Prime Decomposition. Adam Gamzon. 1 Introduction

Size: px
Start display at page:

Download "Prime Decomposition. Adam Gamzon. 1 Introduction"

Transcription

1 Prime Decomposition Adam Gamzon 1 Introduction Let K be a number field, let O K be its ring of integers, and let p Z be a prime. Since every prime of O K lies over a prime in Z, understanding how primes in Z decompose in O K is a starting point to understanding the primes of O K. In most cases, the prime decomposition of p in O K is straightforward to compute by using the following theorem. Theorem 1. Let K = Q(θ) where θ is an algebraic integer whose minimal polynomial is denoted by T (X). If p does not divide [O K : Z[θ]], then we can decompose po K as follows. Let T (X) T i (X) mod p be the decomposition of T into monic irreducible factors in F p [X]. Then po K = p e i i, where p i = (p, T i (θ)). Proof. See [1, Theorem ]. Notice that if there is a power basis, i.e., [O K : Z[θ]] = 1, then Theorem 1 gives a relatively simple way of computing the prime decomposition of any p Z. The problem arises when [O K : Z[θ]] > 1. In this case, Theorem 1 works for all but finitely many primes. If p divides [O K : Z[θ]], it would be nice if we could choose some θ which would give an index [O K : Z[θ ]] relatively prime to p. However, this approach does not work because there are number fields in which O K does not admit a power basis. Example. Let K = Q(θ), where θ is a root of T (X) = X 3 + X X + 8. This is a classic example due to Dedekind of a number field in which O K does not admit a power basis. Using the algorithm that we will introduce, one can show that splits completely in O K. Assuming that we have computed the splitting of in O K, let s show that divides [O K : Z[α]] for all α O K. Suppose does not divide [O K : Z[α]] for some α O K. Let F (X) be the minimal polynomial of α. Then Theorem 1 implies that F (X) factors into three distinct linear terms in F [X] since splits completely in O K. This is a contradiction, however, because there are only two linear polynomials in F [X], namely, X and X + 1. Primes that divide [O K : Z[θ]] for any θ in O K where K = Q(θ) are called essential discriminantal divisors. So is an essential discriminantal divisor in Example. One neat result is that essential discriminantal divisors must be less than or equal to n 1 where n = [K : Q]. To see why this is plausible, consider the case where p splits completely. Then p = n p i where the p i are distinct prime ideals of O K. So to have any hope of applying Theorem 1 for some θ, there had better be at least n distinct linear polynomials in F p [X]. That is, we need p n. 1

2 Factoring Essential Discriminantal Divisors In order to properly handle these essential discriminantal divisors, we will employ the following method of Buchman and Lenstra. Let I p be the radical ideal of po K. Since O K is a Dedekind domain, we know po K = g pe i i for some prime ideals p i O K. Furthermore, we have I p = g p i. Set K j = Ip j + po K. Then the valuation at p i of K j is min(e i, j), that is K j = p min(e i,j) i. Since min(e i, j) min(e i, j 1) for all i, K j 1 divides K j. In fact { 0, if ei j 1, min(e i, j) min(e i, j 1) = 1, if e i j. Hence, if we set J j := K j (K j 1 ) 1, then J j = e i j p i. Observe that J j divides J j 1. So, setting H j := J j 1 (J j ) 1, we get H j = e i =j p i. The idea is that through this sequence of ideal divisions, we have filtered the primes dividing po K by their valuations. Then, letting e = max(e i ), po K = e H j j. So to get the factorization for po K, it suffices to decompose each H j. We now focus on one ideal H j, which we abbreviate as H. Consider the F p -algebra O K /H. Since H is a product of distinct prime ideals, O K /H is a finite separable algebra over F p (i.e., a finite product of finite extensions of fields of F p ). The following result about O K /H leads to an algorithm for splitting H. Proposition 3. Let A be a finite separable F p -algebra. Then there exists an efficient algorithm that either shows that A is a field or finds a nontrivial idempotent in A. Proof. Since A is a finite separable F p -algebra, we have A = A 1 A k for some k where each A i is some finite extension of F p. So for α A, write α = (α 1,..., α k ) where α i A i. Let ϕ : A A be defined by ϕ(x) = x p x and let V := ker ϕ. Note that α V if and only if α p i α i = 0 for all i. That is, α V if and only if α i F p for all i where F p is considered as embedded into A i. Therefore, dim Fp V = k. In particular, dim V = 1 if and only if A is a field. Suppose dim V > 1. We will show that there is some ε such that ε = ε and ε 0 and ε 1. Pick some α = (α 1,..., α k ) in V \ F p (where we now considered F p as embedded in A). Compute the minimum polynomial of α, m α (X). In terms of the α i, m α (X) is the least common multiple of the m αi (X). Furthermore, since α i F p for all i, the m αi (X) are degree j=1

