < ϵ d 1 d 1 y k,j y k,j y (i) k,j + d 1 y (i) k,j d 1 y k,j y (i) k,j + d 1 y (i) k,j k=0 j=j ϵ k=0 j=j ϵ k=0 j=j ϵ k=0 k=0 j=j ϵ d 1 d y y (i) 1,d + dϵ + ϵ. k=0 j=j ϵ y (i) k,j K (l 1 ) d ϵ > 0 J ϵ y K d 1 k=0 j=j ϵ y k,j < ϵ (l 1 ) d K K K C/d y 1,d C y K ϵ > 0 J ϵ K 0 {x (R Jϵ ) d : x 1 C} {x (i) } N ) d ϵ K (RJϵ 0 {y (i) } N (l 1) d {x (i) } N ) d (l (RJϵ 1 ) d y (i) k,j = x(i) k,j j J ϵ 0 y K x y (R Jϵ ) d x 1 d y 1,d C x K 0 x (i) x x (i) 1 ϵ d 1 y y (i) 1,d J ϵ 1 k=0 ϵ + ϵ, d 1 y k,j y (i) k,j + k=0 j=j ϵ y k,j y (i) k,j x d 1 x(i) 1 + y k,j j=j ϵ K ϵ (l 1 ) d {y (i) } N K (l 1 ) d m, C > 0 d 1 K m,c {x (l 1 ) d : x 1,d C, k=0 j=m n y k,j < n 1 k=0 n 1} ( (l 1 ) d ) U (n) U (l 1 ) d ( ) ϵ > 0 m C K m,c ( ) J 0 J < P (U (n) K m,c ) > 1 ϵ (U (n) (n) k,j : 0 k d 1; 0 j J) (U k,j : 0 k d 1; 0 j J) RdJ. (ii) ( ) J 0 J < {a k,j : 1 k d 1, 0 j J} d 1 J k=0 J=0 d 1 a k,j U (n) k,j k=0 J a k,j U k,j.

8 {U (n) } y(u (n) ) y(u) y O ((l 1 ) d ) U (n) U (l 1 ) d l 1 l 1 B q C q x i B ( x i q ) 1/q C q ϵ i x i, i i {ϵ i } P (ϵ i = 1) = P (ϵ i = 1) = 1/2 l 1 2 U B h B h(x) U B Eh(U) = 0 Eh 2 (U) < h B B U = (U 0, U 1, ) l 1 (E U k 2 ) 1/2 < ; k=0 U U n 1/2 n U (i) U (i) U U B h(u) h B l 1 U = (U 0, U 1, ) l 1 U U Y Fj c P (Y j) k = 0, 1, Y F j 1 Fj c Y (i) Y U (i) j I {Y (i) j} F c j. U (i) l 1 U Eh(U) = 0 h l h (l 1 ) U (E(I {Y (1) j} Fj c ) 2 ) 1/2 = (F j Fj c ) 1/2 <. k=0 k=0 F c j O(j (2+ϵ) ) ϵ > 0. Eh(U) = 0 Eh 2 (U) < h l U

9 (ˆλˆλˆλ(n), ˆF c (n)) (Λ, Γ ) C1 C2 (C1) R d (R J ) d J (C1) (C3) C2 (Λ, Γ ) (Λ, Λ) = Σ Λ (π 1 k (Γ ), π1 l (Γ )) = (Γ k, Γ l ) = Σ Γ :k,l (Λ, π 1 k (Γ )) = (Λ, Γ k ) = Σ Λ,Γ :k 1 k, l d 1 (Ω, Υ ) (Ω, Ω) k,l = (Υ, Υ ) k,l = (Ω, Υ ) k,l = j=1 i=0 + Σ Γ :k,l i,j, λ [k i] λ [l j] Σ Γ :[k i],[l j] i+1,j+1 + F[k i],i c λ Λ,Γ :[l j] [l j]σ i=0 λ [l j] Σ Γ :k,[l j] i,j+1 + i=0 [k i]+1,j+1 + i=0 λ [k i] F[l j],j c :[k j] ΣΛ,Γ [l j]+1,i+1 F[l j],j c :k ΣΛ,Γ [l j]+1,i, F c [k i],i F c [l j],j ΣΛ [k i]+1,[l j]+1, [x] x mod d ( ) L L L(n) Q Q Q(n) ˆLˆLˆL(n) ˆQˆQˆQ(n) Υ k Λ Γ Υ k k m = 1, 2, A m = (A 0+(m 1)d, A 1+(m 1)d,, A d 1+(m 1)d ) R d. {A m } m = 1, 2, EA m = λ > 0 (A m ) = Σ Λ k Fk,j c O(j (3+δ) ) k δ > 0

10 (Λ, Γ ) R d (l 1 ) d Λ N(0, Σ Λ ) (Γ k,j, Γ k,s ) = λ k F k,j Fk,s c 0 k d 1 0 j s Λ, Γ 0, Γ 1,, Γ d 1 (Ω, Υ ) 1 k l d 1 (Ω, Ω) k,l = (Υ, Υ ) k,l = (Ω, Υ ) k,l = { λk i=0 F k,min{i,j}fk,max{i,j} c, k = l, 0, k l, k λ 3 s( s=0 + + l s=k+1 d 1 s=l+1 m=0 n=0 λ 3 s( λ 3 s( F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) m=1 n=0 m=1 n=1 d 1 d 1 + c k,i c k,j Σi,j, Λ i=0 m=0 c k,j = F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) F s,min{k s+md,l s+nd} Fs,max{k s+md,l s+nd} c ) λ 2 kf k,min{i,l k+md} Fk,max{i,l k+md} c. { m=0 F c j,k j+md 0 j k, m=1 F c j,k j+md k + 1 j d 1. ( (I3)) (I3) 3 + δ (I3) 2 + δ (Ω, Υ ) N m, n Nd i, j Nd d = 1 d = 1 Υ = f F c (λ, Λ, Γ ) = λω + W Λ Λ Λ = λ 3/2 Ũ Ω Ñ( t) t 1/2 k=1 ( W k w) = t Ñ( t) Ñ( t) Ñ( t) t 1/2 ( k=1 = t Ñ( t) Ñ( t) t 1/2 ( k=1 = t Ñ( t) ( t 1/2 ( Ñ( t) k=1 W k Ñ( t) w) W k λ t w + λ t w Ñ( t) w) W k λ t w) t 1/2 w(ñ( t) λ t) ) λ 1 ( λ 1/2 ( W wũ) + w λ 3/2 Ũ) = Ω,

11 λ 1/2 W = λω + λ 1/2 wũ w λ 3/2 Ũ Υ ˆQˆQˆQ(n) Υ ˆLˆLˆL(n) λ 1/2 ( W wũ) = λω + λ 1/2 wũ w λ 3/2 Ũ λ 1/2 wũ = λω w λ 3/2 Ũ = λω + wλ. λ w λ W d = 1 t 1/2( Ñ( t) Ñ( t) λ t, k=1 W k Ñ( t) w ) (Λ, Ω), C3 C3 ˆLˆLˆL(n) ˆQˆQˆQ(n) f z (x (1), x (2), y) R d R d (l 1 ) d R d f z,k (x (1), x (2), y) R d R d (l 1 ) d R x (i) = (x (i) 0, x(i) 1,, x(i) d 1 ) Rd i = 1, 2 y = (y 0, y 1,, y d 1 ) (l 1 ) d z = (z 0, z 1,, z d 1 ) (l 1 ) d R d x max x k x = (x 0, x 1,, x d 1 ) R d 0 k d 1 R d l Π 1 k Π2 k Π1 k (x) = x < Π 2 k (y) 1 d 1 k=0 y k 1 < Π 1 k (x) l Π 2 k (y) l 1 Π 1 k (x) Π1 k ( x x x) = Π1 k (x x x x) Π k 2(y) Π2 k (ỹỹỹ) = Π2 k (y ỹỹỹ) x, x x x R d y,ỹỹỹ (l 1 ) d (x (1), x (2), y) ( x x x (1), x x x (2),ỹỹỹ) (x (1), x (2), y) ( x x x (1), x x x (2),ỹỹỹ) R d R d (l = d 1 1) d x(1) x x x (1) + x (2) x x x (2) + y k ỹỹỹ k 1 < δ, k=0

