Predicate Logic - Semantic Tableau

Size: px
Start display at page:

Download "Predicate Logic - Semantic Tableau"

Transcription

1 CS402, Spring 2016

2 Informal Construction of a Valid Formula Example 1 A valid formula: x(p(x) q(x)) ( xp(x) xq(x)) ( x(p(x) q(x)) ( xp(x) xq(x))) x(p(x) q(x)), ( xp(x) xq(x)) x(p(x) q(x)), xp(x), xq(x) x(p(x) q(x)), xp(x), q(a) x(p(x) q(x)), p(a), q(a) p(a) q(a), p(a), q(a) p(a), p(a), q(a) q(a), p(a), q(a)

3 Informal Construction of a Valid Formula Note that showing validity with semantic tableau boils down to finding a single counter example. That is, if A is satisfiable, A cannot be valid. xq(x) x q(x) Consequently, we can replace the variable x in xq(x) by a single concrete element, a D (D is the target domain). In other words, we use q(a) instead of xq(x). x(p(x) q(x)), xp(x), xq(x) x(p(x) q(x)), xp(x), q(a) x(p(x) q(x)), p(a), q(a) p(a) q(a), p(a), q(a) p(a), p(a), q(a) q(a), p(a), q(a)

4 Informal Constructon of a Satisfiable Formula Example 2 Satisfiable but not valid: x(p(x) q(x)) ( xp(x) xq(x)) ( x(p(x) q(x)) ( xp(x) xq(x))) x(p(x) q(x)), ( xp(x) xq(x)) x(p(x) q(x)), xp(x), xq(x) x(p(x) q(x)), xp(x), q(a) x(p(x) q(x)), p(a), q(a) p(a) q(a), p(a), q(a) p(a), p(a), q(a) q(a), p(a), q(a) Not satisfiable! What went wrong?

5 Informal Constructon of a Satisfiable Formula What went wrong? We should use different constants for different formulas: it is ok to use q(a) instead of xq(x). However, it is not ok to use the same element a for a different formula xp(x). A formula with universal quantifiers without negation cannot be simply replaced by just one instance. Universal formulas should never be deleted from the node. Universal formulas remain in the all descendant nodes so as to constrain the possible interpretations of every new constant that is introduced.

6 Constraining new constants x(p(x) q(x)), xp(x), xq(x) x(p(x) q(x)), xp(x), q(a) x(p(x) q(x)), p(b), q(a) x(p(x) q(x)), p(a) q(a), p(b), q(a) x(p(x) q(x)), p(b) q(b), p(a) q(a), p(b), q(a)

7 Informal Constructon of a Satisfiable Formula Example 3 Here we go again: x(p(x) q(x)) ( xp(x) xq(x)) x(p(x) q(x)), p(b) q(b), p(a) q(a), p(b), q(a) x(p(x) q(x)), p(b) q(b), p(a), p(b), q(a) x(p(x) q(x)), p(b) q(b), q(a), p(b), q(a) x(p(x) q(x)), p(b), p(a), p(b), q(a) x(p(x) q(x)), q(b), p(a), p(b), q(a)

8 Infinite Construction Let us consider A = A 1 A 2 A 3, where: A 1 = x yp(x, y) A 2 = x p(x, x) A 3 = x, y, z(p(x, y) p(y, z) p(x, z)) The construction of semantic tableau will not terminate. x yp(x, y), A 2, A 3 x yp(x, y), yp(a 1, y), A 2, A 3 x yp(x, y), p(a 1, a 2 ), A 2, A 3 x yp(x, y), yp(a 2, y), p(a 1, a 2 ), A 2, A 3 x yp(x, y), p(a 2, a 3 ), p(a 1, a 2 ), A 2, A 3...

9 Infinite Construction Let us consider A = A 1 A 2 A 3, where: A 1 = x yp(x, y) A 2 = x p(x, x) A 3 = x, y, z(p(x, y) p(y, z) p(x, z)) This defines a countably infinite model (for example, N 0 : consider p as the successor relation). Once we introduce a new constant a i by instantiating y, then x should be also instantiated with that constant a i, which brings in another instantiation of y, which introduces another constant a j, which... Semantic tableau will have an infinite sequence of formulas p(a 1, a 2 ), p(a 2, a 3 ),... It neither closes nor terminates.

10 Infinite Construction Theorem 1 (5.24) A = A 1 A 2 A 3 has no finite model: A 1 = x yp(x, y), A 2 = x p(x, x), A 3 = x, y, z(p(x, y) p(y, z) p(x, z)) Proof. Suppose that A had a finite model. The domain of an interpretation is non-empty so it has at leas one element. By A 1, there is an infinite sequence of elements a 1, a 2,... s.t. ν σi [x a i ][y a j ](p(x, y)) = T for all i and j = i + 1. By A 3, p(a i, a j ) = T for all j > i since it means transitivity. If the model is finite, there exists some k > i such that a k = a i due to pigeon hole principle. For some k > i s.t. a k = a i, p(a i, a k ) = T by A 3. This contradicts A 2 which requires ν σi [x a i ](p(x, x)) = F.

