Research Statement Katherine Walsh October 2013

Size: px
Start display at page:

Download "Research Statement Katherine Walsh October 2013"

Transcription

1 My research is in the area of topology, specifically in knot theory. The bulk of my research has been on the patterns in the coefficients of the colored Jones polynomial. The colored Jones polynomial,j K,N (q), is a knot invariant of a knot K that assigns to each knot a sequence of Laurent polynomials indexed by N 2. When N = 2, we get the Jones polynomial. We usually think of the N-colored Jones polynomial as either the Jones polynomial of a linear combination of i-cablings of the knot for 0 i N 1 or as the evaluation in the Temperley-Lieb algebra of the knot diagram decorated with the N 1 st Jones- Wenzl idempotent. One of the main open questions about the colored Jones polynomial is how to relate it to the geometry of the knot. One such relation is the following hyperbolic volume conjecture. Conjecture 1 ([Mur10], Kashaev-Murakami-Murakami). For any hyperbolic knot K, log J K,N (e 2πi/N ) 2π lim N N = vol(s 3 \K) where J K,N (e 2πi/N ) is the normalized Colored Jones Polynomial of a knot K evaluated at an N th root of unity and vol(s 3 \K) is the volume of the unique complete hyperbolic Riemannian metric on the knot complement. The hyperbolic volume conjecture has been proved for various knots and knot families include the figure 8 knot and torus knots but is still open for many other knots and links. In [Das], Dasbach and Lin related the first and last two coefficients of the original Jones polynomial to the the volume of the knot in the following way: Theorem 0.1 (Dasback, Lin). Volume-ish Theorem: For an alternating, prime, nontorus knot K let J K,2 (q) = a n q n + + a m q m be the Jones polynomial of K. Then 2v 8 (max( a m 1, a n+1 ) 1) Vol(S 3 K) 10v 3 ( a n+1 + a m 1 1). Here, v is the volume of an ideal regular hyperbolic tetrahedron and v is the volume of an ideal regular hyperbolic octahedron. They also proved that the first two and last two coefficients of the Jones Polynomial where also the first and last two coefficients of the N-colored Jones polynomial for all N and conjectured that for some knots the first and last N coefficents of the N-colored Jones polynomial are the same, up to sign, as the first N coefficients of the k-colored Jones polynomial for all k > N. We will discuss this further in section 3. These types of theorems led us to begin looking more deeply in to what the coefficients of the colored Jones polynomial can tell us about the knot. 1

2 Katherine Walsh Research Statement 1 October 2013 Patterns in the Coefficients of the Colored Jones Polynomial When studying the coefficients of the colored Jones polynomial, I first looked at patterns in the entire set of coefficients. To be able to visualize these patterns, I used a formula initially proved by Habiro and reproved by Masbaum in [Mas03] to calculate the colored Jones polynomial of the figure 8 knot and twist knots and then plotted the coefficients of these polynomials. The plot of the coefficients for the 95th colored Jones polynomial of the figure 8 knot and the 30th colored Jones polynomial of the knot 52 are below. (The plot has the degree of the term on the x axis and the coefficient on the y axis. Degrees were shifted by multiplying by q M for some M so that all the degrees were positive.) (a) Coefficients of the 95th Colored Jones Polynomial for the Figure Eight Knot (b) Coefficients of the 30th Colored Jones Polynomial for the Knot 52 Figure 1 This led me to the following conjectures about the basic shape of the plot of the coefficients of the N th colored Jones polynomial. 1. In the middle, the coefficients of JK,N are approximately periodic with period N. 2. There is a sine wave like oscillation with an increasing amplitude on the first and last quarter of the coefficients. 3. We can see that the oscillation persists throughout the entire polynomial. The amplitude starts small, grow steadily and then levels off in the middle and then goes back down in a similar manner. I also looked at the growth rate of the maximum coefficients of each colored Jones polynomial of a knot. The maximum coefficients of the polynomials seemed to grow exponentially at a rate related to the hyperbolic volume of the knot. 2

3 2 A formula for the Colored Jones Polynomial of a (1, r 1, 2p 1 pretzel knots Much of my research has been centered on trying to gain insight on where these patterns come from. This first led me to use the techniques from [Mas03] to find a formula for the colored Jones polynomial of pretzel knots of the form (1, r 1, 2p 1) in order to have a larger class of knots for which I could easily calculate the colored Jones polynomial for large values of N. c 1 c 2 c 3 c n Figure 2: A (c 1, c 2,..., c n ) Pretzel Knot. A box with a c i represents c i half twists. A pretzel knot or link is usually described by P(c 1, c 2,... c n ) where each c i is an integer representing the number of half twists within that section of the knot. These twisted parts are drawn vertically. Positive c i correspond with positive half twists, while negative c i correspond with negative half twists. See Figure 2. We consider pretzel knots of the form P (1, 2p 1, r 1). Many of the knots with a small number of crossings can be expressed as a pretzel knot of this form. There are only 4 knots with up to 9 crossings tht can be expressed as twsit knots but 15 that can be written in this way. Following the techniques of Masbaum in [Mas03] we can find the following formula for the colored Jones polynomial. Theorem 2.1. A pretzel knot of the form K p,r = P (1, 2p 1, r 1) has the colored Jones polynomial Here J N (K p,r, a 2 ) = N 1 = N 1 n=0 ( 1)n[ N+n N n 1 c n,p = [ N+n n=0 c n,p N 1 n 1 (a a 1 ) n where µ i = ( 1) i A i2 +2i and, ] c n,p {2n+1}!{n}! {1} ] µ n n k=0 δ(2k; n, n)r 2k n,n,2k ([k]!) 2 [2k]! {2n+1}! {n}!{1} 1 n (a a 1 ) 2n k=0 ( 1)k(r+1) [2k+1] [n+k+1]![n k]! µr/2 2k. n ( 1) k µ p [n]! 2k [2k + 1] [n + k + 1]![n k]!, k=0 {n} = a n a n, [n] = an a n a a 1 3