12 f z,k (x (1), x (2), y) f z,k ( x x x (1), x x x (2),ỹỹỹ) = Π 1 k(x (1) ) Π 2 k(y) + Π 1 k(x (2) ) Π 2 k(z) Π 1 k( x x x (1) ) Π 2 k(ỹỹỹ) Π 1 k( x x x (2) ) Π 2 k(z) Π 1 k(x (1) ) Π 2 k(y) Π 1 k( x x x (1) ) Π 2 k(ỹỹỹ) + (Π 1 k(x (2) x x x (2) )) Π 2 k(z) Π 1 k(x (1) ) (Π 2 k(y ỹỹỹ) + (Π 1 k(x (1) x x x (1) )) (Π 2 k(y ỹỹỹ)) + (Π 1 k(x (1) x x x (1) )) Π 2 k(y) + (Π 1 k(x (2) x x x (2) )) Π 2 k(z) Π 1 k(x (1) ) Π 2 k(y ỹỹỹ 1 + Π 1 k(x (1) x x x (1) ) Π 2 k(y ỹỹỹ) 1 + Π 1 k(x (1) x (1) ) Π 2 k(y) 1 + Π 1 k(x (2) x x x (2) ) Π 2 k(z) 1 d 1 d 1 x (1) δ + δ 2 + δ y k 1 + δ z k 1 0 δ 0, d=0 d=0 f z,k f z g(y) = f 0 (e, 0, y) e = (1, 1,, 1) R d g ˆF c (n) (l 1 ) d F c (l 1 ) d ( λ λ λ(n), F c (n)) (λ,f F c ) R d (l 1 ) d. W W W (n) = g( F c (n)) W = g(f F c ) ( λ λ λ(n), W W W (n), F c (n)) (λ, W,F F c ) R 2d (l 1 ) d. L L L(n) L L L(n) ( λ λ λ(n), F c (n)) L L L(n) = f 0 ( λ λ λ(n), 0, F c (n)) ( λ λ λ(n), W W W (n), L L L(n), F c (n)) (λ, W, L,F F c ) R 3d (l 1 ) d. ˆRˆRˆR(n) 0 R R R(n) = L L L(n) Q Q Q(n) 0 ρ(( λ λ λ(n), W W W (n), L L L(n), F c (n)), ( λ λ λ(n), W W W (n), Q Q Q(n), F c (n))) 0, ρ R 3d (l 1 ) d ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), F c (n)) (λ, W, L, L,F F c ) R 4d (l 1 ) d. ŴŴŴ (n) = g( ˆF c (n)) (ˆλˆλˆλ(n), ŴŴŴ (n), ˆF c (n)) (Λ, Ω, Γ ) R 2d (l 1 ) d, Ω = g(γ ) ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω,F F c, Γ ) R 6d (l 1 ) 2d. ˆLˆLˆL(n)

13 k = 0, 1,, d 1 k ˆLˆLˆL(n) n( Lk (n) L k ) = ( k n( λ k j (n) F k j,j(n) c + ( k λ k j Fk j,j c + d m=1 j=1 m=1 j=1 d λ d j (n) F d j,(m 1)d+j+k c (n)) λ d j Fd j,(m 1)d+j+k c ) ) = ( k n ( λk j (n) F k j,j(n) c λ k j (n)fk j,j c + λ k j (n)fk j,j c λ k j Fk j,j) c = + m=1 j=1 d ( λd j (n) F d j,(m 1)d+j+k c (n) λ d j (n)fd j,(m 1)d+j+k c + λ d j (n)fd j,(m 1)d+j+k c λ d jfd j,(m 1)d+j+k c ) ) k + ( πk j( λ λ λ(n) 1 ) π 2 j πk j 1 ( ˆF c (n) ) + πk j(ˆλˆλˆλ(n) 1 ) ) π 2 j πk j(f 1 F c ) d m=1 j=1 +π 1 d j ( πd j( λ λ λ(n) 1 ) π 2 (m 1)d+j+k πd j 1 ( ˆF c (n) ) ) ) (ˆλˆλˆλ(n) π 2 (m 1)d+j+k πd j(f 1 F c ) = Π 1 k( λ λ λ(n) ) Π 2 k ( ˆF c = f F c,k( λ λ λ(n), ˆλˆλˆλ(n), ˆF c (n)), ˆF c (n) ) + Π 1 ) k(ˆλˆλˆλ(n) Π 2 k(f F c ) ˆLˆLˆL(n) = f F ( λ λ λ(n), ˆλˆλˆλ(n), ˆF c c (n) ). f F c Γ (l 1 ) d ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), ˆLˆLˆL(n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω, Υ,F F c, Γ ) R 7d (l 1 ) 2d, Υ = f F c (λ, Λ, Γ ) ˆRˆRˆR(n) 0 ˆLˆLˆL(n) ˆQˆQˆQ(n) 0 ( λ λ λ(n), W W W (n), Q Q Q(n), L L L(n), ˆλˆλˆλ(n), ŴŴŴ (n), ˆQˆQˆQ(n), ˆLˆLˆL(n), F c (n), ˆF c (n)) (λ, W, L, L, Λ, Ω, Υ, Υ,F F c, Γ ) R 8d (l 1 ) 2d. ˆRˆRˆR(n) X i N(µ i, σi 2) i = 1, 2, X n X n X N(µ, σ 2 ) µ = lim µ i σ 2 = lim n n σ2 i X n X L 2 n

14 ϕ Xi (t) = Ee itxi = exp(iµ i t 2 1 σi 2t2 ) X i X n X lim n EeitXi = Ee itx t lim µ i = µ lim n n σ2 i = σ2 µ σ 0 lim mu i = lim n n σ2 i = Ee itx = exp(iµt 2 1 σ 2 t 2 ) X N(µ, σ 2 ) lim µ i = µ lim n n σ2 i = σ2 sup EXn 4 = sup(µ 4 n + 6µ 2 nσn 2 + 3σn) 4 < n n {Xi 2} X n X L 2 n X = a in i a T N Y = b in i b T N N (N, N) = Σ N (X, Y ) (X, X) = (X) = a i a j Σi,j N <, j=1 (Y, Y ) = (Y ) = b i b j Σi,j N < j=1 (X, Y ) = E(XY ) = a i b j Σi,j N <. j=1 α β R αx + βy X n = n a in i Y n = n b in i X Y αx n + βy n αx + βy αx n + βy n n n j=1 (αa i + βb i )(αa j + βb j )Σi,j N αx + βy j=1 (αa i + βb i )(αa j + βb j )Σi,j N (X, Y ) E(XY ) X n X Y n Y L 2 X n Y n XY L 1 E(XY ) = lim E(X ny n ) = n n n j=1 a ib j Σi,j N = j=1 a ib j Σi,j N < X Y (X, Y ) = E(XY ) (X, X) (Y, Y ) X = Y π 1 k (Λ) = Λ k Ga k,j = π 2 j π1 k (Γ ) k = 0, 2,, d 1 j = 0, 1, 2 Γ (l 1 ) d Ω = g(γ ) Υ = f F c F c F c (λ, Λ, Γ ) (Ω, Υ )