11 Infinite Construction Observations: Semantic tableau is not a decision procedure for validity in the predicate calculus. Note that, without systematic construction, we may not construct a closed semantic tableau even when it is possible. Consider the order of tree expansion in the example below. A 1 A 2 A 3 x(q(x) q(x)) A 1, A 2, A 3, x(q(x) q(x))

12 Formal Construction Formal construction of semantic tableau consists of two steps. 1 Construction rules (α, β rule, γ rule for x, and δ rule for y.) 2 Systematic construction rules, which specify the order of applying rules. Definition 1 (5.25) A literal is closed atomic formula p(a 1,..., a k ) or the negation of such a formula. If a formula has no free variable, it is closed. Therefore, if an atomic formula is closed, all of its arguments are constants. γ γ(a) δ δ(a) xa(x) xa(x) A(a) A(a) xa(x) xa(x) A(a) A(a)

13 Systematic Construction Algorithm The algorithm takes a predicate calculus formula A as input, and produces a semantic tableau T as output. Each node of T, n is labelled with a set of formulas with a pair of sets, W (n) = (U(n), C(n)), where U(n) = {A n1,..., A nk }, and a set of constants, C(n) = {c n1,..., c nm }. Initially, T for φ is a single node n 0, labelled with {φ}, {a 0 }, where a 0 is the first constant in the constant pool. All branches are either: infinite finite and open, finite and closed. T is inductively built by choosing an unmarked leaf l, labelled with (U(l), C(l)), and applying the first applicable rule in the following list:

14 Systematic Construction Algorithm 1 U(l) contains complementary pair of literals: mark l closed. 2 U(l) is not a set of literals: choose A U(l) that is α, β, or δ formula: A is a α formula: create a new node l, labelled with W (l ) = ((U {A}) {A 1, A 2 }, C(l)). A is a β formula: create two new nodes, l and l. Label them with: W (l ) = ((U(l) = {A}) {A 1}, C(l)) W (l ) = ((U(l) = {A}) {A 2}, C(l)) A is a δ formula: create a new node l as a child of l and label it with W (l ) = ((U(l) {A}) {δ(a )}, C(l) {a }), where a is a constant that does not applear in U(l). 3 Let γ l1,..., γ lm U(l) be all the γ formulas in U(l) and let C(l) = {c l1,..., c lk }. Create a new node l and label it with W (l ) = (U(l) { m k i=1 j=1 γ l i (c lj )}, C(l)). However, if U(l) consists only of literals and γ formulas and if U(l ) as constructed would be the same as U(l), do not create node l ; instead, mark the leaf l as open.

15 Soundness Theorem 2 (5.28) Let A be a formula in the predicate calculus and let T be a tableau for A. If T closes, then A is unsatisfiable. Proof. The proof is by induction on the height h of node n. Cases for h = 0, and the inductive cases for α, β formulas is the same as the proof in the propositional calculus. The γ-rule was used: Then U(n) = U 0 xa(x) and U(n ) = U 0 { xa(x), A(a)}. Assume that U(n) is satisfiable with model I, so that ν I (A i ) = T for all A i U 0 (n) and also ν I ( xa(x )) = T. By Thm 5.15, ν I ( xa(x)) = T iff ν σi = T for all assignments σi, in particular for any assignment that assigns the same domain element to x that I does to a. But ν I (A(a)) = T contradicts the inductive hypothesis that U(n ) is unsatisfiable.

16 Soundness Proof. The δ-rule was used: Then U(n) = U 0 { xa(x)} and U(n ) = U 0 {A(a)} for some constant a which does not occur in a formula of U(n). Assume that U(n) is satisfiable and let I = (D, {R 1,..., R n }, {d 1,..., d k }) be a satisfying interpretation. Then ν I ( xa(x)) = T, so for the relation R i assigned to A and for some d D, (d) R i. Extend I to the interpretation I = (D, {R 1,..., R n }, {d 1,..., d k, d}) by assigning d to the constant a. Then ν I (A(a)) = T, and since ν I (U 0 ) = ν I (U 0 ) = T, we can conclude that ν I (U(n )) = T, contradicting the inductive hypothesis that U(n ) is unsatisfiable.

17 Completeness Theorem 3 (5.34) Let A be a valid formula. Then the systematic semantic tableau for A closes. Definition 2 (5.31) Let U be a set of formulas in the predicate calculus. U is a Hintikka set iff the following conditions hold for all formulas A U: If A is a closed atomic formula, either A / U or A / U If A is an α-formula, α 1 U and α 2 U If A is a β-formula, β 1 U or β 2 U If A is a γformulas, γ(α) U for all constants a appearing in formulas in U If A is a δ-formula, δ(a) U for some constant a

18 Completeness Theorem 4 (5.32 ) Let b be an open branch of a systematic tableau and U = n b U(n). The U is a Hintikka set. Lemma 1 (5.33) Hintikka s lemma: Let U be a Hintikka set. Then there is a model for U. Proof of Completeness (Thm 5.34). Let A be a valid formula and suppose that the systematic tableau for A does not close. By Thm 5.32, there is an open branch b s.t. U = U n b U(n) is a Hintikka set. By Lem 5.33, there is a model I for U. But A U so I = A, contradicting the assumption that A is valid.

Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST

Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST Predicate Calculus - Semantic Tableau (2/2) Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Formal construction is explained in two steps

More information

Predicate Logic - Deductive Systems

Predicate Logic - Deductive Systems CS402, Spring 2018 G for Predicate Logic Let s remind ourselves of semantic tableaux. Consider xp(x) xq(x) x(p(x) q(x)). ( xp(x) xq(x) x(p(x) q(x))) xp(x) xq(x), x(p(x) q(x)) xp(x), x(p(x) q(x)) xq(x),

More information

Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST

Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST Propositional Calculus - Semantics (3/3) Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Overview 2.1 Boolean operators 2.2 Propositional formulas 2.3 Interpretations 2.4 Logical Equivalence and substitution

More information

Mathematical Logics. 12. Soundness and Completeness of tableaux reasoning in first order logic. Luciano Serafini

Mathematical Logics. 12. Soundness and Completeness of tableaux reasoning in first order logic. Luciano Serafini 12. Soundness and Completeness of tableaux reasoning in first order logic Fondazione Bruno Kessler, Trento, Italy November 14, 2013 Example of tableaux Example Consider the following formulas: (a) xyz(p(x,

More information

Predicate Logic: Sematics Part 1

Predicate Logic: Sematics Part 1 Predicate Logic: Sematics Part 1 CS402, Spring 2018 Shin Yoo Predicate Calculus Propositional logic is also called sentential logic, i.e. a logical system that deals with whole sentences connected with

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today Today s class will be an introduction

More information

Exercises 1 - Solutions

Exercises 1 - Solutions Exercises 1 - Solutions SAV 2013 1 PL validity For each of the following propositional logic formulae determine whether it is valid or not. If it is valid prove it, otherwise give a counterexample. Note

More information

Propositional and Predicate Logic - V

Propositional and Predicate Logic - V Propositional and Predicate Logic - V Petr Gregor KTIML MFF UK WS 2016/2017 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - V WS 2016/2017 1 / 21 Formal proof systems Hilbert s calculus

More information

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30)

Computational Logic. Davide Martinenghi. Spring Free University of Bozen-Bolzano. Computational Logic Davide Martinenghi (1/30) Computational Logic Davide Martinenghi Free University of Bozen-Bolzano Spring 2010 Computational Logic Davide Martinenghi (1/30) Propositional Logic - sequent calculus To overcome the problems of natural

More information

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method

Overview. CS389L: Automated Logical Reasoning. Lecture 7: Validity Proofs and Properties of FOL. Motivation for semantic argument method Overview CS389L: Automated Logical Reasoning Lecture 7: Validity Proofs and Properties of FOL Agenda for today: Semantic argument method for proving FOL validity Işıl Dillig Important properties of FOL

More information

Propositional Logic: Gentzen System, G

Propositional Logic: Gentzen System, G CS402, Spring 2017 Quiz on Thursday, 6th April: 15 minutes, two questions. Sequent Calculus in G In Natural Deduction, each line in the proof consists of exactly one proposition. That is, A 1, A 2,...,

More information

α-formulas β-formulas

α-formulas β-formulas α-formulas Logic: Compendium http://www.ida.liu.se/ TDDD88/ Andrzej Szalas IDA, University of Linköping October 25, 2017 Rule α α 1 α 2 ( ) A 1 A 1 ( ) A 1 A 2 A 1 A 2 ( ) (A 1 A 2 ) A 1 A 2 ( ) (A 1 A

More information

First-Order Logic. Chapter Overview Syntax

First-Order Logic. Chapter Overview Syntax Chapter 10 First-Order Logic 10.1 Overview First-Order Logic is the calculus one usually has in mind when using the word logic. It is expressive enough for all of mathematics, except for those concepts

More information

KE/Tableaux. What is it for?

KE/Tableaux. What is it for? CS3UR: utomated Reasoning 2002 The term Tableaux refers to a family of deduction methods for different logics. We start by introducing one of them: non-free-variable KE for classical FOL What is it for?

More information

Predicate Calculus - Syntax

Predicate Calculus - Syntax Predicate Calculus - Syntax Lila Kari University of Waterloo Predicate Calculus - Syntax CS245, Logic and Computation 1 / 26 The language L pred of Predicate Calculus - Syntax L pred, the formal language

More information

Predicate Logic. Andreas Klappenecker

Predicate Logic. Andreas Klappenecker Predicate Logic Andreas Klappenecker Predicates A function P from a set D to the set Prop of propositions is called a predicate. The set D is called the domain of P. Example Let D=Z be the set of integers.