4 [ ] n := k [n]! [k]![n k]!. Corollary 2.2. When r is even this reduces to J n (K p,r, a 2 ) = N 1 n=0 [ ] N + n ( 1) n N n 1 c n,p {2n + 1}! c {1} n,r/2. Corollary 2.3. When r is odd this reduces to N 1 [ ] N + n {2n + 1}!{n}! J n (K p,r, a 2 ) = ( 1) n µ 4p n c n,p N 1 n (a a 1 ) 2n {1} n=0 n k=0 µ 2k r 2 [2k + 1] [n + k + 1]![n k]! The formula for the case where r is even was independently proven by Garoufalidis and Koutschan in [GK12]. Using this formula, we are able to more quickly calculate the colored Jones polynomial for many knots with up to 9 crossings. 3 The Head and Tail and Higher Order Stability Given a sequence of Laurent polynomials, we say the head of this polynomial exists if the first N coefficients (of the highest order terms) of the N th polynomial in the sequence are the same as the first N coefficients of the k th polynomial for all k N. The tail of the sequence of polynomials, if it exists, is the stabilized sequences of the coefficients of the lowest terms. In [DL06, AD11, Arm11], Dasbach and Armond proved that the head and tail of the colored Jones exist for alternating and adequate knots and depend on the reduced checkerboard graphs of the knot diagrams. For example, for the figure 8 knot, we know the that first coefficients stabilize to the pentagonal number sequence. By this, I mean that for the figure 8 knot, Φ 0 = (1 q n ) = n=1 k= ( 1) k q k 2 (3k 1). In the table below, I have listed out the first 16 coefficients of the N-colored Jones polynomial for the figure 8 knot for N = 3, 4 and 5. We see that the first N + 1 coefficients of the N-colored Jones polynomial are the same as the first N + 1 coefficients of Φ 0. In [GL11], Garoufalidis and Le independently proved that the head and tail of the colored Jones polynomial exist for alternating knots while proving (for alternating knots) a stronger version of this stability. In particular, they showed the following property displayed below for the figure eight knot holds for all alternating links: 4

5 Φ N = N = N = Since we know all of Φ 0, we can subtract it from the shifted colored Jones polynomials. This gives us N + 1 leading zeros. Shifting these sequences back so that they start with a non-zero term, we can see that they again stabilize. The sequence they stabilize to is Φ 1. Garoufalidis and Le proved that we can continue this process indefinitely and the sequences, Φ n, will continue to stabilize. Φ N = N = N = I call the sequence Φ 1 the neck of the tail or the tailneck of the colored Jones polynomial of the figure 8 knot. m 1 m 2 m 3 Figure 3: A trefoil knot with its checkerboard graph. I calculated the tailneck of all three strand pretzel knots with negative twists in each region see Figure 3. The m i represent the number of crossings in each section. As it is drawn, each m i = 1. (If m 1 = 2 and the others are 1, we get the figure 8 knot.) Theorem 3.1. The tailneck of knots with reduce to the three cycle is: n=1 (1 qn ), i.e. the pentagonal numbers sequence, if all m i = 1 (The only knot satisfying this is the trefoil). n=1 (1 qn ) n=1 (1 qn ) +, i.e. the pentagonal numbers plus the partial sum of 1 q the pentagonal numbers, if two m i = 1 and one is 2 or more. n=1 (1 qn n=1 ) + 2 (1 qn ), i.e. the pentagonal numbers plus the 2 times the 1 q partial sum of the pentagonal numbers, if one m i = 1 and two are 2 or more. 5

6 n=1 (1 qn n=1 ) + 3 (1 qn ), i.e. the pentagonal numbers plus the 3 times the 1 q partial sum of the pentagonal numbers, if all m i 2. This theorem gives us stabilization of length one less that that guarenteed in [GL11] but is consistent with the stabilization that appears to hold for these knots. 4 Future Work 4.1 The Middle Coefficients In my future work, I hope to continue to study these sorts of patterns in the coefficients of the colored Jones polynomial with an ultimate goal of gaining insight about the patterns I originally discovered. I would still like to understand the middle coefficients of the colored Jones polynomial better. In particular, I would like to find a better way to describe the pattern visible in the coefficients and prove the properties of the observed pattern. Since I have only been able to calculate the coefficients of the colored Jones for relatively simple knots and a relatively low number of colors, there may be other patterns for other knots. I would to understand why there is a period N oscillation in the coefficients. I hope to be able to relate the mth coefficient of the N colored Jones polynomial to the (m + N)th coefficient. In addition to looking at the oscillation, I would like to look at the magnitude of the highest coefficients in the oscillation and the maximum coefficient overall. Preliminary tests suggest that the growth rate of the maximum coefficient is related to the hyperbolic volume of the knot. I would like to find a way to study the maximum coefficient in order to see if this is in fact true. It seems that for the figure 8 knot, the maximum coefficient occurs in the middle (the constant term). I would like to prove this property and see what other knots it holds for. 4.2 Ways to Evaluate the Colored Jones Polynomial In order to prove the above conjectures, I would like to find new formulas for evaluating the colored Jones polynomial and gain a better understanding of other formulas and ways to calculate the colored Jones polynomial. I want to try to extend the formula I found for certain pretzel knots to other families of knots and see if there is an easier way to prove the formula in the case where r is even. I would also like to consider using matrices for computing the colored Jones polynomial. The hope is that this type of calculation will allow us understand how local changes (like adding a single crossing to a twist region) change to colored Jones polynomial, or the stabilized sequences related to it. 6