3 1 polynomials for all i. Hence m α (X) is a product of at least two distinct linear polynomials because α V \ F p. Write m α (X) = m 1 (X)m (X) where m 1 (X) and m (X) are nonconstant polynomials in F p [X]. Note that (m 1 (X), m (X)) = 1 since m α (X) is a square-free product of polynomials. So we may write U(X)m 1 (X) + V (X)m (X) = 1 (3.1) for some U(X) and V (X) in F p [X]. Let ε = (Um 1 )(α). Then evaluating (3.1) at α and multiplying by (Um 1 )(α) shows that ε = ε. Since m 1 and m are nonconstant and since (U, m ) = 1 and (V, m 1 ) = 1 by (3.1), ε 0 and ε 1 Now let s use Proposition 3 to develop an algorithm for factoring H. Let A = O K /H. If A is a field then we re done because that means H is a prime ideal. Otherwise, by Proposition 3, there is some nontrivial idempotent ε in O K /H. Let e be any lift of ε. Set H 1 := H + eo K and H := H + (1 e)o K. Note that e(1 e) = e e ε ε mod H 0 mod H, so H 1 H H. We claim that H 1 H = H. To see this, pick any x H. Write x = xe + x(1 e). Since xe eh H 1 H and x(1 e) (1 e)h H 1 H, x is in H 1 H. Hence we have factored H as H 1 H. Moreover, this factorization is nontrivial since otherwise e 1 or 0 mod H. To get the complete decomposition of H, just repeat this process with H 1 and H in place of H. It s easy to see that this procedure will stop after k steps where k is the number of prime factors of H. 3 Application As an application of the algorithm from, let s return to the situation in example and compute the decomposition of O K. In example, we had K = Q(θ), where θ is a root of X 3 + +X X + 8. An integral basis is given by {1, θ, θ+θ }. Let v 1 = 1, v = θ, and v 3 = θ+θ. According to our algorithm, the first step is to compute I. To do this, we use the next result found in [1, Lemma 6.1.6]. Lemma 4. If n = [K : Q] and if j 1 is such that p j n, then the nilradical of O K /po k is equal to the kernel of the map x x pj. So, in general, if {v 1,..., v n } is an integral basis for K/Q then computing the kernel of x x pj is the same as computing the kernel of the matrix (a ij ), where the a ij are given by v pj j = n a ijv i and we think of the a ij as lying in F p. In our case, p = and n = 3 so it suffices to compute the kernel of x x 4. Computing the a ij and reducing modulo gives (a ij ) =

4 This shows that the kernel is trivial, so we conclude that I = O K. Moreover, this means H 1 = O K so we can skip the ideal division part of the algorithm and go straight to computing the factorization of H 1. Let A 1 = O K /H 1. Let v i be the image of v i in A. Then it s easy to check that v 1, v, and v 3 form an F -basis for A 1. Using this basis, one computes the matrix representation of the F -linear map ϕ : A 1 A 1 defined by ϕ(x) = x x to be the zero matrix. Therefore dim(ker ϕ) = 3 so Proposition 3 implies that there is a nontrivial idempotent. In fact, v is one such idempotent. So, letting H 11 = H 1 + v O K and H 1 = H 1 + (v + 1)O K, we have H 1 = H 11 H 1. Computing the multiplication-by-v map on O K /H 1 with respect to the basis {v 1, v, v 3 } gives Similarly, the matrix corresponding to the multiplication-by-(v + 1) map in this basis is From this, we can conclude that dim F O K /H 11 = and dim F O K /H 1 = 1; so H 1 is a prime ideal while the factorization of H 11 remains undetermined. To compute the factorization of H 11, let A 11 = O K /H 11. Note that the images of v 1 and v 3 in A 11, denoted v 1 and v 3, form an F -basis for A 11. Computing ϕ : A 11 A 11 as before shows that this is again the zero map. That is, the kernel is the whole space A 11. Since A 11 is -dimensional over F, this means that A 11 is not a field so we can split it like before. This time, we use v 3 as the nontrivial idempotent. As before, the minimal polynomial for v 3 is X + X. We may, therefore, factor H 11 as H 111 H 11, where and. H 111 = H 11 + v 3 O K H 11 = H 11 + (v 3 + 1)O K. Since O K can factor into at most three prime ideals, H 111 and H 11 must be prime without need for any further calculations. Putting all of this together gives O K = H 1 H 111 H 11 = (, θ + 1) (, θ, θ + ) (, θ θ, θ + ) θ

5 References [1] H. Cohen. A Course in Computational Algebraic Number Theory. Springer-Verlag,

ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND.

ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND. ARITHMETIC IN PURE CUBIC FIELDS AFTER DEDEKIND. IAN KIMING We will study the rings of integers and the decomposition of primes in cubic number fields K of type K = Q( 3 d) where d Z. Cubic number fields

More information

FACTORIZATION OF IDEALS

FACTORIZATION OF IDEALS FACTORIZATION OF IDEALS 1. General strategy Recall the statement of unique factorization of ideals in Dedekind domains: Theorem 1.1. Let A be a Dedekind domain and I a nonzero ideal of A. Then there are

More information

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS KEITH CONRAD A (monic) polynomial in Z[T ], 1. Introduction f(t ) = T n + c n 1 T n 1 + + c 1 T + c 0, is Eisenstein at a prime p when each coefficient