More information

Mathematical Logic Propositional Logic - Tableaux*

Mathematical Logic Propositional Logic - Tableaux* Mathematical Logic Propositional Logic - Tableaux* Fausto Giunchiglia and Mattia Fumagalli University of Trento *Originally by Luciano Serafini and Chiara Ghidini Modified by Fausto Giunchiglia and Mattia

More information

Chapter 11: Automated Proof Systems

Chapter 11: Automated Proof Systems Chapter 11: Automated Proof Systems SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems are

More information

First-Order Logic (FOL)

First-Order Logic (FOL) First-Order Logic (FOL) Also called Predicate Logic or Predicate Calculus 2. First-Order Logic (FOL) FOL Syntax variables x, y, z, constants a, b, c, functions f, g, h, terms variables, constants or n-ary

More information

Deductive Systems. Lecture - 3

Deductive Systems. Lecture - 3 Deductive Systems Lecture - 3 Axiomatic System Axiomatic System (AS) for PL AS is based on the set of only three axioms and one rule of deduction. It is minimal in structure but as powerful as the truth

More information

First-Order Predicate Logic. Basics

First-Order Predicate Logic. Basics First-Order Predicate Logic Basics 1 Syntax of predicate logic: terms A variable is a symbol of the form x i where i = 1, 2, 3.... A function symbol is of the form fi k where i = 1, 2, 3... und k = 0,

More information

Propositional Calculus - Deductive Systems

Propositional Calculus - Deductive Systems Propositional Calculus - Deductive Systems Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Deductive proofs (1/3) Suppose we want to know

More information

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig

First-Order Logic First-Order Theories. Roopsha Samanta. Partly based on slides by Aaron Bradley and Isil Dillig First-Order Logic First-Order Theories Roopsha Samanta Partly based on slides by Aaron Bradley and Isil Dillig Roadmap Review: propositional logic Syntax and semantics of first-order logic (FOL) Semantic

More information

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy

Mathematical Logic. Reasoning in First Order Logic. Chiara Ghidini. FBK-IRST, Trento, Italy Reasoning in First Order Logic FBK-IRST, Trento, Italy April 12, 2013 Reasoning tasks in FOL Model checking Question: Is φ true in the interpretation I with the assignment a? Answer: Yes if I = φ[a]. No

More information

CS 486: Applied Logic Lecture 7, February 11, Compactness. 7.1 Compactness why?

CS 486: Applied Logic Lecture 7, February 11, Compactness. 7.1 Compactness why? CS 486: Applied Logic Lecture 7, February 11, 2003 7 Compactness 7.1 Compactness why? So far, we have applied the tableau method to propositional formulas and proved that this method is sufficient and

More information

Propositional and Predicate Logic - IV

Propositional and Predicate Logic - IV Propositional and Predicate Logic - IV Petr Gregor KTIML MFF UK ZS 2015/2016 Petr Gregor (KTIML MFF UK) Propositional and Predicate Logic - IV ZS 2015/2016 1 / 19 Tableau method (from the previous lecture)

More information

17.1 Correctness of First-Order Tableaux

17.1 Correctness of First-Order Tableaux Applied Logic Lecture 17: Correctness and Completeness of First-Order Tableaux CS 4860 Spring 2009 Tuesday, March 24, 2009 Now that we have introduced a proof calculus for first-order logic we have to

More information

Version January Please send comments and corrections to

Version January Please send comments and corrections to Mathematical Logic for Computer Science Second revised edition, Springer-Verlag London, 2001 Answers to Exercises Mordechai Ben-Ari Department of Science Teaching Weizmann Institute of Science Rehovot

More information

AAA615: Formal Methods. Lecture 2 First-Order Logic

AAA615: Formal Methods. Lecture 2 First-Order Logic AAA615: Formal Methods Lecture 2 First-Order Logic Hakjoo Oh 2017 Fall Hakjoo Oh AAA615 2017 Fall, Lecture 2 September 24, 2017 1 / 29 First-Order Logic An extension of propositional logic with predicates,

More information

Formal (Natural) Deduction for Predicate Calculus

Formal (Natural) Deduction for Predicate Calculus Formal (Natural) Deduction for Predicate Calculus Lila Kari University of Waterloo Formal (Natural) Deduction for Predicate Calculus CS245, Logic and Computation 1 / 42 Formal deducibility for predicate

More information

3 Propositional Logic

3 Propositional Logic 3 Propositional Logic 3.1 Syntax 3.2 Semantics 3.3 Equivalence and Normal Forms 3.4 Proof Procedures 3.5 Properties Propositional Logic (25th October 2007) 1 3.1 Syntax Definition 3.0 An alphabet Σ consists

More information

Predicate Calculus - Semantics 1/4

Predicate Calculus - Semantics 1/4 Predicate Calculus - Semantics 1/4 Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Introduction to predicate calculus (1/2) Propositional logic (sentence logic) dealt quite satisfactorily with sentences

More information

Introduction to Logic in Computer Science: Autumn 2007

Introduction to Logic in Computer Science: Autumn 2007 Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Tableaux for First-order Logic The next part of

More information

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2)

Syntax of FOL. Introduction to Logic in Computer Science: Autumn Tableaux for First-order Logic. Syntax of FOL (2) Syntax of FOL Introduction to Logic in Computer Science: Autumn 2007 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam The syntax of a language defines the way in which