7 4.3 A Large Number of Twists While considering the stability of the colored Jones sequence, I found that having a large number of twists in each twist region leads to more stability. I would like to see if I can connect this idea of having a large number or twists to the work of Rozansky in [Roz10] which shows that we can think of the Jones-Wenzl idempotent as an infinite number of twists. I hope to find some connection between these two ideas. References [AD11] C. Armond and O. T. Dasbach. Rogers-Ramanujan type identities and the head and tail of the colored Jones polynomial. ArXiv e-prints, June [Arm11] C. Armond. The head and tail conjecture for alternating knots. ArXiv e-prints, December [Das] Dasbach, Oliver T.,Lin, Xiao-Song. A volumish theorem for the Jones polynomial of alternating knots. Pacific Journal of Mathematics, 231. [DL06] [GK12] [GL11] O. Dasbach and X.-S. Lin. On the head and the tail of the colored Jones polynomial. Compos. Math., 5: , S. Garoufalidis and C. Koutschan. Irreducibility of q-difference operators and the knot 7 4. ArXiv e-prints, November S. Garoufalidis and T. T. Q. Le. Nahm sums, stability and the colored Jones polynomial. ArXiv e-prints, December [Mas03] G. Masbaum. Skein-theoretical derivation of some formulas of Habiro. Algebr. Geom. Topol., 3: , [Mur10] H. Murakami. An Introduction to the Volume Conjecture. ArXiv e-prints, January [Roz10] L. Rozansky. An infinite torus braid yields a categorified Jones-Wenzl projector. ArXiv e-prints, May

Patterns and Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

Patterns and Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts 5000 10 000 15 000 3 10 12 2 10 12 1 10 12 Patterns and Stability in the Coefficients of the Colored Jones Polynomial 1 10 12 2 10 12 Advisor: Justin Roberts 3 10 12 The Middle Coefficients of the Colored

More information

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts

Advancement to Candidacy. Patterns in the Coefficients of the Colored Jones Polynomial. Katie Walsh Advisor: Justin Roberts 5000 10 000 15 000 3 10 12 2 10 12 1 10 12 Patterns in the Coefficients of the Colored Jones Polynomial 1 10 12 Advisor: Justin Roberts 2 10 12 3 10 12 Introduction Knots and Knot Invariants The Jones

More information

Patterns and Higher-Order Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Hall

Patterns and Higher-Order Stability in the Coefficients of the Colored Jones Polynomial. Katie Walsh Hall 5000 10 000 15 000 3 10 12 2 10 12 1 10 12 Patterns and Higher-Order Stability in the Coefficients of the Colored Jones Polynomial 1 10 12 Katie Walsh Hall 2 10 12 3 10 12 The Colored Jones Polynomial

More information

Geometric structures of 3-manifolds and quantum invariants

Geometric structures of 3-manifolds and quantum invariants Geometric structures of 3-manifolds and quantum invariants Effie Kalfagianni Michigan State University ETH/Zurich, EKPA/Athens, APTH/Thessalonikh, June 2017 Effie Kalfagianni (MSU) J 1 / 21 Settings and

More information

Jones polynomials and incompressible surfaces

Jones polynomials and incompressible surfaces Jones polynomials and incompressible surfaces joint with D. Futer and J. Purcell Geometric Topology in Cortona (in honor of Riccardo Benedetti for his 60th birthday), Cortona, Italy, June 3-7, 2013 David

More information

DENSITY SPECTRA FOR KNOTS. In celebration of Józef Przytycki s 60th birthday

DENSITY SPECTRA FOR KNOTS. In celebration of Józef Przytycki s 60th birthday DENSITY SPECTRA FOR KNOTS ABHIJIT CHAMPANERKAR, ILYA KOFMAN, AND JESSICA S. PURCELL Abstract. We recently discovered a relationship between the volume density spectrum and the determinant density spectrum

More information

A JONES SLOPES CHARACTERIZATION OF ADEQUATE KNOTS

A JONES SLOPES CHARACTERIZATION OF ADEQUATE KNOTS A JONES SLOPES CHARACTERIZATION OF ADEQUATE KNOTS EFSTRATIA KALFAGIANNI Abstract. We establish a characterization of adequate knots in terms of the degree of their colored Jones polynomial. We show that,

More information

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology

Hyperbolic Knots and the Volume Conjecture II: Khov. II: Khovanov Homology Hyperbolic Knots and the Volume Conjecture II: Khovanov Homology Mathematics REU at Rutgers University 2013 July 19 Advisor: Professor Feng Luo, Department of Mathematics, Rutgers University Overview 1

More information

arxiv: v2 [math.gt] 2 Mar 2015

arxiv: v2 [math.gt] 2 Mar 2015 THE AJ CONJECTURE FOR CABLES OF TWO-BRIDGE KNOTS NATHAN DRUIVENGA arxiv:14121053v2 [mathgt] 2 Mar 2015 Abstract The AJ-conjecture for a knot K S 3 relates the A-polynomial and the colored Jones polynomial