More information

On a Theorem of Dedekind

On a Theorem of Dedekind On a Theorem of Dedekind Sudesh K. Khanduja, Munish Kumar Department of Mathematics, Panjab University, Chandigarh-160014, India. E-mail: skhand@pu.ac.in, msingla79@yahoo.com Abstract Let K = Q(θ) be an

More information

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction

TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS. 1. Introduction TOTALLY RAMIFIED PRIMES AND EISENSTEIN POLYNOMIALS KEITH CONRAD A (monic) polynomial in Z[T ], 1. Introduction f(t ) = T n + c n 1 T n 1 + + c 1 T + c 0, is Eisenstein at a prime p when each coefficient

More information

Computation of a Power Integral Basis of a Pure Cubic Number Field

Computation of a Power Integral Basis of a Pure Cubic Number Field Int. J. Contemp. Math. Sci., Vol. 2, 2007, no. 13, 601-606 Computation of a Power Integral Basis of a Pure Cubic Number Field L houssain EL FADIL Faculté Polydisciplinaire de Ouarzazat Ouarzazat-Morocco

More information

Algebraic number theory

Algebraic number theory Algebraic number theory F.Beukers February 2011 1 Algebraic Number Theory, a crash course 1.1 Number fields Let K be a field which contains Q. Then K is a Q-vector space. We call K a number field if dim

More information

Algorithms for ray class groups and Hilbert class fields

Algorithms for ray class groups and Hilbert class fields (Quantum) Algorithms for ray class groups and Hilbert class fields Sean Hallgren joint with Kirsten Eisentraeger Penn State 1 Quantum Algorithms Quantum algorithms for number theoretic problems: Factoring

More information

A Note on Cyclotomic Integers

A Note on Cyclotomic Integers To the memory of Alan Thorndike, former professor of physics at the University of Puget Sound and a dear friend, teacher and mentor. A Note on Cyclotomic Integers Nicholas Phat Nguyen 1 Abstract. In this

More information

Thus, the integral closure A i of A in F i is a finitely generated (and torsion-free) A-module. It is not a priori clear if the A i s are locally

Thus, the integral closure A i of A in F i is a finitely generated (and torsion-free) A-module. It is not a priori clear if the A i s are locally Math 248A. Discriminants and étale algebras Let A be a noetherian domain with fraction field F. Let B be an A-algebra that is finitely generated and torsion-free as an A-module with B also locally free

More information

Hamburger Beiträge zur Mathematik

Hamburger Beiträge zur Mathematik Hamburger Beiträge zur Mathematik Nr. 712, November 2017 Remarks on the Polynomial Decomposition Law by Ernst Kleinert Remarks on the Polynomial Decomposition Law Abstract: we first discuss in some detail

More information

A BRIEF INTRODUCTION TO LOCAL FIELDS

A BRIEF INTRODUCTION TO LOCAL FIELDS A BRIEF INTRODUCTION TO LOCAL FIELDS TOM WESTON The purpose of these notes is to give a survey of the basic Galois theory of local fields and number fields. We cover much of the same material as [2, Chapters

More information

TC10 / 3. Finite fields S. Xambó

TC10 / 3. Finite fields S. Xambó TC10 / 3. Finite fields S. Xambó The ring Construction of finite fields The Frobenius automorphism Splitting field of a polynomial Structure of the multiplicative group of a finite field Structure of the

More information

Ramification Theory. 3.1 Discriminant. Chapter 3

Ramification Theory. 3.1 Discriminant. Chapter 3 Chapter 3 Ramification Theory This chapter introduces ramification theory, which roughly speaking asks the following question: if one takes a prime (ideal) p in the ring of integers O K of a number field

More information

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d

(1) A frac = b : a, b A, b 0. We can define addition and multiplication of fractions as we normally would. a b + c d The Algebraic Method 0.1. Integral Domains. Emmy Noether and others quickly realized that the classical algebraic number theory of Dedekind could be abstracted completely. In particular, rings of integers

More information

GALOIS GROUPS AS PERMUTATION GROUPS

GALOIS GROUPS AS PERMUTATION GROUPS GALOIS GROUPS AS PERMUTATION GROUPS KEITH CONRAD 1. Introduction A Galois group is a group of field automorphisms under composition. By looking at the effect of a Galois group on field generators we can

More information

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications

Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair. Corrections and clarifications 1 Abstract Algebra, Second Edition, by John A. Beachy and William D. Blair Corrections and clarifications Note: Some corrections were made after the first printing of the text. page 9, line 8 For of the

More information

ABSTRACT NONSINGULAR CURVES

ABSTRACT NONSINGULAR CURVES ABSTRACT NONSINGULAR CURVES Affine Varieties Notation. Let k be a field, such as the rational numbers Q or the complex numbers C. We call affine n-space the collection A n k of points P = a 1, a,..., a

More information

1, for s = σ + it where σ, t R and σ > 1

1, for s = σ + it where σ, t R and σ > 1 DIRICHLET L-FUNCTIONS AND DEDEKIND ζ-functions FRIMPONG A. BAIDOO Abstract. We begin by introducing Dirichlet L-functions which we use to prove Dirichlet s theorem on arithmetic progressions. From there,