15 L 2 ( (Ω, Ω)) k,l = ( πj 2 πk(γ 1 ), πj 2 πl 1 (Γ )) = Σ Γ :k,l i,j, ( (Υ, Υ )) k,l = (f F c,k(λ, Λ, Γ ), f F c,l(λ, Λ, Γ )) = ( πj 2 (Π 1 k(λ))πj 2 (Π 2 k(γ )) + j=1 πj 2 (Π 2 k(f F c ))πj 2 (Π 1 k(λ)), πj 2 (Π 1 l (λ))πj 2 (Π 2 l (Γ )) + πj 2 (Π 2 l (F F c ))πj 2 (Π 1 l (Λ))) = ( λ [k j] Γ [k j],j + F[k j],j c Λ [k j], = i=0 + λ [k i] λ [l j] Σ Γ :[k i],[l j] i+1,j+1 + F[k i],i c λ Λ,Γ :[l j] [l j]σ i=0 i=0 [k i]+1,j+1 + i=0 ( (Ω, Υ )) k,l = ( πj 2 πk(γ 1 ), πj 2 (Π 1 l (λ))πj 2 (Π 2 l (Γ )) + = λ [l j] Σ Γ :k,[l j] i+1,j+1 + λ [l j] Γ [l j],j + λ [k i] F[l j],j c :[k j] ΣΛ,Γ [l j]+1,i+1 F c [l j],j Λ [l j]) F c [k i],i F c [l j],j ΣΛ [k i]+1,[l j]+1, F[l j],j c :k ΣΛ,Γ [l j]+1,i+1, πj 2 (Π 2 l (F F c ))πj 2 (Π 1 l (Λ))) [x] x mod d W k k = 0, 1,, d 1 F c k,j 1 F k,j P (W k j) O(j (3+δ) ) j 0 δ > 0 W (i) k (I W (i) 0, I k W (i) 1, ) F c k (F k,0 c, F k,1 c k R d EY (i) = µ Y I (i) k W (i) k, ) X(i) k µ Y I(i) k W k F c k Y (i) µ Y (µ Y,0, µ Y,1,, µ Y,d 1 ) > 0 (Y (i) ) = Σ Y Y (j) k = 0, 1,, d 1 i, j 1 S(n) (S 0 (n), S 1 (n),, S d 1 (n)) S 0(n) G(n) (G 0 (n), G 1 (n),, G d 1 (n)) ( n S1(n) 0, Y (i) Sd 1(n) 1,, d 1 ). n 1/2 (S(n) nµ µ Y, G(n)) (Λ, Γ (Γ 0, Γ 1,, Γ d 1 )) R d (l 1 ) d, (Λ, Γ ) R d (l 1 ) d Λ N(0, Σ Y ) (Γ k,j, Γ k,s ) = µ Y,k F k,j F c k,s 0 k d 1 0 j s Λ, Γ 0, Γ 1,, Γ d 1

16 n 1/2 (S(n) nµ µ Y ) Λ N(0, Σ Y ). Z k l 1 0 k d 1 Z k (Z k,j, Z k,l ) = F k,j Fk,l c S k (n) (S k (n)) 1/2 S k (n) n 1/2 k Z k l 1 0 k d 1, k Γ k = µ 1/2 Y,k Z k l 1 0 k d 1. Γ k (Γ k,j, Γ k,s ) = µ Y,k F k,j Fk,s c j s Y (i) {ỸY (i) } Y (i) S(n) ( S 0 (n), S 1 (n),, S d 1 (n)) n ỸY (i) n 1/2 (S(n) nµ µ Y ) n 1/2 G 0 (n) n 1/2 S 0(n) n 1/2 (S(n) nµ µ Y, G 0 (n)) (Λ, Γ 0 ) R d l 1, Λ Γ 0 n 1/2 G 0 (n) G 0 (n) 1 0 n ϵ > 0 0 S P (n 1/2 G 0 (n) G 0(n) 0 (n) 1 > ϵ) = P ( S 0(n) P ( 2P ( S0(n) 0 max I=1,2,, n 3/4 =2P ( max 2P ( I I=1,2,, n 3/4 max I=1,2,, n 3/4 S0(n) > n 1/2 ϵ) 0 1 > n 1/2 ϵ, S 0 (n) S 0 (n) n 3/4 ) + P ( S 0 (n) S 0 (n) > n 3/4 ) 0 1 > n 1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ) I I 0,j > n1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ) 0,j > n1/2 ϵ) + P ( S 0 (n) S 0 (n) > n 3/4 ). δ 1 δ/2 C ( j (1+δ1) ) 1 ( 0,j ) = F 0,jF c 0,j P ( 3 27 max I=1,2,, n 3/4 max I=1,2,, n 3/4 P ( I 0,j > n1/2 ϵ) I C 2 n 1 ϵ 2 j 2+2δ1 n 3/4 F 0,j F0,j c 27C 2 ϵ 2 n 1 n 3/4 P ( max I=1,2,, n 3/4 0,j > Cn1/2 ϵj (1+δ1) /3) 27 I 0,j > Cn1/2 ϵj (1+δ1) ) max I=1,2,, n 3/4 ( I X(i) 0,j ) C 2 nϵ 2 j (2+2δ1) j 2+2δ1 F0,j c 0 n,

17 Fk,j c O(j (3+δ) ) j2+2δ1 F0,j c P ( S 0 (n) S 0 (n) > n 3/4 ) (S 0(n) S 0 (n)) n 3/2 2nΣY 1,1 n 3/2 0 n. 0 n n 1/2 (S(n) nµ µ Y, G 0 (n)) (Λ, Γ 0 ) R d l 1. Y (i) G 1 (n), G 2 (n),, G d 1 (n) λ = E(A 0+(m 1)d, A 1+(m 1)d,, A d 1+(m 1)d ) F c W L W (C1) Y (i) A i W (i) k i k + (m 1)d m = 1, 2, EW (i) k = W k σw,k 2 (i) (W k ) < (C1) (C2) ˆRˆRˆR(n) 0 ˆRˆRˆR(n) = ˆLˆLˆL(n) ˆQˆQˆQ(n) = n 1/2 ( L L L(n) Q Q Q(n)) 0 k d 1 n 1/2 ( L k (n) Q k (n)) 0 n F c L k (n) Q k (n) = n 1 n d Y d j+(m 1)d,j+k+(s 1)d. m=1 j=1 s=n m+1 ϵ > 0 P (n 1/2 ( L k (n) Q k (n)) > ϵ) n d =P (n 1/2 Y d j+(m 1)d,j+k+(s 1)d > ϵ) m=1 j=1 s=n m+1 d n P ( Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) j=1 m=1 s=n m+1 d (P ( j=1 + P ( n n 1/4 m=1 n Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) s=n m+1 m=n n 1/4 +1 s=n m+1 Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ)). n

18 n n 1/4 P ( m=1 n n 1/4 P ( P ( m=1 n s=n m+1 s= n 1/4 +1 m=1 s= n 1/4 +1 n m=1 n 1/2 dλ d j ϵ 1 Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) s= n 1/4 +1 EY d j+(m 1)d,j+k+(s 1)d n 1/2 dϵ 1 n 1/2 d 1 ϵ s= n 1/4 +1 F c d j,s n 1/2 Cdλ d j ϵ 1 n 1/4 s= n 1/4 +1 s (3+δ) ds λ d j F c d j,j+k+(s 1)d =n 1/2 Cdλ d j (2 + δ) 1 ϵ 1 n 1/4 (2+δ) 0 n. S k (n) = n m=1 A k+(m 1)d n P ( Y d j+(m 1)d,j+k+(s 1)d > n 1/2 d 1 ϵ) P ( m=n n 1/4 +1 s=n m+1 n m=n n 1/4 +1 s=0 S d j ( n 1/4 ) Y d j+(m 1)d,s > n 1/2 d 1 ϵ) = P ( W (i) d j > n1/2 d 1 ϵ) ( S d j( n 1/4 ) W (i) d j ) + (E( S d j ( n 1/4 ) W (i) d j ))2 nd 2 ϵ 2 =n 1 d 2 ϵ 2 ( n 1/4 Σd j+1,d j+1w Λ d j + n 1/4 λ d j σw,d j 2 + n 1/4 2 λ 2 d jwd j) 2 0 n. n 1/2 ( L k (n) Q k (n)) 0 n (C2) (Ω, Υ ) Σ Λ:k,l = 0 k l Σ Λ,Γ :k = 0 k Σ Γ :k,k i+1,j+1 = λ kf k,i Fk,j c 0 i j F k,j c (n) = 0 0 k d 1 n j (C1) Fk,j c = 0 k j ˆF c (n) (l 1 ) d Γ k,j = 0 k j Γ (l 1 ) d (C2) ˆRˆRˆR(n) = ˆLˆLˆL(n) ˆQˆQˆQ(n) = n( L L L(n) Q Q Q(n)) ne(n) 0 E(n) L L L(n) Q Q Q(n) 1 n > N Y k,j = 0 j > Nd ne(n) = n 1 n d j=1 n d m=1 j=1 s=(n m)d n 1/2 n m=n N+1 Y d j+(m 1)d,j+s = n 1/2 n d Nd m=n N+1 j=1 s=(n m)d NdA d j+(m 1)d n 1/2 d 2 N 2 M 0 n, M (C2) Y d j+(m 1)d,j+s