More information

Twist Numbers of Links from the Jones Polynomial

Twist Numbers of Links from the Jones Polynomial Twist Numbers of Links from the Jones Polynomial Mathew Williamson August 26, 2005 Abstract A theorem of Dasbach and Lin s states that the twist number of any alternating knot is the sum of the absolute

More information

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME

A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME A NOTE ON QUANTUM 3-MANIFOLD INVARIANTS AND HYPERBOLIC VOLUME EFSTRATIA KALFAGIANNI Abstract. For a closed, oriented 3-manifold M and an integer r > 0, let τ r(m) denote the SU(2) Reshetikhin-Turaev-Witten

More information

The Satellite crossing number conjecture for cables of knots

The Satellite crossing number conjecture for cables of knots The Satellite crossing number conjecture for cables of knots Alexander Stoimenow Department of Mathematical Sciences, KAIST April 25, 2009 KMS Meeting Aju University Contents Crossing number Satellites

More information

Alexander polynomial, finite type invariants and volume of hyperbolic knots

Alexander polynomial, finite type invariants and volume of hyperbolic knots ISSN 1472-2739 (on-line) 1472-2747 (printed) 1111 Algebraic & Geometric Topology Volume 4 (2004) 1111 1123 Published: 25 November 2004 ATG Alexander polynomial, finite type invariants and volume of hyperbolic

More information

On the growth of Turaev-Viro 3-manifold invariants

On the growth of Turaev-Viro 3-manifold invariants On the growth of Turaev-Viro 3-manifold invariants E. Kalfagianni (based on work w. R. Detcherry and T. Yang) Michigan State University Redbud Topology Conference, OSU, April 018 E. Kalfagianni (MSU) J

More information

Polynomials in knot theory. Rama Mishra. January 10, 2012

Polynomials in knot theory. Rama Mishra. January 10, 2012 January 10, 2012 Knots in the real world The fact that you can tie your shoelaces in several ways has inspired mathematicians to develop a deep subject known as knot theory. mathematicians treat knots

More information

Seungwon Kim and Ilya Kofman. Turaev Surfaces

Seungwon Kim and Ilya Kofman. Turaev Surfaces Seungwon Kim and Ilya Kofman Turaev Surfaces Chapter 1 Turaev Surfaces 1.1 Introduction The two most famous knot invariants, the Alexander polynomial (1923) and the Jones polynomial (1984), mark paradigm

More information

On links with cyclotomic Jones polynomials

On links with cyclotomic Jones polynomials On links with cyclotomic Jones polynomials Abhijit Champanerkar Department of Mathematics and Statistics University of South Alabama Ilya Kofman Department of Mathematics College of Staten Island, City

More information

Generalised Rogers Ramanujan identities and arithmetics. Ole Warnaar School of Mathematics and Physics

Generalised Rogers Ramanujan identities and arithmetics. Ole Warnaar School of Mathematics and Physics Generalised Rogers Ramanujan identities and arithmetics Ole Warnaar School of Mathematics and Physics Based on joint work with Nick Bartlett Michael Griffin Ken Ono Eric Rains History and motivation The

More information

Volume Conjecture: Refined and Categorified

Volume Conjecture: Refined and Categorified Volume Conjecture: Refined and Categorified Sergei Gukov based on: hep-th/0306165 (generalized volume conjecture) with T.Dimofte, arxiv:1003.4808 (review/survey) with H.Fuji and P.Sulkowski, arxiv:1203.2182

More information

QUASI-ALTERNATING LINKS AND POLYNOMIAL INVARIANTS

QUASI-ALTERNATING LINKS AND POLYNOMIAL INVARIANTS QUASI-ALTERNATING LINKS AND POLYNOMIAL INVARIANTS MASAKAZU TERAGAITO Abstract. In this note, we survey several criteria for knots and links to be quasi-alternating by using polynomial invariants such as

More information

arxiv: v1 [math.gt] 25 Feb 2017

arxiv: v1 [math.gt] 25 Feb 2017 Partially abelian representations of knot groups Yunhi Cho Department of Mathematics, University of Seoul, Seoul, Korea Seokbeom Yoon Department of Mathematical Sciences, Seoul National University, Seoul

More information

Straight Number and Volume

Straight Number and Volume October 13, 2018 nicholas.owad@oist.jp nick.owad.org Knots and Diagrams Basics A knot is an embedded circle in S 3. A knot diagram is a projection into 2 dimensions. Knots and Diagrams Straight Diagram

More information

STAVROS GAROUFALIDIS AND THOMAS W. MATTMAN

STAVROS GAROUFALIDIS AND THOMAS W. MATTMAN THE A-POLYNOMIAL OF THE ( 2, 3, 3 + 2n) PRETZEL KNOTS STAVROS GAROUFALIDIS AND THOMAS W. MATTMAN Abstract. We show that the A-polynomial A n of the 1-parameter family of pretzel knots K n = ( 2, 3,3+ 2n)

More information

Modular forms and Quantum knot invariants

Modular forms and Quantum knot invariants Modular forms and Quantum knot invariants Kazuhiro Hikami (Kyushu University), Jeremy Lovejoy (CNRS, Université Paris 7), Robert Osburn (University College Dublin) March 11 16, 2018 1 Overview A modular