More information

Math 711: Lecture of September 7, Symbolic powers

Math 711: Lecture of September 7, Symbolic powers Math 711: Lecture of September 7, 2007 Symbolic powers We want to make a number of comments about the behavior of symbolic powers of prime ideals in Noetherian rings, and to give at least one example of

More information

A division algorithm

A division algorithm A division algorithm Fred Richman Florida Atlantic University Boca Raton, FL 33431 richman@fau.edu Abstract A divisibility test of Arend Heyting, for polynomials over a eld in an intuitionistic setting,

More information

Understanding hard cases in the general class group algorithm

Understanding hard cases in the general class group algorithm Understanding hard cases in the general class group algorithm Makoto Suwama Supervisor: Dr. Steve Donnelly The University of Sydney February 2014 1 Introduction This report has studied the general class

More information

Finite Fields. [Parts from Chapter 16. Also applications of FTGT]

Finite Fields. [Parts from Chapter 16. Also applications of FTGT] Finite Fields [Parts from Chapter 16. Also applications of FTGT] Lemma [Ch 16, 4.6] Assume F is a finite field. Then the multiplicative group F := F \ {0} is cyclic. Proof Recall from basic group theory

More information

Algebraic function fields

Algebraic function fields Algebraic function fields 1 Places Definition An algebraic function field F/K of one variable over K is an extension field F K such that F is a finite algebraic extension of K(x) for some element x F which

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #18 11/07/2013 As usual, all the rings we consider are commutative rings with an identity element. 18.1 Regular local rings Consider a local

More information

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u.

Theorem 5.3. Let E/F, E = F (u), be a simple field extension. Then u is algebraic if and only if E/F is finite. In this case, [E : F ] = deg f u. 5. Fields 5.1. Field extensions. Let F E be a subfield of the field E. We also describe this situation by saying that E is an extension field of F, and we write E/F to express this fact. If E/F is a field

More information

Extended Index. 89f depth (of a prime ideal) 121f Artin-Rees Lemma. 107f descending chain condition 74f Artinian module

Extended Index. 89f depth (of a prime ideal) 121f Artin-Rees Lemma. 107f descending chain condition 74f Artinian module Extended Index cokernel 19f for Atiyah and MacDonald's Introduction to Commutative Algebra colon operator 8f Key: comaximal ideals 7f - listings ending in f give the page where the term is defined commutative

More information

Math 120 HW 9 Solutions

Math 120 HW 9 Solutions Math 120 HW 9 Solutions June 8, 2018 Question 1 Write down a ring homomorphism (no proof required) f from R = Z[ 11] = {a + b 11 a, b Z} to S = Z/35Z. The main difficulty is to find an element x Z/35Z

More information

OSTROWSKI S THEOREM. Contents

OSTROWSKI S THEOREM. Contents OSTROWSKI S THEOREM GEUNHO GIM Contents. Ostrowski s theorem for Q 2. Ostrowski s theorem for number fields 2 3. Ostrowski s theorem for F T ) 4 References 5. Ostrowski s theorem for Q Definition.. A valuation

More information

1 Number Fields Introduction Algebraic Numbers Algebraic Integers Algebraic Integers Modules over Z...

1 Number Fields Introduction Algebraic Numbers Algebraic Integers Algebraic Integers Modules over Z... Contents 1 Number Fields 3 1.1 Introduction............................ 3 1.2 Algebraic Numbers........................ 5 2 Algebraic Integers 7 2.1 Algebraic Integers......................... 7 2.2 Modules

More information

Explicit Methods in Algebraic Number Theory

Explicit Methods in Algebraic Number Theory Explicit Methods in Algebraic Number Theory Amalia Pizarro Madariaga Instituto de Matemáticas Universidad de Valparaíso, Chile amaliapizarro@uvcl 1 Lecture 1 11 Number fields and ring of integers Algebraic

More information

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung

HILBERT l-class FIELD TOWERS OF. Hwanyup Jung Korean J. Math. 20 (2012), No. 4, pp. 477 483 http://dx.doi.org/10.11568/kjm.2012.20.4.477 HILBERT l-class FIELD TOWERS OF IMAGINARY l-cyclic FUNCTION FIELDS Hwanyup Jung Abstract. In this paper we study

More information

p-adic fields Chapter 7

p-adic fields Chapter 7 Chapter 7 p-adic fields In this chapter, we study completions of number fields, and their ramification (in particular in the Galois case). We then look at extensions of the p-adic numbers Q p and classify

More information

4.4 Noetherian Rings

4.4 Noetherian Rings 4.4 Noetherian Rings Recall that a ring A is Noetherian if it satisfies the following three equivalent conditions: (1) Every nonempty set of ideals of A has a maximal element (the maximal condition); (2)

More information

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D.