19 L = λw L = λw L = λw L = λw L = λw L = λw 50 th L = λw L = λw L = λw L = λw

λ(t)f c (t s, s) ds, 0 t < c,

λ(t)f c (t s, s) ds, 0 t < c, L = λw d L k = λ k j Fk j,j, c k = 0, 1,..., d 1, d L k k λ k k Fk,j c j 0 k j k + md m 0 λ k Fk, c L k k L(t) = c 0 λ(t)f c (t s, s) ds, 0 t < c, c d d d 25 number of patients 0 10 20 30 40 50 60 Estimated

More information

A central-limit-theorem version of the periodic Little s law

A central-limit-theorem version of the periodic Little s law https://doi.org/10.1007/s11134-018-9588-8 A central-limit-theorem version of the periodic Little s law Ward Whitt 1 Xiaopei Zhang 1 Received: 27 June 2017 / Revised: 6 September 2018 Springer Science+Business

More information

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday

V o l u m e 5, N u m b e r 5 2, 1 6 P a g e s. Gold B e U ClUt Stamps Double Stamp D a y E v e r y Wednesday 1 6 5 J 9 6 " " z k ; k x k k k z z k j " " ( k " " k 8 1959 " " x k j 5 25 ; ; k k qz ; x 13 x k * k ( ) k k : qz 13 k k k j ; q k x ; x 615 26 ( : k z 113 99751 z k k q ; 15 k k k j q " " k j x x ( *»

More information

Supplementary Information

Supplementary Information If f - - x R f z (F ) w () () f F >, f E jj E, V G >, G >, E G,, f ff f FILY f jj ff LO_ N_ j:rer_ N_ Y_ fg LO_; LO_ N_; N_ j:rer_; j:rer_ N_ Y_ f LO_ N_ j:rer_; j:rer_; N_ j:rer_ Y_ fn LO_ N_ - N_ Y_

More information

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009

Functional Analysis: Assignment Set # 3 Spring 2009 Professor: Fengbo Hang February 25, 2009 duardo Corona Functional Analysis: Assignment Set # 3 Spring 9 Professor: Fengbo Hang February 5, 9 C6. Show that a norm that satis es the parallelogram identity: comes from a scalar product. kx + yk +

More information

Chp 4. Expectation and Variance

Chp 4. Expectation and Variance Chp 4. Expectation and Variance 1 Expectation In this chapter, we will introduce two objectives to directly reflect the properties of a random variable or vector, which are the Expectation and Variance.

More information

necessita d'interrogare il cielo

necessita d'interrogare il cielo gigi nei necessia d'inegae i cie cic pe sax span s inuie a dispiegaa fma dea uce < affeandi ves i cen dea uce isnane " sienzi dei padi sie veic dei' anima 5 J i f H 5 f AL J) i ) L '3 J J "' U J J ö'

More information

LOWELL WEEKLY JOURNAL

LOWELL WEEKLY JOURNAL KY Y 872 K & q $ < 9 2 q 4 8 «7 K K K «> 2 26 8 5 4 4 7»» 2 & K q 4 [«5 «$6 q X «K «8K K88 K 7 ««$25 K Q ««q 8 K K Y & 7K /> Y 8«#»«Y 87 8 Y 4 KY «7««X & Y» K ) K K 5 KK K > K» Y Y 8 «KK > /» >» 8 K X

More information

,,,,..,,., {. (, ),, {,.,.,..,,.,.,,....... {.. : N {, Z {, Q {, Q p { p{ {. 3, R {, C {. : ord p {. 8, (k) {.42,!() { {. 24, () { {. 24, () { {. 25,., () { {. 26,. 9, () { {. 27,. 23, '() { ( ) {. 28,

More information

W I T H M i A. L I O E T O W A R D ISTOlNrE ^ I S T D C H A. n i T Y F O R - A L L. "

W I T H M i A. L I O E T O W A R D ISTOlNrE ^ I S T D C H A. n i T Y F O R - A L L. J/ H L D N D H Y F L L L N LLL KN NY H Y 2 95 HL N NG F L G NG F LNDD H H J F NH D K GN L _ L L :? H F K b H Y L DD Y N? N L L LD H LL LLL LNNG LL J K N 3 ND DL6 N Lb L F KF FH D LD3 D ND ND F ND LKKN

More information

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank

L bor y nnd Union One nnd Inseparable. LOW I'LL, MICHIGAN. WLDNHSDA Y. JULY ), I8T. liuwkll NATIdiNAI, liank G k y $5 y / >/ k «««# ) /% < # «/» Y»««««?# «< >«>» y k»» «k F 5 8 Y Y F G k F >«y y

More information

W I T H M A L I C E T O W A R D N O N E A N D C H A R I T Y F O R A L L. " A LOWELL MM. Sent to Jackson for 30 Years for Attempt

W I T H M A L I C E T O W A R D N O N E A N D C H A R I T Y F O R A L L.  A LOWELL MM. Sent to Jackson for 30 Years for Attempt D N N N D Y F 6 KN NY G 2 89 N NG NK!? B! ( Y FB Y N @ N6 F NDD / B F N 8DBK GN B B ) F K Y Y N? x N B D B NNG = ZK N F D BBB ZN F NF? K8 D BND ND ND F ND N DNG FXBN NDNG DD BX N NG ND B K DN G8 > B K

More information

THE I Establiifrad June, 1893

THE I Establiifrad June, 1893 89 : 8 Y Y 2 96 6 - - : - 2 q - 26 6 - - q 2 2 2 4 6 4«4 ' V () 8 () 6 64-4 '2" () 6 ( ) * 'V ( 4 ) 94-4 q ( / ) K ( x- 6% j 9*V 2'%" 222 27 q - - K 79-29 - K x 2 2 j - -% K 4% 2% 6% ' K - 2 47 x - - j

More information

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth

A b r i l l i a n t young chemist, T h u r e Wagelius of N e w Y o r k, ac. himself with eth 6 6 0 x J 8 0 J 0 z (0 8 z x x J x 6 000 X j x "" "" " " x " " " x " " " J " " " " " " " " x : 0 z j ; J K 0 J K q 8 K K J x 0 j " " > J x J j z ; j J q J 0 0 8 K J 60 : K 6 x 8 K J :? 0 J J K 0 6% 8 0

More information

Tornado, Squalls Strike Kinston Area

Tornado, Squalls Strike Kinston Area q k K A V N 28 #/K N /WANE CO A AON-CHEY ON A N F W N H W D M D H U x 30 M k k M D 945 E M A A k - A k k k A C M D C 030 D H C C 0645 000 200 W j A D M D k F E- HAUNNG CALL - A A x U M D M j A A 9000 k

More information

THE GRACE MESSENGER

THE GRACE MESSENGER G Ev L C 1326 S 26 S O, NE 68105-2380 402-341-7730 E: @. W S:.. Lk Fk :.fk./ R Sv Rqd Dd M REGULAR SUNDAY EVENTS 9:30.. C Ed 11:00.. W Sv P - Rv. D. D D. Lk Ed/C Sy - Bd S O - C Jffy Sx - A Lz L V C -

More information

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s

176 5 t h Fl oo r. 337 P o ly me r Ma te ri al s A g la di ou s F. L. 462 E l ec tr on ic D ev el op me nt A i ng er A.W.S. 371 C. A. M. A l ex an de r 236 A d mi ni st ra ti on R. H. (M rs ) A n dr ew s P. V. 326 O p ti ca l Tr an sm is si on A p ps

More information

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib,

HEAGAN & CO., OPP. f>, L. & W. DEPOT, DOYER, N. J, OUR MOTTO! ould Iwv ia immediate vltlui. VEEY BEST NEW Creamery Butter 22c ib, #4 NN N G N N % XX NY N Y FY N 2 88 N 28 k N k F P X Y N Y /» 2«X ««!!! 8 P 3 N 0»9! N k 25 F $ 60 $3 00 $3000 k k N 30 Y F00 6 )P 0» «{ N % X zz» «3 0««5 «N «XN» N N 00/ N 4 GN N Y 07 50 220 35 2 25 0

More information

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4.