More information

Invariants of Turaev genus one links

Invariants of Turaev genus one links Invariants of Turaev genus one links Adam Lowrance - Vassar College Oliver Dasbach - Louisiana State University March 9, 2017 Philosophy 1 Start with a family of links F and a link invariant Inv(L). 2

More information

Optimistic limits of the colored Jones polynomials

Optimistic limits of the colored Jones polynomials Optimistic limits of the colored Jones polynomials Jinseok Cho and Jun Murakami arxiv:1009.3137v9 [math.gt] 9 Apr 2013 October 31, 2018 Abstract We show that the optimistic limits of the colored Jones

More information

The Three-Variable Bracket Polynomial for Reduced, Alternating Links

The Three-Variable Bracket Polynomial for Reduced, Alternating Links Rose-Hulman Undergraduate Mathematics Journal Volume 14 Issue 2 Article 7 The Three-Variable Bracket Polynomial for Reduced, Alternating Links Kelsey Lafferty Wheaton College, Wheaton, IL, kelsey.lafferty@my.wheaton.edu

More information

On the Mahler measure of Jones polynomials under twisting

On the Mahler measure of Jones polynomials under twisting On the Mahler measure of Jones polynomials under twisting Abhijit Champanerkar Department of Mathematics, Barnard College, Columbia University Ilya Kofman Department of Mathematics, Columbia University

More information

Homological representation formula of some quantum sl 2 invariants

Homological representation formula of some quantum sl 2 invariants Homological representation formula of some quantum sl 2 invariants Tetsuya Ito (RIMS) 2015 Jul 20 First Encounter to Quantum Topology: School and Workshop Tetsuya Ito (RIMS) Homological representation

More information

Super-A-polynomials of Twist Knots

Super-A-polynomials of Twist Knots Super-A-polynomials of Twist Knots joint work with Ramadevi and Zodinmawia to appear soon Satoshi Nawata Perimeter Institute for Theoretical Physics Aug 28 2012 Satoshi Nawata (Perimeter) Super-A-poly

More information

arxiv: v1 [math.gt] 2 Jun 2016

arxiv: v1 [math.gt] 2 Jun 2016 CONVERTING VIRTUAL LINK DIAGRAMS TO NORMAL ONES NAOKO KAMADA arxiv:1606.00667v1 [math.gt] 2 Jun 2016 Abstract. A virtual link diagram is called normal if the associated abstract link diagram is checkerboard

More information

Some distance functions in knot theory

Some distance functions in knot theory Some distance functions in knot theory Jie CHEN Division of Mathematics, Graduate School of Information Sciences, Tohoku University 1 Introduction In this presentation, we focus on three distance functions

More information

ON THE CHARACTERISTIC AND DEFORMATION VARIETIES OF A KNOT

ON THE CHARACTERISTIC AND DEFORMATION VARIETIES OF A KNOT ON THE CHARACTERISTIC AND DEFORMATION VARIETIES OF A KNOT STAVROS GAROUFALIDIS Dedicated to A. Casson on the occasion of his 60th birthday Abstract. The colored Jones function of a knot is a sequence of

More information

Matthew Hogancamp: Research Statement

Matthew Hogancamp: Research Statement Matthew Hogancamp: Research Statement Introduction I am interested in low dimensional topology, representation theory, and categorification, especially the categorification of structures related to quantum

More information

Knots, computers, conjectures. Slavik Jablan

Knots, computers, conjectures. Slavik Jablan Knots, computers, conjectures Slavik Jablan Hyperbolic volumes Family p q (joint work with Lj. Radovic) Hyperbolic volumes Family of Lorenz knots 6*-(2p+1).(2q).-2.2.-2 Adequacy: markers and state diagrams

More information

Knot polynomials, homological invariants & topological strings

Knot polynomials, homological invariants & topological strings Knot polynomials, homological invariants & topological strings Ramadevi Pichai Department of Physics, IIT Bombay Talk at STRINGS 2015 Plan: (i) Knot polynomials from Chern-Simons gauge theory (ii) Our

More information

ON POSITIVITY OF KAUFFMAN BRACKET SKEIN ALGEBRAS OF SURFACES

ON POSITIVITY OF KAUFFMAN BRACKET SKEIN ALGEBRAS OF SURFACES ON POSITIVITY OF KAUFFMAN BRACKET SKEIN ALGEBRAS OF SURFACES THANG T. Q. LÊ Abstract. We show that the Chebyshev polynomials form a basic block of any positive basis of the Kauffman bracket skein algebras

More information

On composite twisted torus knots. Dedicated to Professor Akio Kawauchi for his 60th birthday

On composite twisted torus knots. Dedicated to Professor Akio Kawauchi for his 60th birthday On composite twisted torus knots by Kanji Morimoto Dedicated to Professor Akio Kawauchi for his 60th birthday Department of IS and Mathematics, Konan University Okamoto 8-9-1, Higashi-Nada, Kobe 658-8501,

More information

A topological description of colored Alexander invariant

A topological description of colored Alexander invariant A topological description of colored Alexander invariant Tetsuya Ito (RIMS) 2015 March 26 Low dimensional topology and number theory VII Tetsuya Ito (RIMS) Colored Alexnader invariant 2015 March 1 / 27

More information

THE SLOPE CONJECTURE FOR MONTESINOS KNOTS

THE SLOPE CONJECTURE FOR MONTESINOS KNOTS THE SLOPE CONJECTURE FOR MONTESINOS KNOTS STAVROS GAROUFALIDIS, CHRISTINE RUEY SHAN LEE, AND ROLAND VAN DER VEEN Abstract. The Slope Conjecture relates the degree of the colored Jones polynomial of a knot