COMMUNICATIONS IN ALGEBRA, 15(3), (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY. John A. Beachy and William D. COMMUNICATIONS IN ALGEBRA, 15(3), 471 478 (1987) A NOTE ON PRIME IDEALS WHICH TEST INJECTIVITY John A. Beachy and William D. Weakley Department of Mathematical Sciences Northern Illinois University DeKalb,

More information

THE DIFFERENT IDEAL. Then R n = V V, V = V, and V 1 V 2 V KEITH CONRAD 2 V

THE DIFFERENT IDEAL. Then R n = V V, V = V, and V 1 V 2 V KEITH CONRAD 2 V THE DIFFERENT IDEAL KEITH CONRAD. Introduction The discriminant of a number field K tells us which primes p in Z ramify in O K : the prime factors of the discriminant. However, the way we have seen how

More information

Absolute Values and Completions

Absolute Values and Completions Absolute Values and Completions B.Sury This article is in the nature of a survey of the theory of complete fields. It is not exhaustive but serves the purpose of familiarising the readers with the basic

More information

MT5836 Galois Theory MRQ

MT5836 Galois Theory MRQ MT5836 Galois Theory MRQ May 3, 2017 Contents Introduction 3 Structure of the lecture course............................... 4 Recommended texts..................................... 4 1 Rings, Fields and

More information

2.4 Algebra of polynomials

2.4 Algebra of polynomials 2.4 Algebra of polynomials ([1], p.136-142) In this section we will give a brief introduction to the algebraic properties of the polynomial algebra C[t]. In particular, we will see that C[t] admits many

More information

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2

= 1 2x. x 2 a ) 0 (mod p n ), (x 2 + 2a + a2. x a ) 2 8. p-adic numbers 8.1. Motivation: Solving x 2 a (mod p n ). Take an odd prime p, and ( an) integer a coprime to p. Then, as we know, x 2 a (mod p) has a solution x Z iff = 1. In this case we can suppose

More information

Structure of rings. Chapter Algebras

Structure of rings. Chapter Algebras Chapter 5 Structure of rings 5.1 Algebras It is time to introduce the notion of an algebra over a commutative ring. So let R be a commutative ring. An R-algebra is a ring A (unital as always) together

More information

TIGHT CLOSURE IN NON EQUIDIMENSIONAL RINGS ANURAG K. SINGH

TIGHT CLOSURE IN NON EQUIDIMENSIONAL RINGS ANURAG K. SINGH TIGHT CLOSURE IN NON EQUIDIMENSIONAL RINGS ANURAG K. SINGH 1. Introduction Throughout our discussion, all rings are commutative, Noetherian and have an identity element. The notion of the tight closure

More information

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions.

D-MATH Algebra II FS18 Prof. Marc Burger. Solution 26. Cyclotomic extensions. D-MAH Algebra II FS18 Prof. Marc Burger Solution 26 Cyclotomic extensions. In the following, ϕ : Z 1 Z 0 is the Euler function ϕ(n = card ((Z/nZ. For each integer n 1, we consider the n-th cyclotomic polynomial

More information

Uniqueness of Factorization in Quadratic Fields

Uniqueness of Factorization in Quadratic Fields Uniqueness of Factorization in Quadratic Fields Pritam Majumder Supervisors: (i Prof. G. Santhanam, (ii Prof. Nitin Saxena A project presented for the degree of Master of Science Department of Mathematics

More information

Definition For a set F, a polynomial over F with variable x is of the form

Definition For a set F, a polynomial over F with variable x is of the form *6. Polynomials Definition For a set F, a polynomial over F with variable x is of the form a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 1 x + a 0, where a n, a n 1,..., a 1, a 0 F. The a i, 0 i n are the

More information

On Representability of a Finite Local Ring

On Representability of a Finite Local Ring Journal of Algebra 228, 417 427 (2000) doi:10.1006/jabr.1999.8242, available online at http://www.idealibrary.com on On Representability of a Finite Local Ring A. Z. Anan in Departamento de Matemática

More information

Math 145. Codimension

Math 145. Codimension Math 145. Codimension 1. Main result and some interesting examples In class we have seen that the dimension theory of an affine variety (irreducible!) is linked to the structure of the function field in

More information

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION

ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION ALGEBRA I (LECTURE NOTES 2017/2018) LECTURE 9 - CYCLIC GROUPS AND EULER S FUNCTION PAVEL RŮŽIČKA 9.1. Congruence modulo n. Let us have a closer look at a particular example of a congruence relation on

More information

Notes on p-divisible Groups

Notes on p-divisible Groups Notes on p-divisible Groups March 24, 2006 This is a note for the talk in STAGE in MIT. The content is basically following the paper [T]. 1 Preliminaries and Notations Notation 1.1. Let R be a complete

More information

GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS

GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS GENERATING IDEALS IN SUBRINGS OF K[[X]] VIA NUMERICAL SEMIGROUPS SCOTT T. CHAPMAN Abstract. Let K be a field and S be the numerical semigroup generated by the positive integers n 1,..., n k. We discuss

More information

THE ALGEBRAIC GEOMETRY DICTIONARY FOR BEGINNERS. Contents

THE ALGEBRAIC GEOMETRY DICTIONARY FOR BEGINNERS. Contents THE ALGEBRAIC GEOMETRY DICTIONARY FOR BEGINNERS ALICE MARK Abstract. This paper is a simple summary of the first most basic definitions in Algebraic Geometry as they are presented in Dummit and Foote ([1]),