Future Self-Guides. E,.?, :0-..-.,0 Q., 5...q ',D5', 4,] 1-}., d-'.4.., _. ZoltAn Dbrnyei Introduction. u u rt 5,4) ,-,4, a. a aci,, u 4. te SelfGi ZltAn Dbnyei Intdtin ; ) Q) 4 t? ) t _ 4 73 y S _ E _ p p 4 t t 4) 1_ ::_ J 1 `i () L VI O I4 " " 1 D 4 L e Q) 1 k) QJ 7 j ZS _Le t 1 ej!2 i1 L 77 7 G (4) 4 6 t (1 ;7 bb F) t f; n (i M Q) 7S

More information

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim

Real Analysis Chapter 3 Solutions Jonathan Conder. ν(f n ) = lim . Suppose ( n ) n is an increasing sequence in M. For each n N define F n : n \ n (with 0 : ). Clearly ν( n n ) ν( nf n ) ν(f n ) lim n If ( n ) n is a decreasing sequence in M and ν( )

More information

Daily Register Q7 w r\ i i n i i /"\ HTT /"\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\

Daily Register Q7 w r\ i i n i i /\ HTT /\I AIM MPmf>riAnpn ^ ^ oikiar <mn ^^^*»^^*^^ _.. *-.,..,» * * w ^.. i nr\r\ $ 000 w G K G y' F: w w w y' w-y k Yk w k ' V 0 8 y Q w \ /"\ /"\ > ^ ^ k < ^^^*»^^*^^ _*-» * * w ^ \\ Y 88 Y Y 8 G b k =-- K w' K y J KKY G - - v v -y- K -y- x- y bb K' w k y k y K y y w b v w y F y w

More information

Procedure for Measuring Swing Bearing Movement on 300 A Series Hydraulic Excavators {7063}

Procedure for Measuring Swing Bearing Movement on 300 A Series Hydraulic Excavators {7063} Page 1 of 7 Procedure for Measuring Swing Bearing Movement on 300 A Series Hydraulic Excavators {7063} Excavator: 307 (S/N: 2PM1-UP; 2WM1-UP) 311 (S/N: 9LJ1-UP; 5PK1-UP; 2KM1-UP) 312 (S/N: 6GK1-UP; 7DK1-UP;

More information

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted.

TUCBOR. is feaiherinp hit nest. The day before Thanks, as to reflect great discredit upon that paper. Clocks and Jewelry repaired and warranted. W B J G Bk 85 X W G WY B 7 B 4 & B k F G? * Bk P j?) G j B k k 4 P & B J B PB Y B * k W Y) WY G G B B Wk J W P W k k J J P -B- W J W J W J k G j F W Wk P j W 8 B Bk B J B P k F BP - W F j $ W & B P & P

More information

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C!

f;g,7k ;! / C+!< 8R+^1 ;0$ Z\ \ K S;4 i!;g + 5 ;* \ C! 1+M, /A+1+> 0 /A+>! 8 J 4! 9,7 )F C!.4 ;* )F /0 u+\ 30< #4 8 J C! 393/09/0 393//07 :,F! ::!n> b]( a.q 5 O +D5 S ١ ; ;* :'!3Qi C+0;$ < "P 4 ; M V! M V! ; a 4 / ;0$ f;g,7k ;! / C+!< 8R+^ ;0$ Z\ \ K S;4 "* < 8c0 5 *

More information

The Lanczos and conjugate gradient algorithms

The Lanczos and conjugate gradient algorithms The Lanczos and conjugate gradient algorithms Gérard MEURANT October, 2008 1 The Lanczos algorithm 2 The Lanczos algorithm in finite precision 3 The nonsymmetric Lanczos algorithm 4 The Golub Kahan bidiagonalization

More information

"INDEPENDENT IN AI.L THINOS. NEUTRAI. IN NOTHINO' LOWELL, MICHIGAN, JAM AHV, 19, WHOLE NO. 290.

INDEPENDENT IN AI.L THINOS. NEUTRAI. IN NOTHINO' LOWELL, MICHIGAN, JAM AHV, 19, WHOLE NO. 290. > HS U H V V 8 W HG J HV 9 899 WH 29 H G S J G W W W WS 4 5 6 898 K H q $ U S S U G 8 G H - J W U S G Y K - «H - W S HW W»U W 8 W H WS H G U Y Y J H q x U 2 VV GV W H W H G 8 H S G K W W W H J? 5? G S-

More information

c 2002 Society for Industrial and Applied Mathematics

c 2002 Society for Industrial and Applied Mathematics SIAM J. SCI. COMPUT. Vol. 4 No. pp. 507 5 c 00 Society for Industrial and Applied Mathematics WEAK SECOND ORDER CONDITIONS FOR STOCHASTIC RUNGE KUTTA METHODS A. TOCINO AND J. VIGO-AGUIAR Abstract. A general

More information

z 0 > 0 z = 0 h; (x, 0)

z 0 > 0 z = 0 h; (x, 0) n = (q 1,..., q n ) T (,, t) V (,, t) L(,, t) = T V d dt ( ) L q i L q i = 0, i = 1,..., n. l l 0 l l 0 l > l 0 {x} + = max(0, x) x = k{l l 0 } +ˆ, k > 0 ˆ (x, z) x z (0, z 0 ) (0, z 0 ) z 0 > 0 x z =

More information

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ.

By drawing Mohr s circle, the stress transformation in 2-D can be done graphically. + σ x σ y. cos 2θ + τ xy sin 2θ, (1) sin 2θ + τ xy cos 2θ. Mohr s Circle By drawing Mohr s circle, the stress transformation in -D can be done graphically. σ = σ x + σ y τ = σ x σ y + σ x σ y cos θ + τ xy sin θ, 1 sin θ + τ xy cos θ. Note that the angle of rotation,

More information

K(ζ) = 4ζ 2 x = 20 Θ = {θ i } Θ i=1 M = {m i} M i=1 A = {a i } A i=1 M A π = (π i ) n i=1 (Θ) n := Θ Θ (a, θ) u(a, θ) E γq [ E π m [u(a, θ)] ] C(π, Q) Q γ Q π m m Q m π m a Π = (π) U M A Θ

More information

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o

Lowell Dam Gone Out. Streets Turned I n t o Rivers. No Cause For Alarm Now However As This Happened 35 Years A&o V ()\\ ))? K K Y 6 96 Y - Y Y V 5 Z ( z x z \ - \ - - z - q q x x - x 5 9 Q \ V - - Y x 59 7 x x - Y - x - - x z - z x - ( 7 x V 9 z q &? - 9 - V ( x - - - V- [ Z x z - -x > -) - - > X Z z ( V V V

More information

Monday, July First, And continues until further notice.

Monday, July First, And continues until further notice. 4 E N % q * - z P q ««- V * 5 Z V E V 3 7 2 4 8 9 E KN YNG P E K G zz -E P * - PEZZ 23-48 G z : P P 78 N P K - - Q P - 8 N! - P - P 8 8 E E-*«- - 3 4 : G P - G N K P P Q* N N 23 E 2 *8342 P 23 2552 2K

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I Fk E M C k C C EN CN INI & NYU CN EN INI @ y @ F Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D

More information

MIS S BALLS, L.L.A.]