More information

KNOT POLYNOMIALS. ttp://knotebook.org (ITEP) September 21, ITEP, Moscow. September 21, / 73

KNOT POLYNOMIALS. ttp://knotebook.org (ITEP) September 21, ITEP, Moscow. September 21, / 73 http://knotebook.org ITEP, Moscow September 21, 2015 ttp://knotebook.org (ITEP) September 21, 2015 1 / 73 H K R (q A) A=q N = Tr R P exp A K SU(N) September 21, 2015 2 / 73 S = κ 4π d 3 x Tr (AdA + 2 )

More information

TORUS KNOT AND MINIMAL MODEL

TORUS KNOT AND MINIMAL MODEL TORUS KNOT AND MINIMAL MODEL KAZUHIRO HIKAMI AND ANATOL N. KIRILLOV Abstract. We reveal an intimate connection between the quantum knot invariant for torus knot T s, t and the character of the minimal

More information

Geometric Estimates from spanning surfaces of knots

Geometric Estimates from spanning surfaces of knots Geometric Estimates from spanning surfaces of knots joint w/ Stephan Burton (MSU) Michigan State University Knots in Hellas, Olymbia, Greece, July 18, 2016 Burton-Kalfagianni (MSU) J 1 / 20 Knot complement:

More information

NON-TRIVIALITY OF GENERALIZED ALTERNATING KNOTS

NON-TRIVIALITY OF GENERALIZED ALTERNATING KNOTS Journal of Knot Theory and Its Ramifications c World Scientific Publishing Company NON-TRIVIALITY OF GENERALIZED ALTERNATING KNOTS MAKOTO OZAWA Natural Science Faculty, Faculty of Letters, Komazawa University,

More information

Quantum knot invariants

Quantum knot invariants Garoufalidis Res Math Sci (2018) 5:11 https://doi.org/10.1007/s40687-018-0127-3 RESEARCH Quantum knot invariants Stavros Garoufalidis * Correspondence: stavros@math.gatech.edu School of Mathematics, Georgia

More information

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona

Number Theory, Algebra and Analysis. William Yslas Vélez Department of Mathematics University of Arizona Number Theory, Algebra and Analysis William Yslas Vélez Department of Mathematics University of Arizona O F denotes the ring of integers in the field F, it mimics Z in Q How do primes factor as you consider

More information

SYMMETRIC LINKS AND CONWAY SUMS: VOLUME AND JONES POLYNOMIAL

SYMMETRIC LINKS AND CONWAY SUMS: VOLUME AND JONES POLYNOMIAL SYMMETRIC LINKS AND CONWAY SUMS: VOLUME AND JONES POLYNOMIAL DAVID FUTER, EFSTRATIA KALFAGIANNI, AND JESSICA S. PURCELL Abstract. We obtain bounds on hyperbolic volume for periodic links and Conway sums

More information

Relationships between Braid Length and the Number of Braid Strands

Relationships between Braid Length and the Number of Braid Strands The University of San Francisco USF Scholarship: a digital repository @ Gleeson Library Geschke Center Mathematics College of Arts and Sciences 2007 Relationships between Braid Length and the Number of

More information

Complexity of Knots and Integers FAU Math Day

Complexity of Knots and Integers FAU Math Day Complexity of Knots and Integers FAU Math Day April 5, 2014 Part I: Lehmer s question Integers Integers Properties: Ordering (total ordering)..., 3, 2, 1, 0, 1, 2, 3,..., 10,... Integers Properties: Size

More information

Kazuhiro Ichihara. Dehn Surgery. Nara University of Education

Kazuhiro Ichihara. Dehn Surgery. Nara University of Education , 2009. 7. 9 Cyclic and finite surgeries on Montesinos knots Kazuhiro Ichihara Nara University of Education This talk is based on K. Ichihara and I.D. Jong Cyclic and finite surgeries on Montesinos knots

More information

arxiv: v1 [math.gt] 4 May 2018

arxiv: v1 [math.gt] 4 May 2018 The action of full twist on the superpolynomial for torus knots Keita Nakagane Abstract. We show, using Mellit s recent results, that Kálmán s full twist formula for the HOMFLY polynomial can be generalized

More information

Categorifying quantum knot invariants

Categorifying quantum knot invariants Categorifying quantum knot invariants Ben Webster U. of Oregon November 26, 2010 Ben Webster (U. of Oregon) Categorifying quantum knot invariants November 26, 2010 1 / 26 This talk is online at http://pages.uoregon.edu/bwebster/rims-iii.pdf.