More information

Dedekind Domains. Mathematics 601

Dedekind Domains. Mathematics 601 Dedekind Domains Mathematics 601 In this note we prove several facts about Dedekind domains that we will use in the course of proving the Riemann-Roch theorem. The main theorem shows that if K/F is a finite

More information

1. Algebra 1.5. Polynomial Rings

1. Algebra 1.5. Polynomial Rings 1. ALGEBRA 19 1. Algebra 1.5. Polynomial Rings Lemma 1.5.1 Let R and S be rings with identity element. If R > 1 and S > 1, then R S contains zero divisors. Proof. The two elements (1, 0) and (0, 1) are

More information

5 Dedekind extensions

5 Dedekind extensions 18.785 Number theory I Fall 2016 Lecture #5 09/22/2016 5 Dedekind extensions In this lecture we prove that the integral closure of a Dedekind domain in a finite extension of its fraction field is also

More information

EXPLICIT INTEGRAL BASIS FOR A FAMILY OF SEXTIC FIELD

EXPLICIT INTEGRAL BASIS FOR A FAMILY OF SEXTIC FIELD Gulf Journal of Mathematics Vol 4, Issue 4 (2016) 217-222 EXPLICIT INTEGRAL BASIS FOR A FAMILY OF SEXTIC FIELD M. SAHMOUDI 1 Abstract. Let L be a sextic number field which is a relative quadratic over

More information

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS

THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS THE MINIMAL POLYNOMIAL AND SOME APPLICATIONS KEITH CONRAD. Introduction The easiest matrices to compute with are the diagonal ones. The sum and product of diagonal matrices can be computed componentwise

More information

THE ARITHMETIC OF NUMBER RINGS. Peter Stevenhagen

THE ARITHMETIC OF NUMBER RINGS. Peter Stevenhagen THE ARITHMETIC OF NUMBER RINGS Peter Stevenhagen Abstract. We describe the main structural results on number rings, i.e., integral domains for which the field of fractions is a number field. Whenever possible,

More information

From now on we assume that K = K.

From now on we assume that K = K. Divisors From now on we assume that K = K. Definition The (additively written) free abelian group generated by P F is denoted by D F and is called the divisor group of F/K. The elements of D F are called

More information

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations

Definitions. Notations. Injective, Surjective and Bijective. Divides. Cartesian Product. Relations. Equivalence Relations Page 1 Definitions Tuesday, May 8, 2018 12:23 AM Notations " " means "equals, by definition" the set of all real numbers the set of integers Denote a function from a set to a set by Denote the image of

More information

The most important result in this section is undoubtedly the following theorem.

The most important result in this section is undoubtedly the following theorem. 28 COMMUTATIVE ALGEBRA 6.4. Examples of Noetherian rings. So far the only rings we can easily prove are Noetherian are principal ideal domains, like Z and k[x], or finite. Our goal now is to develop theorems

More information

BENJAMIN LEVINE. 2. Principal Ideal Domains We will first investigate the properties of principal ideal domains and unique factorization domains.

BENJAMIN LEVINE. 2. Principal Ideal Domains We will first investigate the properties of principal ideal domains and unique factorization domains. FINITELY GENERATED MODULES OVER A PRINCIPAL IDEAL DOMAIN BENJAMIN LEVINE Abstract. We will explore classification theory concerning the structure theorem for finitely generated modules over a principal

More information

NOTES ON FINITE FIELDS

NOTES ON FINITE FIELDS NOTES ON FINITE FIELDS AARON LANDESMAN CONTENTS 1. Introduction to finite fields 2 2. Definition and constructions of fields 3 2.1. The definition of a field 3 2.2. Constructing field extensions by adjoining

More information

8. Prime Factorization and Primary Decompositions

8. Prime Factorization and Primary Decompositions 70 Andreas Gathmann 8. Prime Factorization and Primary Decompositions 13 When it comes to actual computations, Euclidean domains (or more generally principal ideal domains) are probably the nicest rings

More information

12. Hilbert Polynomials and Bézout s Theorem

12. Hilbert Polynomials and Bézout s Theorem 12. Hilbert Polynomials and Bézout s Theorem 95 12. Hilbert Polynomials and Bézout s Theorem After our study of smooth cubic surfaces in the last chapter, let us now come back to the general theory of

More information

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35

Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 Honors Algebra 4, MATH 371 Winter 2010 Assignment 4 Due Wednesday, February 17 at 08:35 1. Let R be a commutative ring with 1 0. (a) Prove that the nilradical of R is equal to the intersection of the prime

More information

Topics in linear algebra

Topics in linear algebra Chapter 6 Topics in linear algebra 6.1 Change of basis I want to remind you of one of the basic ideas in linear algebra: change of basis. Let F be a field, V and W be finite dimensional vector spaces over

More information

TROPICAL SCHEME THEORY

TROPICAL SCHEME THEORY TROPICAL SCHEME THEORY 5. Commutative algebra over idempotent semirings II Quotients of semirings When we work with rings, a quotient object is specified by an ideal. When dealing with semirings (and lattices),

More information

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES

MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES MA257: INTRODUCTION TO NUMBER THEORY LECTURE NOTES 2018 57 5. p-adic Numbers 5.1. Motivating examples. We all know that 2 is irrational, so that 2 is not a square in the rational field Q, but that we can