MIS S BALLS, L.L.A.] & N k k QY GN ( x - N N & N & k QY GN x 00 - XX N X ± - - - - ---------------- N N G G N N N Y NG 5 880N GN N X GN x ( G ) 8N ---- N 8 Y 8 - N N ( G () G ( ) (N) N? k [ x-k NNG G G k k N NY Y /( Q G (-)

More information

the convolution of f and g) given by

the convolution of f and g) given by 09:53 /5/2000 TOPIC Characteristic functions, cont d This lecture develops an inversion formula for recovering the density of a smooth random variable X from its characteristic function, and uses that

More information

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y

2 u Du, k Hu Dv Hu, y H. u Cu j u qu u. Nv. v uy. Cu Hu F A H. qu Cu.. Cu j 1980, u V, v Nu My O k. v u u. A G C. My u v k, 2.5 H v v u / u v u v k y H HE 1016 M EEING OF HE ODIE CLU 1,016 Cu 7:30.. D 11, 2007 y W L Uvy. C : Pu A y: Ov 25 x u. Hk, u k MA k D u y Hu, u G, u C C, MN C, Nk Dv Hu, MN, u K A u vu v. W y A Pku G, G u. N EW UINE: D, Cu, 22

More information

U a C o & I & I b t - - -, _...

U a C o & I & I b t - - -, _... U C & I &,.. - -, -, 4 - -,-. -... -., -. -- -.. - - -. - -. - -.- - - - - - -.- - -. - - - -, - - - - I b j - - -, _....... . B N y y M N K y q S N I y d U d.. C y - T W A I C Iy d I d CWW W ~ d ( b y

More information

CHAPTER 5. Basic Iterative Methods

CHAPTER 5. Basic Iterative Methods Basic Iterative Methods CHAPTER 5 Solve Ax = f where A is large and sparse (and nonsingular. Let A be split as A = M N in which M is nonsingular, and solving systems of the form Mz = r is much easier than

More information

Years. Marketing without a plan is like navigating a maze; the solution is unclear.

Years. Marketing without a plan is like navigating a maze; the solution is unclear. F Q 2018 E Mk l lk z; l l Mk El M C C 1995 O Y O S P R j lk q D C Dl Off P W H S P W Sl M Y Pl Cl El M Cl FIRST QUARTER 2018 E El M & D I C/O Jff P RGD S C D M Sl 57 G S Alx ON K0C 1A0 C Tl: 6134821159

More information

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1...

OQ4867. Let ABC be a triangle and AA 1 BB 1 CC 1 = {M} where A 1 BC, B 1 CA, C 1 AB. Determine all points M for which ana 1... 764 Octogon Mathematical Magazine, Vol. 24, No.2, October 206 Open questions OQ4867. Let ABC be a triangle and AA BB CC = {M} where A BC, B CA, C AB. Determine all points M for which 4 s 2 3r 2 2Rr AA

More information

LOWELL WEEKLY JOURNAL.

LOWELL WEEKLY JOURNAL. > LLL KLY L L x L L L L G K Y F 7 2 K LKL Y K «F «««««q 5 $ ) / «2 K) ««) 74 «G > x «LY K «! «KL K K K K K! ««x > x K! K ) 2 K «X! «K LK >> < >«««) «< >>«K«KLK < «4! «««#> ««!

More information

Str«S A N F R A N C I S C O, C A L., S A T U R D A Y, M A Y i

Str«S A N F R A N C I S C O, C A L., S A T U R D A Y, M A Y i V V JUN V VN UNY N N VN J J WN i ii i k «N N U Y Y i N N i k - G f ; i X ) w i W J vi - k W i 'ii ii i ; i i ; w J i vi f i ; G ; iii ; ii fi U ( ii) ii ; i; W ik ; i W k; V i i f if ; k f ; N f ; i i

More information

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the

2. Linear recursions, different cases We discern amongst 5 different cases with respect to the behaviour of the series C(x) (see (. 3)). Let R be the MATHEMATICS SOME LINEAR AND SOME QUADRATIC RECURSION FORMULAS. I BY N. G. DE BRUIJN AND P. ERDÖS (Communicated by Prow. H. D. KLOOSTERMAN at the meeting ow Novemver 24, 95). Introduction We shall mainly

More information

This is the author s version of a work that was submitted/accepted for publication in the following source:

This is the author s version of a work that was submitted/accepted for publication in the following source: This is the author s version of a work that was submitted/accepted for publication in the following source: Yu, Zu-Guo (2004) Fourier Transform and Mean Quadratic Variation of Bernoulli Convolution on

More information

Supplementary Materials: Martingale difference correlation and its use in high dimensional variable screening by Xiaofeng Shao and Jingsi Zhang

Supplementary Materials: Martingale difference correlation and its use in high dimensional variable screening by Xiaofeng Shao and Jingsi Zhang Supplementary Materials: Martingale difference correlation and its use in high dimensional variable screening by Xiaofeng Shao and Jingsi Zhang The supplementary material contains some additional simulation

More information

Probability and combinatorics

Probability and combinatorics Texas A&M University May 1, 2012 Probability spaces. (Λ, M, P ) = measure space. Probability space: P a probability measure, P (Λ) = 1. Probability spaces. (Λ, M, P ) = measure space. Probability space:

More information

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for

Contents Acknowledgements iii Introduction Preliminaries on Maass forms for L σ = 1 L L Γ 0 (q) q Γ 0 (q) GL(2) L a n α S(α) = a n e(nα), e(θ) = e 2πiθ S(α) α R/Z α 1,..., α R δ R/Z α r α s δ r s R S(α r ) 2 r=1 ( N + 1 ) a n 2. δ 1 ψ(x; q, a) = n x n a q Λ(n), Λ(n) Λ(n) =

More information

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts

An Abstract Interpretation Framework for Refactoring with Application to Extract Methods with Contracts I k E M C k C C EN CN INI & NYU CN EN INI @ y @ Lzz M M zz@ M y IDE I - y W y W q : y; y y y; yz y ; y q j W I y y /y y /k W W j - y W - CCCk M y C O y C j D D [D q]: D G D q/ D D q D4 / V D5 D G D D E

More information

LOWELL JOURNAL. LOWSLL, MICK., WSSDNaSDAY", FEB 1% 1894:

LOWELL JOURNAL. LOWSLL, MICK., WSSDNaSDAY, FEB 1% 1894: ? jpv J V# 33 K DDY % 9 D Y D z K x p * pp J - jj Q D V Q< - j «K * j G»D K* G 3 zz DD V V K Y p K K 9 G 3 - G p! ( - p j p p p p Q 3 p ZZ - p- pp p- D p pp z p p pp G pp G pp J D p G z p _ YK G D xp p-

More information

Brownian Motion and Conditional Probability

Brownian Motion and Conditional Probability Math 561: Theory of Probability (Spring 2018) Week 10 Brownian Motion and Conditional Probability 10.1 Standard Brownian Motion (SBM) Brownian motion is a stochastic process with both practical and theoretical

More information

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^

$%! & (, -3 / 0 4, 5 6/ 6 +7, 6 8 9/ 5 :/ 5 A BDC EF G H I EJ KL N G H I. ] ^ _ ` _ ^ a b=c o e f p a q i h f i a j k e i l _ ^ m=c n ^ ! #" $%! & ' ( ) ) (, -. / ( 0 1#2 ' ( ) ) (, -3 / 0 4, 5 6/ 6 7, 6 8 9/ 5 :/ 5 ;=? @ A BDC EF G H I EJ KL M @C N G H I OPQ ;=R F L EI E G H A S T U S V@C N G H IDW G Q G XYU Z A [ H R C \ G ] ^ _ `

More information

GUJARAT STHAPNA DIVAS. inside. 1ST May 2016 was the 56th Gujarat. p13. combo package teacher. Warm Welcome to Summer Vacation

GUJARAT STHAPNA DIVAS. inside. 1ST May 2016 was the 56th Gujarat. p13. combo package teacher. Warm Welcome to Summer Vacation ISSN 2347-162X RNI N. GUJENG/2002/23382 P R N. GAMC-1732 2016-18 I y SSP A-9, P P.S.O. 10 Ey M A-2, V 31-12-2018 A, Ty, y 5, 2016 V.15, I-1... fk./ P -16 I P: `30/- F, T O P, 4 F V A, O. K-K Py P, N. Ak,

More information

Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes

Made-to-measure malaria vector control strategies: rational design based on insecticide properties and coverage of blood resources for mosquitoes J v DF. Fy f DF f x (HL) v w b vb. -- v g: g b vg f b f q J 2014, 13:146 :10.1186/1475-2875-13-146 Gy F K (gk@..z) k y (k@y.) J Gg (zg@.gv) Jf C v (jy.v@.g) C J Dky (.ky@..k) k C (k.@b.) 1475-2875 y vw