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Spring Quarter 2010 Wright State University, Dayton, OH, U.S.A. Final version. Contents 1 Propositional Logic

More information

Chapter 11: Automated Proof Systems (1)

Chapter 11: Automated Proof Systems (1) Chapter 11: Automated Proof Systems (1) SYSTEM RS OVERVIEW Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. Automated systems

More information

Exercises for the Logic Course

Exercises for the Logic Course Exercises for the Logic Course First Order Logic Course Web Page http://www.inf.unibz.it/~artale/dml/dml.htm Computer Science Free University of Bozen-Bolzano December 22, 2017 1 Exercises 1.1 Formalisation

More information

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017

3. The Logic of Quantified Statements Summary. Aaron Tan August 2017 3. The Logic of Quantified Statements Summary Aaron Tan 28 31 August 2017 1 3. The Logic of Quantified Statements 3.1 Predicates and Quantified Statements I Predicate; domain; truth set Universal quantifier,

More information

Propositional Calculus - Soundness & Completeness of H

Propositional Calculus - Soundness & Completeness of H Propositional Calculus - Soundness & Completeness of H Moonzoo Kim CS Dept. KAIST moonzoo@cs.kaist.ac.kr 1 Review Goal of logic To check whether given a formula Á is valid To prove a given formula Á `

More information

A Tableau Calculus for Minimal Modal Model Generation

A Tableau Calculus for Minimal Modal Model Generation M4M 2011 A Tableau Calculus for Minimal Modal Model Generation Fabio Papacchini 1 and Renate A. Schmidt 2 School of Computer Science, University of Manchester Abstract Model generation and minimal model

More information

Induction on Failing Derivations

Induction on Failing Derivations Induction on Failing Derivations Technical Report PL-Sep13 September 2013, with addenda from Spring 2016 ay Ligatti Department of Computer Science and Engineering University of South Florida Abstract A

More information

First-Order Logic. Resolution

First-Order Logic. Resolution First-Order Logic Resolution 1 Resolution for predicate logic Gilmore s algorithm is correct and complete, but useless in practice. We upgrade resolution to make it work for predicate logic. 2 Recall:

More information

Prefixed Tableaus and Nested Sequents

Prefixed Tableaus and Nested Sequents Prefixed Tableaus and Nested Sequents Melvin Fitting Dept. Mathematics and Computer Science Lehman College (CUNY), 250 Bedford Park Boulevard West Bronx, NY 10468-1589 e-mail: melvin.fitting@lehman.cuny.edu

More information

Description Logics. Deduction in Propositional Logic. franconi. Enrico Franconi

Description Logics. Deduction in Propositional Logic.   franconi. Enrico Franconi (1/20) Description Logics Deduction in Propositional Logic Enrico Franconi franconi@cs.man.ac.uk http://www.cs.man.ac.uk/ franconi Department of Computer Science, University of Manchester (2/20) Decision

More information

2-4: The Use of Quantifiers

2-4: The Use of Quantifiers 2-4: The Use of Quantifiers The number x + 2 is an even integer is not a statement. When x is replaced by 1, 3 or 5 the resulting statement is false. However, when x is replaced by 2, 4 or 6 the resulting

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Winter Quarter 2011 Wright State University, Dayton, OH, U.S.A. [final version: 03/10/2011] Contents 1 Propositional

More information

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic

CHAPTER 10. Gentzen Style Proof Systems for Classical Logic CHAPTER 10 Gentzen Style Proof Systems for Classical Logic Hilbert style systems are easy to define and admit a simple proof of the Completeness Theorem but they are difficult to use. By humans, not mentioning

More information

Some Rewriting Systems as a Background of Proving Methods

Some Rewriting Systems as a Background of Proving Methods Some Rewriting Systems as a Background of Proving Methods Katalin Pásztor Varga Department of General Computer Science Eötvös Loránd University e-mail: pkata@ludens.elte.hu Magda Várterész Institute of

More information

Lecture 13: Soundness, Completeness and Compactness

Lecture 13: Soundness, Completeness and Compactness Discrete Mathematics (II) Spring 2017 Lecture 13: Soundness, Completeness and Compactness Lecturer: Yi Li 1 Overview In this lecture, we will prvoe the soundness and completeness of tableau proof system,

More information

Computational Logic. Recall of First-Order Logic. Damiano Zanardini

Computational Logic. Recall of First-Order Logic. Damiano Zanardini Computational Logic Recall of First-Order Logic Damiano Zanardini UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid damiano@fi.upm.es Academic

More information

Propositional Logic Language

Propositional Logic Language Propositional Logic Language A logic consists of: an alphabet A, a language L, i.e., a set of formulas, and a binary relation = between a set of formulas and a formula. An alphabet A consists of a finite

More information

CS156: The Calculus of Computation Zohar Manna Winter 2010

CS156: The Calculus of Computation Zohar Manna Winter 2010 Page 3 of 35 Page 4 of 35 quantifiers CS156: The Calculus of Computation Zohar Manna Winter 2010 Chapter 2: First-Order Logic (FOL) existential quantifier x. F [x] there exists an x such that F [x] Note:

More information

Classical Propositional Logic

Classical Propositional Logic The Language of A Henkin-style Proof for Natural Deduction January 16, 2013 The Language of A Henkin-style Proof for Natural Deduction Logic Logic is the science of inference. Given a body of information,

More information

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008

Chapter 3: Propositional Calculus: Deductive Systems. September 19, 2008 Chapter 3: Propositional Calculus: Deductive Systems September 19, 2008 Outline 1 3.1 Deductive (Proof) System 2 3.2 Gentzen System G 3 3.3 Hilbert System H 4 3.4 Soundness and Completeness; Consistency

More information

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures

Formal Logic: Quantifiers, Predicates, and Validity. CS 130 Discrete Structures Formal Logic: Quantifiers, Predicates, and Validity CS 130 Discrete Structures Variables and Statements Variables: A variable is a symbol that stands for an individual in a collection or set. For example,

More information

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cesare Tinelli tinelli@cs.uiowa.edu Department of Computer Science The University of Iowa Report No. 02-03 May 2002 i Cooperation

More information

Propositional Resolution Introduction

Propositional Resolution Introduction Propositional Resolution Introduction (Nilsson Book Handout) Professor Anita Wasilewska CSE 352 Artificial Intelligence Propositional Resolution Part 1 SYNTAX dictionary Literal any propositional VARIABLE

More information

Handout #7 Predicate Logic Trees

Handout #7 Predicate Logic Trees Handout #7 Predicate Logic Trees Predicate trees: Decomposition Rules Negated Existential Decomposition ( D) ( x)p ( x) P Existential Decomposition ( D) ( x)p P(a/x) where a is an individual constant (name)

More information

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson

Predicate Calculus. Formal Methods in Verification of Computer Systems Jeremy Johnson Predicate Calculus Formal Methods in Verification of Computer Systems Jeremy Johnson Outline 1. Motivation 1. Variables, quantifiers and predicates 2. Syntax 1. Terms and formulas 2. Quantifiers, scope

More information

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker

CSCE 222 Discrete Structures for Computing. Predicate Logic. Dr. Hyunyoung Lee. !!!!! Based on slides by Andreas Klappenecker CSCE 222 Discrete Structures for Computing Predicate Logic Dr. Hyunyoung Lee Based on slides by Andreas Klappenecker 1 Predicates A function P from a set D to the set Prop of propositions is called a predicate.

More information

1 FUNDAMENTALS OF LOGIC NO.10 HERBRAND THEOREM Tatsuya Hagino hagino@sfc.keio.ac.jp lecture URL https://vu5.sfc.keio.ac.jp/slide/ 2 So Far Propositional Logic Logical connectives (,,, ) Truth table Tautology

More information

First-order resolution for CTL

First-order resolution for CTL First-order resolution for Lan Zhang, Ullrich Hustadt and Clare Dixon Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK {Lan.Zhang, U.Hustadt, CLDixon}@liverpool.ac.uk Abstract

More information

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati

CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati CS 514, Mathematics for Computer Science Mid-semester Exam, Autumn 2017 Department of Computer Science and Engineering IIT Guwahati Important 1. No questions about the paper will be entertained during

More information

A Description Logic with Concrete Domains and a Role-forming Predicate Operator

A Description Logic with Concrete Domains and a Role-forming Predicate Operator A Description Logic with Concrete Domains and a Role-forming Predicate Operator Volker Haarslev University of Hamburg, Computer Science Department Vogt-Kölln-Str. 30, 22527 Hamburg, Germany http://kogs-www.informatik.uni-hamburg.de/~haarslev/

More information

Lloyd-Topor Completion and General Stable Models

Lloyd-Topor Completion and General Stable Models Lloyd-Topor Completion and General Stable Models Vladimir Lifschitz and Fangkai Yang Department of Computer Science The University of Texas at Austin {vl,fkyang}@cs.utexas.edu Abstract. We investigate

More information

Propositional Logic: Models and Proofs

Propositional Logic: Models and Proofs Propositional Logic: Models and Proofs C. R. Ramakrishnan CSE 505 1 Syntax 2 Model Theory 3 Proof Theory and Resolution Compiled at 11:51 on 2016/11/02 Computing with Logic Propositional Logic CSE 505

More information

Two hours. Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE

Two hours. Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE COMP 60332 Two hours Examination definition sheet is available at the back of the examination. UNIVERSITY OF MANCHESTER SCHOOL OF COMPUTER SCIENCE Automated Reasoning and Verification Date: Wednesday 30th

More information

Automated Reasoning Lecture 5: First-Order Logic

Automated Reasoning Lecture 5: First-Order Logic Automated Reasoning Lecture 5: First-Order Logic Jacques Fleuriot jdf@inf.ac.uk Recap Over the last three lectures, we have looked at: Propositional logic, semantics and proof systems Doing propositional