More information

φ(xy) = (xy) n = x n y n = φ(x)φ(y)

φ(xy) = (xy) n = x n y n = φ(x)φ(y) Groups 1. (Algebra Comp S03) Let A, B and C be normal subgroups of a group G with A B. If A C = B C and AC = BC then prove that A = B. Let b B. Since b = b1 BC = AC, there are a A and c C such that b =

More information

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma

Integral Extensions. Chapter Integral Elements Definitions and Comments Lemma Chapter 2 Integral Extensions 2.1 Integral Elements 2.1.1 Definitions and Comments Let R be a subring of the ring S, and let α S. We say that α is integral over R if α isarootofamonic polynomial with coefficients

More information

Polynomials. Chapter 4

Polynomials. Chapter 4 Chapter 4 Polynomials In this Chapter we shall see that everything we did with integers in the last Chapter we can also do with polynomials. Fix a field F (e.g. F = Q, R, C or Z/(p) for a prime p). Notation

More information

SUMS OF UNITS IN SELF-INJECTIVE RINGS

SUMS OF UNITS IN SELF-INJECTIVE RINGS SUMS OF UNITS IN SELF-INJECTIVE RINGS ANJANA KHURANA, DINESH KHURANA, AND PACE P. NIELSEN Abstract. We prove that if no field of order less than n + 2 is a homomorphic image of a right self-injective ring

More information

Primary Decomposition

Primary Decomposition Primary Decomposition p. Primary Decomposition Gerhard Pfister pfister@mathematik.uni-kl.de Departement of Mathematics University of Kaiserslautern Primary Decomposition p. Primary Decomposition:References

More information

IRREDUCIBILITY TESTS IN Q[T ]

IRREDUCIBILITY TESTS IN Q[T ] IRREDUCIBILITY TESTS IN Q[T ] KEITH CONRAD 1. Introduction For a general field F there is no simple way to determine if an arbitrary polynomial in F [T ] is irreducible. Here we will focus on the case

More information

CHARACTERS OF FINITE GROUPS.

CHARACTERS OF FINITE GROUPS. CHARACTERS OF FINITE GROUPS. ANDREI YAFAEV As usual we consider a finite group G and the ground field F = C. Let U be a C[G]-module and let g G. Then g is represented by a matrix [g] in a certain basis.

More information

1.5 The Nil and Jacobson Radicals

1.5 The Nil and Jacobson Radicals 1.5 The Nil and Jacobson Radicals The idea of a radical of a ring A is an ideal I comprising some nasty piece of A such that A/I is well-behaved or tractable. Two types considered here are the nil and

More information

The Fitting Submodule

The Fitting Submodule The Fitting Submodule U. Meierfrankenfeld B. Stellmacher Department of Mathematics, Michigan State University, East Lansing MI 48840 meier@math.msu.edu Mathematisches Seminar, Christian-Albrechts- Universität,

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Section X.55. Cyclotomic Extensions

Section X.55. Cyclotomic Extensions X.55 Cyclotomic Extensions 1 Section X.55. Cyclotomic Extensions Note. In this section we return to a consideration of roots of unity and consider again the cyclic group of roots of unity as encountered

More information

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3...

Algebra Exam Fall Alexander J. Wertheim Last Updated: October 26, Groups Problem Problem Problem 3... Algebra Exam Fall 2006 Alexander J. Wertheim Last Updated: October 26, 2017 Contents 1 Groups 2 1.1 Problem 1..................................... 2 1.2 Problem 2..................................... 2

More information

Algebra Exam, Spring 2017

Algebra Exam, Spring 2017 Algebra Exam, Spring 2017 There are 5 problems, some with several parts. Easier parts count for less than harder ones, but each part counts. Each part may be assumed in later parts and problems. Unjustified

More information

KUMMER S LEMMA KEITH CONRAD

KUMMER S LEMMA KEITH CONRAD KUMMER S LEMMA KEITH CONRAD Let p be an odd prime and ζ ζ p be a primitive pth root of unity In the ring Z[ζ], the pth power of every element is congruent to a rational integer mod p, since (c 0 + c 1

More information

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism

be any ring homomorphism and let s S be any element of S. Then there is a unique ring homomorphism 21. Polynomial rings Let us now turn out attention to determining the prime elements of a polynomial ring, where the coefficient ring is a field. We already know that such a polynomial ring is a UFD. Therefore

More information

5 Dedekind extensions

5 Dedekind extensions 18.785 Number theory I Fall 2017 Lecture #5 09/20/2017 5 Dedekind extensions In this lecture we prove that the integral closure of a Dedekind domain in a finite extension of its fraction field is also

More information

Polynomials, Ideals, and Gröbner Bases

Polynomials, Ideals, and Gröbner Bases Polynomials, Ideals, and Gröbner Bases Notes by Bernd Sturmfels for the lecture on April 10, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra We fix a field K. Some examples of fields

More information

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS

GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS GEOMETRIC CONSTRUCTIONS AND ALGEBRAIC FIELD EXTENSIONS JENNY WANG Abstract. In this paper, we study field extensions obtained by polynomial rings and maximal ideals in order to determine whether solutions