More information

Gaussian Random Field: simulation and quantification of the error

Gaussian Random Field: simulation and quantification of the error Gaussian Random Field: simulation and quantification of the error EMSE Workshop 6 November 2017 3 2 1 0-1 -2-3 80 60 40 1 Continuity Separability Proving continuity without separability 2 The stationary

More information

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc

S p e c i a l M a t r i c e s. a l g o r i t h m. intert y msofdiou blystoc M D O : 8 / M z G D z F zw z z P Dẹ O B M B N O U v O NO - v M v - v v v K M z z - v v MC : B ; 9 ; C vk C G D N C - V z N D v - v v z v W k W - v v z v O v : v O z k k k q k - v q v M z k k k M O k v

More information

Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics. Wen-Xin Zhou

Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics. Wen-Xin Zhou Cramér-Type Moderate Deviation Theorems for Two-Sample Studentized (Self-normalized) U-Statistics Wen-Xin Zhou Department of Mathematics and Statistics University of Melbourne Joint work with Prof. Qi-Man

More information

On the Value Function of a Mixed Integer Linear Program

On the Value Function of a Mixed Integer Linear Program On the Value Function of a Mixed Integer Linear Program MENAL GUZELSOY TED RALPHS ISE Department COR@L Lab Lehigh University ted@lehigh.edu AIRO, Ischia, Italy, 11 September 008 Thanks: Work supported

More information

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012

Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 2012 Preliminary Exam: Probability 9:00am 2:00pm, Friday, January 6, 202 The exam lasts from 9:00am until 2:00pm, with a walking break every hour. Your goal on this exam should be to demonstrate mastery of

More information

A complete criterion for convex-gaussian states detection

A complete criterion for convex-gaussian states detection A complete criterion for convex-gaussian states detection Anna Vershynina Institute for Quantum Information, RWTH Aachen, Germany joint work with B. Terhal NSF/CBMS conference Quantum Spin Systems The

More information

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1

A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 A CONVEXITY CONDITION IN BANACH SPACES AND THE STRONG LAW OF LARGE NUMBERS1 ANATOLE BECK Introduction. The strong law of large numbers can be shown under certain hypotheses for random variables which take

More information

Conditional distributions. Conditional expectation and conditional variance with respect to a variable.

Conditional distributions. Conditional expectation and conditional variance with respect to a variable. Conditional distributions Conditional expectation and conditional variance with respect to a variable Probability Theory and Stochastic Processes, summer semester 07/08 80408 Conditional distributions

More information

5 Operations on Multiple Random Variables

5 Operations on Multiple Random Variables EE360 Random Signal analysis Chapter 5: Operations on Multiple Random Variables 5 Operations on Multiple Random Variables Expected value of a function of r.v. s Two r.v. s: ḡ = E[g(X, Y )] = g(x, y)f X,Y

More information

Long-range dependence

Long-range dependence Long-range dependence Kechagias Stefanos University of North Carolina at Chapel Hill May 23, 2013 Kechagias Stefanos (UNC) Long-range dependence May 23, 2013 1 / 45 Outline 1 Introduction to time series

More information

Atlantic County Properties

Atlantic County Properties () li i () li i () li i V li i li i ii ib ii ii ii i &. ii ii l ii iii bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - bf i - - bf i - bf i - bf i - bf i - bf

More information

Confidence regions for stochastic variational inequalities

Confidence regions for stochastic variational inequalities Confidence regions for stochastic variational inequalities Shu Lu Department of Statistics and Operations Research, University of North Carolina at Chapel Hill, 355 Hanes Building, CB#326, Chapel Hill,

More information

A Cluster-based Approach for Biological Hypothesis Testing and its Application

A Cluster-based Approach for Biological Hypothesis Testing and its Application -b B J k, J S Y, M D S, D B I Uv- Uv, F W, I, US {kj,j,@} b v b, v N, O, F b v, v, vv b W z, β-,, b b v q W,, b b b v b : b v b β-, b b b I,,,, b-,, I INRODUION qk b v [] O G Lk,,, k, v, b vv b [] v v

More information

Convex Geometry. Carsten Schütt

Convex Geometry. Carsten Schütt Convex Geometry Carsten Schütt November 25, 2006 2 Contents 0.1 Convex sets... 4 0.2 Separation.... 9 0.3 Extreme points..... 15 0.4 Blaschke selection principle... 18 0.5 Polytopes and polyhedra.... 23

More information

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School

semi-annual Activities Fair, aimed at extra-cwrricular activities which the School OL OOH * 5 E B E ** -- E B < Pk & Ck** H - P U M 3 Q C B P k ** C P** >& B C C $2 $6 94 j q *B «>* 1 PC B W H 400 P - «VB E L 14- > C H C ~ E L H H [ * q H B Bk "B " G! O - F x- k x* L V CV 10 4 -C B F

More information

Chapter 4 : Expectation and Moments

Chapter 4 : Expectation and Moments ECE5: Analysis of Random Signals Fall 06 Chapter 4 : Expectation and Moments Dr. Salim El Rouayheb Scribe: Serge Kas Hanna, Lu Liu Expected Value of a Random Variable Definition. The expected or average

More information

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives,

We denote the derivative at x by DF (x) = L. With respect to the standard bases of R n and R m, DF (x) is simply the matrix of partial derivatives, The derivative Let O be an open subset of R n, and F : O R m a continuous function We say F is differentiable at a point x O, with derivative L, if L : R n R m is a linear transformation such that, for

More information

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T

16.20 Techniques of Structural Analysis and Design Spring Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T 16.20 Techniques of Structural Analysis and Design Spring 2013 Instructor: Raúl Radovitzky Aeronautics & Astronautics M.I.T February 15, 2013 2 Contents 1 Stress and equilibrium 5 1.1 Internal forces and

More information

THE LOWELL LEDGER. INDEPENDENT-NOT NEUTRAL.

THE LOWELL LEDGER. INDEPENDENT-NOT NEUTRAL. : / LOLL LDGR NDNDNNO NRL VOL X NO 26 LOLL GN RDY DR 902 FV N ONDRFL GRO D x N Y NK LL & O OLD RDN GON ROR NR R «ROY ND R LON N V» Rx Rj K» O ««(» F R G GRLND x ( ) R OF FRND ;«QK L L RNG X R D 02 Q F

More information

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University

Section 27. The Central Limit Theorem. Po-Ning Chen, Professor. Institute of Communications Engineering. National Chiao Tung University Section 27 The Central Limit Theorem Po-Ning Chen, Professor Institute of Communications Engineering National Chiao Tung University Hsin Chu, Taiwan 3000, R.O.C. Identically distributed summands 27- Central

More information

SOME PROPERTIES OF CONTINUED FRACTIONS. /as, as,...i

SOME PROPERTIES OF CONTINUED FRACTIONS. /as, as,...i SOME ROERTIES OF CONTINUED FRACTIONS. By L. KUIERS and B. MEULENBELD of BAI~DUNG (INDONESIA). w 1. Introduction. Let (1) /as, as,...i be an infinite normal continued fraction, ax, as... being integers

More information

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R.