More information

Fuzzy Description Logics

Fuzzy Description Logics Fuzzy Description Logics 1. Introduction to Description Logics Rafael Peñaloza Rende, January 2016 Literature Description Logics Baader, Calvanese, McGuinness, Nardi, Patel-Schneider (eds.) The Description

More information

Introduction to Sets and Logic (MATH 1190)

Introduction to Sets and Logic (MATH 1190) Introduction to Sets Logic () Instructor: Email: shenlili@yorku.ca Department of Mathematics Statistics York University Sept 18, 2014 Outline 1 2 Tautologies Definition A tautology is a compound proposition

More information

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers

Transparencies to accompany Rosen, Discrete Mathematics and Its Applications Section 1.3. Section 1.3 Predicates and Quantifiers Section 1.3 Predicates and Quantifiers A generalization of propositions - propositional functions or predicates.: propositions which contain variables Predicates become propositions once every variable

More information

Outline. Formale Methoden der Informatik First-Order Logic for Forgetters. Why PL1? Why PL1? Cont d. Motivation

Outline. Formale Methoden der Informatik First-Order Logic for Forgetters. Why PL1? Why PL1? Cont d. Motivation Outline Formale Methoden der Informatik First-Order Logic for Forgetters Uwe Egly Vienna University of Technology Institute of Information Systems Knowledge-Based Systems Group Motivation Syntax of PL1

More information

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008)

Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Department of Computer Science University at Albany, State University of New York Solutions to Sample Discrete Mathematics Examination I (Spring 2008) Problem 1: Suppose A, B, C and D are arbitrary sets.

More information

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York

CS 250/251 Discrete Structures I and II Section 005 Fall/Winter Professor York CS 250/251 Discrete Structures I and II Section 005 Fall/Winter 2013-2014 Professor York Practice Quiz March 10, 2014 CALCULATORS ALLOWED, SHOW ALL YOUR WORK 1. Construct the power set of the set A = {1,2,3}

More information

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST

Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST Propositional Calculus - Hilbert system H Moonzoo Kim CS Division of EECS Dept. KAIST moonzoo@cs.kaist.ac.kr http://pswlab.kaist.ac.kr/courses/cs402-07 1 Review Goal of logic To check whether given a formula

More information

Proving Completeness for Nested Sequent Calculi 1

Proving Completeness for Nested Sequent Calculi 1 Proving Completeness for Nested Sequent Calculi 1 Melvin Fitting abstract. Proving the completeness of classical propositional logic by using maximal consistent sets is perhaps the most common method there

More information

Introduction to Logic in Computer Science: Autumn 2006

Introduction to Logic in Computer Science: Autumn 2006 Introduction to Logic in Computer Science: Autumn 2006 Ulle Endriss Institute for Logic, Language and Computation University of Amsterdam Ulle Endriss 1 Plan for Today The first part of the course will

More information

Part I: Propositional Calculus

Part I: Propositional Calculus Logic Part I: Propositional Calculus Statements Undefined Terms True, T, #t, 1 False, F, #f, 0 Statement, Proposition Statement/Proposition -- Informal Definition Statement = anything that can meaningfully

More information

Computational Logic. Standardization of Interpretations. Damiano Zanardini

Computational Logic. Standardization of Interpretations. Damiano Zanardini Computational Logic Standardization of Interpretations Damiano Zanardini UPM European Master in Computational Logic (EMCL) School of Computer Science Technical University of Madrid damiano@fi.upm.es Academic

More information

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing

Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing Cesare Tinelli (tinelli@cs.uiowa.edu) Department of Computer Science The University of Iowa Iowa City, IA, USA Abstract. We propose

More information

First-Order Theorem Proving and Vampire

First-Order Theorem Proving and Vampire First-Order Theorem Proving and Vampire Laura Kovács 1,2 and Martin Suda 2 1 TU Wien 2 Chalmers Outline Introduction First-Order Logic and TPTP Inference Systems Saturation Algorithms Redundancy Elimination

More information

Saturation up to Redundancy for Tableau and Sequent Calculi

Saturation up to Redundancy for Tableau and Sequent Calculi Saturation up to Redundancy for Tableau and Sequent Calculi Martin Giese Dept. of Computer Science University of Oslo Norway Oslo, June 13, 2008 p.1/30 Acknowledgment This work was done during my employment

More information

Logic for Computer Scientists

Logic for Computer Scientists Logic for Computer Scientists Pascal Hitzler http://www.pascal-hitzler.de CS 499/699 Lecture, Winter Quarter 2012 Wright State University, Dayton, OH, U.S.A. [version: 03/01/2012] Contents 1 Propositional

More information

Discrete Mathematics

Discrete Mathematics Department of Mathematics National Cheng Kung University 2008 2.4: The use of Quantifiers Definition (2.5) A declarative sentence is an open statement if 1) it contains one or more variables, and 1 ) quantifier:

More information

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory

Motivation. CS389L: Automated Logical Reasoning. Lecture 10: Overview of First-Order Theories. Signature and Axioms of First-Order Theory Motivation CS389L: Automated Logical Reasoning Lecture 10: Overview of First-Order Theories Işıl Dillig Last few lectures: Full first-order logic In FOL, functions/predicates are uninterpreted (i.e., structure