More information

arxiv: v4 [math.gt] 23 Mar 2018

arxiv: v4 [math.gt] 23 Mar 2018 NORMAL AND JONES SURFACES OF KNOTS EFSTRATIA KALFAGIANNI AND CHRISTINE RUEY SHAN LEE arxiv:1702.06466v4 [math.gt] 23 Mar 2018 Abstract. We describe a normal surface algorithm that decides whether a knot,

More information

The geometry of cluster algebras

The geometry of cluster algebras The geometry of cluster algebras Greg Muller February 17, 2013 Cluster algebras (the idea) A cluster algebra is a commutative ring generated by distinguished elements called cluster variables. The set

More information

On the Visibility of Achirality of Alternating Knots

On the Visibility of Achirality of Alternating Knots University of Geneva August 22nd, 2014 Busan, Korea Definition A knot K S 3 is achiral there is an orientation reversing diffeomorphism φ of S 3 s.t. φ(k) = K, φ is a mirror diffeomorphism of K When orienting

More information

Problems on Low-dimensional Topology, 2017

Problems on Low-dimensional Topology, 2017 Problems on Low-dimensional Topology, 2017 Edited by Tomotada Ohtsuki 1 and Tetsuya Ito 2 This is a list of open problems on low-dimensional topology with expositions of their history, background, significance,

More information

p-coloring Classes of Torus Knots

p-coloring Classes of Torus Knots p-coloring Classes of Torus Knots Anna-Lisa Breiland Layla Oesper Laura Taalman Abstract We classify by elementary methods the p-colorability of torus knots, and prove that every p-colorable torus knot

More information

Cabling Procedure for the HOMFLY Polynomials

Cabling Procedure for the HOMFLY Polynomials Cabling Procedure for the HOMFLY Polynomials Andrey Morozov In collaboration with A. Anokhina ITEP, MSU, Moscow 1 July, 2013, Erice Andrey Morozov (ITEP, MSU, Moscow) Cabling procedure 1 July, 2013, Erice

More information

Do Super Cats Make Odd Knots?

Do Super Cats Make Odd Knots? Do Super Cats Make Odd Knots? Sean Clark MPIM Oberseminar November 5, 2015 Sean Clark Do Super Cats Make Odd Knots? November 5, 2015 1 / 10 ODD KNOT INVARIANTS Knots WHAT IS A KNOT? (The unknot) (The Trefoil

More information

Intrinsic geometry and the invariant trace field of hyperbolic 3-manifolds

Intrinsic geometry and the invariant trace field of hyperbolic 3-manifolds Intrinsic geometry and the invariant trace field of hyperbolic 3-manifolds Anastasiia Tsvietkova University of California, Davis Joint with Walter Neumann, based on earlier joint work with Morwen Thistlethwaite

More information

Research Statement. Gabriel Islambouli

Research Statement. Gabriel Islambouli Research Statement Gabriel Islambouli Introduction My research is focused on low dimensional topology. In particular, I am interested in the interaction between smooth 4-manifolds, mapping class groups

More information

arxiv: v1 [math.gt] 5 Aug 2015

arxiv: v1 [math.gt] 5 Aug 2015 HEEGAARD FLOER CORRECTION TERMS OF (+1)-SURGERIES ALONG (2, q)-cablings arxiv:1508.01138v1 [math.gt] 5 Aug 2015 KOUKI SATO Abstract. The Heegaard Floer correction term (d-invariant) is an invariant of

More information

NATHAN M. DUNFIELD, STAVROS GAROUFALIDIS, ALEXANDER SHUMAKOVITCH, AND MORWEN THISTLETHWAITE

NATHAN M. DUNFIELD, STAVROS GAROUFALIDIS, ALEXANDER SHUMAKOVITCH, AND MORWEN THISTLETHWAITE BEHAVIOR OF KNOT INVARIANTS UNDER GENUS 2 MUTATION NATHAN M. DUNFIELD, STAVROS GAROUFALIDIS, ALEXANDER SHUMAKOVITCH, AND MORWEN THISTLETHWAITE Abstract. Genus 2 mutation is the process of cutting a 3-manifold

More information

Mutation and the colored Jones polynomial

Mutation and the colored Jones polynomial Journal of Gökova Geometry Topology Volume 3 (2009) 44 78 Mutation and the colored Jones polynomial Alexander Stoimenow and Toshifumi Tanaka with appendices by Daniel Matei and the first author Abstract.

More information

Manifestations of Symmetry in Polynomial Link Invariants

Manifestations of Symmetry in Polynomial Link Invariants Louisiana State University LSU Digital Commons LSU Doctoral Dissertations Graduate School 2017 Manifestations of Symmetry in Polynomial Link Invariants Kyle Istvan Louisiana State University and Agricultural

More information

COMPLEX NUMBERS AND SERIES

COMPLEX NUMBERS AND SERIES COMPLEX NUMBERS AND SERIES MIKE BOYLE Contents 1. Complex Numbers 1 2. The Complex Plane 2 3. Addition and Multiplication of Complex Numbers 2 4. Why Complex Numbers Were Invented 3 5. The Fundamental

More information

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5

x y = 2 x + 2y = 14 x = 2, y = 0 x = 3, y = 1 x = 4, y = 2 x = 5, y = 3 x = 6, y = 4 x = 7, y = 5 x = 0, y = 7 x = 2, y = 6 x = 4, y = 5 List six positive integer solutions for each of these equations and comment on your results. Two have been done for you. x y = x + y = 4 x =, y = 0 x = 3, y = x = 4, y = x = 5, y = 3 x = 6, y = 4 x = 7,

More information

SLAVA KRUSHKAL Curriculum Vitae January University of Virginia FAX: (434) Charlottesville, VA

SLAVA KRUSHKAL Curriculum Vitae January University of Virginia FAX: (434) Charlottesville, VA SLAVA KRUSHKAL Curriculum Vitae January 2016 Mailing Address: email : krushkal@virginia.edu Department of Mathematics Phone: (434) 924-4949 (office) University of Virginia FAX: (434) 982-3084 Charlottesville,

More information

Summation Methods on Divergent Series. Nick Saal Santa Rosa Junior College April 23, 2016