More information

NORMSETS AND DETERMINATION OF UNIQUE FACTORIZATION IN RINGS OF ALGEBRAIC INTEGERS. Jim Coykendall

NORMSETS AND DETERMINATION OF UNIQUE FACTORIZATION IN RINGS OF ALGEBRAIC INTEGERS. Jim Coykendall NORMSETS AND DETERMINATION OF UNIQUE FACTORIZATION IN RINGS OF ALGEBRAIC INTEGERS Jim Coykendall Abstract: The image of the norm map from R to T (two rings of algebraic integers) is a multiplicative monoid

More information

The Kronecker-Weber Theorem

The Kronecker-Weber Theorem The Kronecker-Weber Theorem November 30, 2007 Let us begin with the local statement. Theorem 1 Let K/Q p be an abelian extension. Then K is contained in a cyclotomic extension of Q p. Proof: We give the

More information

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ.

ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ALGEBRAIC GEOMETRY COURSE NOTES, LECTURE 2: HILBERT S NULLSTELLENSATZ. ANDREW SALCH 1. Hilbert s Nullstellensatz. The last lecture left off with the claim that, if J k[x 1,..., x n ] is an ideal, then

More information

ABSOLUTE VALUES AND VALUATIONS

ABSOLUTE VALUES AND VALUATIONS ABSOLUTE VALUES AND VALUATIONS YIFAN WU, wuyifan@umich.edu Abstract. We introduce the basis notions, properties and results of absolute values, valuations, discrete valuation rings and higher unit groups.

More information

ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems

ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems ABC Conjecture Implies Infinitely Many non-x-fibonacci-wieferich Primes A Linear Case of Dynamical Systems Jun-Wen Wayne Peng Department of Mathematics, University of Rochester 3/21/2016 1/40 Motivation

More information

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes.

A Harvard Sampler. Evan Chen. February 23, I crashed a few math classes at Harvard on February 21, Here are notes from the classes. A Harvard Sampler Evan Chen February 23, 2014 I crashed a few math classes at Harvard on February 21, 2014. Here are notes from the classes. 1 MATH 123: Algebra II In this lecture we will make two assumptions.

More information

Division Algebras and Parallelizable Spheres, Part II

Division Algebras and Parallelizable Spheres, Part II Division Algebras and Parallelizable Spheres, Part II Seminartalk by Jerome Wettstein April 5, 2018 1 A quick Recap of Part I We are working on proving the following Theorem: Theorem 1.1. The following

More information

Algebraic number theory Revision exercises

Algebraic number theory Revision exercises Algebraic number theory Revision exercises Nicolas Mascot (n.a.v.mascot@warwick.ac.uk) Aurel Page (a.r.page@warwick.ac.uk) TA: Pedro Lemos (lemos.pj@gmail.com) Version: March 2, 20 Exercise. What is the

More information

Algebraic proofs of Dirichlet s theorem on arithmetic progressions

Algebraic proofs of Dirichlet s theorem on arithmetic progressions Charles University in Prague Faculty of Mathematics and Physics BACHELOR THESIS Martin Čech Algebraic proofs of Dirichlet s theorem on arithmetic progressions Department of Algebra Supervisor of the bachelor

More information

A 4 -SEXTIC FIELDS WITH A POWER BASIS. Daniel Eloff, Blair K. Spearman, and Kenneth S. Williams

A 4 -SEXTIC FIELDS WITH A POWER BASIS. Daniel Eloff, Blair K. Spearman, and Kenneth S. Williams A 4 -SEXTIC FIELDS WITH A POWER BASIS Daniel Eloff, Blair K. Spearman, and Kenneth S. Williams Abstract. An infinite family of monogenic sextic fields with Galois group A 4 is exhibited. 1. Introduction.

More information

Computations/Applications

Computations/Applications Computations/Applications 1. Find the inverse of x + 1 in the ring F 5 [x]/(x 3 1). Solution: We use the Euclidean Algorithm: x 3 1 (x + 1)(x + 4x + 1) + 3 (x + 1) 3(x + ) + 0. Thus 3 (x 3 1) + (x + 1)(4x

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #24 12/03/2013 18.78 Introduction to Arithmetic Geometry Fall 013 Lecture #4 1/03/013 4.1 Isogenies of elliptic curves Definition 4.1. Let E 1 /k and E /k be elliptic curves with distinguished rational points O 1 and

More information

Spring 2016, lecture notes by Maksym Fedorchuk 51

Spring 2016, lecture notes by Maksym Fedorchuk 51 Spring 2016, lecture notes by Maksym Fedorchuk 51 10.2. Problem Set 2 Solution Problem. Prove the following statements. (1) The nilradical of a ring R is the intersection of all prime ideals of R. (2)

More information

Chapter 4. Characters and Gauss sums. 4.1 Characters on finite abelian groups

Chapter 4. Characters and Gauss sums. 4.1 Characters on finite abelian groups Chapter 4 Characters and Gauss sums 4.1 Characters on finite abelian groups In what follows, abelian groups are multiplicatively written, and the unit element of an abelian group A is denoted by 1 or 1

More information