More information

Paucity, abundance, and the theory of number: Online Appendices

Paucity, abundance, and the theory of number: Online Appendices Paucity, abundance, and the theory of number: Online Appendices Daniel Harbour Language, Volume 90, Number 1, March 2014, pp. s1-s4 (Article) Published by Linguistic Society of America DOI: https://doi.org/10.1353/lan.2014.0019

More information

CHAPTER 10. Predicate Automated Proof Systems

CHAPTER 10. Predicate Automated Proof Systems CHAPTER 10 ch10 Predicate Automated Proof Systems We define and discuss here a Rasiowa and Sikorski Gentzen style proof system QRS for classical predicate logic. The propositional version of it, the RS

More information

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo

Predicate Logic. CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo Predicate Logic CSE 191, Class Note 02: Predicate Logic Computer Sci & Eng Dept SUNY Buffalo c Xin He (University at Buffalo) CSE 191 Discrete Structures 1 / 22 Outline 1 From Proposition to Predicate

More information

Incomplete version for students of easllc2012 only. 6.6 The Model Existence Game 99

Incomplete version for students of easllc2012 only. 6.6 The Model Existence Game 99 98 First-Order Logic 6.6 The Model Existence Game In this section we learn a new game associated with trying to construct a model for a sentence or a set of sentences. This is of fundamental importance

More information

Logic Part I: Classical Logic and Its Semantics

Logic Part I: Classical Logic and Its Semantics Logic Part I: Classical Logic and Its Semantics Max Schäfer Formosan Summer School on Logic, Language, and Computation 2007 July 2, 2007 1 / 51 Principles of Classical Logic classical logic seeks to model

More information

arxiv: v1 [cs.lo] 8 Jan 2013

arxiv: v1 [cs.lo] 8 Jan 2013 Lloyd-Topor Completion and General Stable Models Vladimir Lifschitz and Fangkai Yang Department of Computer Science The University of Texas at Austin {vl,fkyang}@cs.utexas.edu arxiv:1301.1394v1 [cs.lo]

More information

4 Predicate / First Order Logic

4 Predicate / First Order Logic 4 Predicate / First Order Logic 4.1 Syntax 4.2 Substitutions 4.3 Semantics 4.4 Equivalence and Normal Forms 4.5 Unification 4.6 Proof Procedures 4.7 Implementation of Proof Procedures 4.8 Properties First

More information

A tableau-based decision procedure for a branching-time interval temporal logic

A tableau-based decision procedure for a branching-time interval temporal logic A tableau-based decision procedure for a branching-time interval temporal logic Davide Bresolin Angelo Montanari Dipartimento di Matematica e Informatica Università degli Studi di Udine {bresolin, montana}@dimi.uniud.it

More information

I thank the author of the examination paper on which sample paper is based. VH

I thank the author of the examination paper on which sample paper is based. VH I thank the author of the examination paper on which sample paper is based. VH 1. (a) Which of the following expressions is a sentence of L 1 or an abbreviation of one? If an expression is neither a sentence

More information

Propositional logic. Programming and Modal Logic

Propositional logic. Programming and Modal Logic Propositional logic Programming and Modal Logic 2006-2007 4 Contents Syntax of propositional logic Semantics of propositional logic Semantic entailment Natural deduction proof system Soundness and completeness

More information

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form.

Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Logic as a Tool Chapter 4: Deductive Reasoning in First-Order Logic 4.4 Prenex normal form. Skolemization. Clausal form. Valentin Stockholm University October 2016 Revision: CNF and DNF of propositional

More information

CTL-RP: A Computational Tree Logic Resolution Prover

CTL-RP: A Computational Tree Logic Resolution Prover 1 -RP: A Computational Tree Logic Resolution Prover Lan Zhang a,, Ullrich Hustadt a and Clare Dixon a a Department of Computer Science, University of Liverpool Liverpool, L69 3BX, UK E-mail: {Lan.Zhang,

More information

INTRODUCTION TO LOGIC

INTRODUCTION TO LOGIC INTRODUCTION TO LOGIC 6 Natural Deduction Volker Halbach There s nothing you can t prove if your outlook is only sufficiently limited. Dorothy L. Sayers http://www.philosophy.ox.ac.uk/lectures/ undergraduate_questionnaire

More information

Handout Proof Methods in Computer Science

Handout Proof Methods in Computer Science Handout Proof Methods in Computer Science Sebastiaan A. Terwijn Institute of Logic, Language and Computation University of Amsterdam Plantage Muidergracht 24 1018 TV Amsterdam the Netherlands terwijn@logic.at

More information

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1)

Introduction to Predicate Logic Part 1. Professor Anita Wasilewska Lecture Notes (1) Introduction to Predicate Logic Part 1 Professor Anita Wasilewska Lecture Notes (1) Introduction Lecture Notes (1) and (2) provide an OVERVIEW of a standard intuitive formalization and introduction to

More information