Ergodic Theorems. Samy Tindel. Purdue University. Probability Theory 2 - MA 539. Taken from Probability: Theory and examples by R. Ergodic Theorems Samy Tindel Purdue University Probability Theory 2 - MA 539 Taken from Probability: Theory and examples by R. Durrett Samy T. Ergodic theorems Probability Theory 1 / 92 Outline 1 Definitions

More information

Gaussian vectors and central limit theorem

Gaussian vectors and central limit theorem Gaussian vectors and central limit theorem Samy Tindel Purdue University Probability Theory 2 - MA 539 Samy T. Gaussian vectors & CLT Probability Theory 1 / 86 Outline 1 Real Gaussian random variables

More information

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT

LOWELL STORES SERVE THRONGS OF LOV PEOPLE ON FRIDAY NIGHT J p M 879 61 p 260 M G W j p : b p pp M M K p b J M G * p P p b p p D W P p b G 14 b p qp j b p p p J p z M- K W W G Gbb Wb M J W W K G J D D b b P P M p p b p p b b p J W ; p jb b p x b p p b b W Pp pp

More information

On Expected Gaussian Random Determinants

On Expected Gaussian Random Determinants On Expected Gaussian Random Determinants Moo K. Chung 1 Department of Statistics University of Wisconsin-Madison 1210 West Dayton St. Madison, WI 53706 Abstract The expectation of random determinants whose

More information

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No

Exhibit 2-9/30/15 Invoice Filing Page 1841 of Page 3660 Docket No xhibit 2-9/3/15 Invie Filing Pge 1841 f Pge 366 Dket. 44498 F u v 7? u ' 1 L ffi s xs L. s 91 S'.e q ; t w W yn S. s t = p '1 F? 5! 4 ` p V -', {} f6 3 j v > ; gl. li -. " F LL tfi = g us J 3 y 4 @" V)

More information

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt

MA5206 Homework 4. Group 4. April 26, ϕ 1 = 1, ϕ n (x) = 1 n 2 ϕ 1(n 2 x). = 1 and h n C 0. For any ξ ( 1 n, 2 n 2 ), n 3, h n (t) ξ t dt MA526 Homework 4 Group 4 April 26, 26 Qn 6.2 Show that H is not bounded as a map: L L. Deduce from this that H is not bounded as a map L L. Let {ϕ n } be an approximation of the identity s.t. ϕ C, sptϕ

More information

Lecture 3 - Expectation, inequalities and laws of large numbers

Lecture 3 - Expectation, inequalities and laws of large numbers Lecture 3 - Expectation, inequalities and laws of large numbers Jan Bouda FI MU April 19, 2009 Jan Bouda (FI MU) Lecture 3 - Expectation, inequalities and laws of large numbersapril 19, 2009 1 / 67 Part

More information

ELEC2400 Signals & Systems

ELEC2400 Signals & Systems ELEC2400 Signals & Systems Chapter 7. Z-Transforms Brett Ninnes brett@newcastle.edu.au. School of Electrical Engineering and Computer Science The University of Newcastle Slides by Juan I. Yu (jiyue@ee.newcastle.edu.au

More information

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i,

1. Tensor of Rank 2 If Φ ij (x, y) satisfies: (a) having four components (9 for 3-D). (b) when the coordinate system is changed from x i to x i, 1. Tensor of Rank 2 If Φ ij (x, y satisfies: (a having four components (9 for 3-D. Φ i j (x 1, x 2 = β i iβ j jφ ij (x 1, x 2. Example 1: ( 1 0 0 1 Φ i j = ( 1 0 0 1 To prove whether this is a tensor or

More information

HOMEPAGE. The. Inside. Beating the MARCH New Faces & Anniversaries. Spring Recipes. Beating the Winter Blues. ADP Rollout

HOMEPAGE. The. Inside. Beating the MARCH New Faces & Anniversaries. Spring Recipes. Beating the Winter Blues. ADP Rollout T ARCH 2015 HOEPAGE A i f l f Oi H i ffili izi i 2 3 4 6 7 8 8 N F & Aivi Si Ri Bi Wi Bl AP Rll G Hl S N! HR C Tivi Bi T xil 89 f i l i v vi ll i fl lik 189! T illi ki; i f fi v i i l l f f i k i fvi lk

More information

FINITE DIFFERENCE SCHEMES WHITH EXACT SPECTRUM FOR SOLVING DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS OF THE FIRST KIND

FINITE DIFFERENCE SCHEMES WHITH EXACT SPECTRUM FOR SOLVING DIFFERENTIAL EQUATIONS WITH BOUNDARY CONDITIONS OF THE FIRST KIND International Journal of Pure and Applied Mathematics Volume 71 No. 1 011, 159-17 FINITE DIFFERENCE SCHEMES WHITH EXACT SPECTRUM FOR SOVING DIFFERENTIA EQUATIONS WITH BOUNDARY CONDITIONS OF THE FIRST KIND

More information

Transforms. Convergence of probability generating functions. Convergence of characteristic functions functions

Transforms. Convergence of probability generating functions. Convergence of characteristic functions functions Transforms For non-negative integer value ranom variables, let the probability generating function g X : [0, 1] [0, 1] be efine by g X (t) = E(t X ). The moment generating function ψ X (t) = E(e tx ) is

More information

Section 9.1. Expected Values of Sums

Section 9.1. Expected Values of Sums Section 9.1 Expected Values of Sums Theorem 9.1 For any set of random variables X 1,..., X n, the sum W n = X 1 + + X n has expected value E [W n ] = E [X 1 ] + E [X 2 ] + + E [X n ]. Proof: Theorem 9.1

More information

T h e C S E T I P r o j e c t

T h e C S E T I P r o j e c t T h e P r o j e c t T H E P R O J E C T T A B L E O F C O N T E N T S A r t i c l e P a g e C o m p r e h e n s i v e A s s es s m e n t o f t h e U F O / E T I P h e n o m e n o n M a y 1 9 9 1 1 E T

More information

A subspace of l 2 (X) without the approximation property

A subspace of l 2 (X) without the approximation property A subspace of l (X) without the approximation property by Christopher Chlebovec A dissertation submitted in partial fulfillment of the requirements for the degree of Master of Science (Mathematics) Department

More information

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x)

12 CHAPTER 1. PRELIMINARIES Lemma 1.3 (Cauchy-Schwarz inequality) Let (; ) be an inner product in < n. Then for all x; y 2 < n we have j(x; y)j (x; x) 1.4. INNER PRODUCTS,VECTOR NORMS, AND MATRIX NORMS 11 The estimate ^ is unbiased, but E(^ 2 ) = n?1 n 2 and is thus biased. An unbiased estimate is ^ 2 = 1 (x i? ^) 2 : n? 1 In x?? we show that the linear

More information

Lecture 14: Multivariate mgf s and chf s

Lecture 14: Multivariate mgf s and chf s Lecture 14: Multivariate mgf s and chf s Multivariate mgf and chf For an n-dimensional random vector X, its mgf is defined as M X (t) = E(e t X ), t R n and its chf is defined as φ X (t) = E(e ıt X ),

More information

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION

THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION K KAWAMURA KODAI MATH J 2 (1979), 337-345 THE STRUCTURE OF MULTIVARIATE POISSON DISTRIBUTION BY KAZUTOMO KAWAMURA Summary In this paper we shall derive a multivariate Poisson distribution and we shall

More information

Temperature Controller E5CB (48 48 mm)

Temperature Controller E5CB (48 48 mm) C ECB ( ) B f f b w v f y f y qk by f b y (,) ww z y v f fw Sy f S y w f y B y ' q PD f Sfy P / F ECB D Dy Dy S P y : ±% f PV P : ±% f PV S P C y V (f v SS) Nb S Nb L ECB@@@ C : y : VC, Q: V (f v SS):

More information

Recall that the Fourier transform (also known as characteristic function) of a random variable always exists, given by. e itx f(x)dx.

Recall that the Fourier transform (also known as characteristic function) of a random variable always exists, given by. e itx f(x)dx. I am going to talk about algebraic calculations of random variables: i.e. how to add, subtract, multiply, divide random variables. A main disadvantage is that complex analysis is used often, but I will

More information

A Central Limit Theorem for the Sum of Generalized Linear and Quadratic Forms. by R. L. Eubank and Suojin Wang Texas A&M University

A Central Limit Theorem for the Sum of Generalized Linear and Quadratic Forms. by R. L. Eubank and Suojin Wang Texas A&M University A Central Limit Theorem for the Sum of Generalized Linear and Quadratic Forms by R. L. Eubank and Suojin Wang Texas A&M University ABSTRACT. A central limit theorem is established for the sum of stochastically

More information

Semester University of Sheffield. School of Mathematics and Statistics

Semester University of Sheffield. School of Mathematics and Statistics University of Sheffield School of Mathematics and Statistics MAS140: Mathematics (Chemical) MAS152: Civil Engineering Mathematics MAS152: Essential Mathematical Skills & Techniques MAS156: Mathematics

More information