Summation Methods on Divergent Series. Nick Saal Santa Rosa Junior College April 23, 2016 Summation Methods on Divergent Series Nick Saal Santa Rosa Junior College April 23, 2016 Infinite series are incredibly useful tools in many areas of both pure and applied mathematics, as well as the sciences,

More information

On a relation between the self-linking number and the braid index of closed braids in open books

On a relation between the self-linking number and the braid index of closed braids in open books On a relation between the self-linking number and the braid index of closed braids in open books Tetsuya Ito (RIMS, Kyoto University) 2015 Sep 7 Braids, Configuration Spaces, and Quantum Topology Tetsuya

More information

A Brief Proof of the Riemann Hypothesis, Giving Infinite Results. Item Total Pages

A Brief Proof of the Riemann Hypothesis, Giving Infinite Results. Item Total Pages A Brief Proof of the Riemann Hypothesis, Giving Infinite Results Item 42 We will also show a positive proof of Fermat s Last Theorem, also related to the construction of the universe. 9 Total Pages 1 A

More information

Concordance of certain 3-braids and Gauss diagrams

Concordance of certain 3-braids and Gauss diagrams Concordance of certain 3-braids and Gauss diagrams Michael Brandenbursky Abstract. Let β := σ 1 σ 1 2 be a braid in B 3, where B 3 is the braid group on 3 strings and σ 1, σ 2 are the standard Artin generators.

More information

Honors Integrated Algebra/Geometry 3 Critical Content Mastery Objectives Students will:

Honors Integrated Algebra/Geometry 3 Critical Content Mastery Objectives Students will: Content Standard 1: Numbers, Number Sense, and Computation Place Value Fractions Comparing and Ordering Counting Facts Estimating and Estimation Strategies Determine an approximate value of radical and

More information

Total Linking Numbers of Torus Links and Klein Links

Total Linking Numbers of Torus Links and Klein Links Rose- Hulman Undergraduate Mathematics Journal Total Linking Numbers of Torus Links and Klein Links Michael A Bush a Katelyn R French b Joseph R H Smith c Volume, Sponsored by Rose-Hulman Institute of

More information

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives:

= A + A 1. = ( A 2 A 2 ) 2 n 2. n = ( A 2 A 2 ) n 1. = ( A 2 A 2 ) n 1. We start with the skein relation for one crossing of the trefoil, which gives: Solutions to sheet 4 Solution to exercise 1: We have seen in the lecture that the Kauffman bracket is invariant under Reidemeister move 2. In particular, we have chosen the values in the skein relation

More information

Topological quantum computation

Topological quantum computation NUI MAYNOOTH Topological quantum computation Jiri Vala Department of Mathematical Physics National University of Ireland at Maynooth Tutorial Presentation, Symposium on Quantum Technologies, University

More information

The algebraic crossing number and the braid index of knots and links

The algebraic crossing number and the braid index of knots and links 2313 2350 2313 arxiv version: fonts, pagination and layout may vary from AGT published version The algebraic crossing number and the braid index of knots and links KEIKO KAWAMURO It has been conjectured

More information

ON KAUFFMAN BRACKET SKEIN MODULES AT ROOT OF UNITY

ON KAUFFMAN BRACKET SKEIN MODULES AT ROOT OF UNITY ON KAUFFMAN BRACKET SKEIN MODULES AT ROOT OF UNITY THANG T. Q. LÊ Abstract. We reprove and expand results of Bonahon and Wong on central elements of the Kauffman bracket skein modules at root of 1 and

More information

arxiv: v1 [math.gt] 19 Jun 2008

arxiv: v1 [math.gt] 19 Jun 2008 arxiv:0806.3223v1 [math.gt] 19 Jun 2008 Knot Group Epimorphisms, II Daniel S. Silver June 19, 2008 Abstract Wilbur Whitten We consider the relations and p on the collection of all knots, where k k (respectively,

More information

NORMAL AND JONES SURFACES OF KNOTS

NORMAL AND JONES SURFACES OF KNOTS NORMAL AND JONES SURFACES OF KNOTS EFSTRATIA KALFAGIANNI AND CHRISTINE RUEY SHAN LEE Abstract. We describe a normal surface algorithm that decides whether a knot satisfies the Strong Slope Conjecture.

More information

Research Statement Michael Abel October 2017

Research Statement Michael Abel October 2017 Categorification can be thought of as the process of adding an extra level of categorical structure to a well-known algebraic structure or invariant. Possibly the most famous example (ahistorically speaking)

More information

Cosmetic generalized crossing changes in knots

Cosmetic generalized crossing changes in knots Cosmetic generalized crossing changes in knots Cheryl L. Balm Michigan State University Friday, January 11, 2013 Slides and preprint available on my website http://math.msu.edu/~balmcher Background Knot

More information

Fermat s Last Theorem for Regular Primes

Fermat s Last Theorem for Regular Primes Fermat s Last Theorem for Regular Primes S. M.-C. 22 September 2015 Abstract Fermat famously claimed in the margin of a book that a certain family of Diophantine equations have no solutions in integers.

More information

arxiv: v2 [math.gm] 23 Feb 2017

arxiv: v2 [math.gm] 23 Feb 2017 arxiv:1603.08548v2 [math.gm] 23 Feb 2017 Tricomplex dynamical systems generated by polynomials of even degree Pierre-Olivier Parisé 1, Thomas Ransford 2, and Dominic Rochon 1 1 Département de mathématiques

More information

arxiv: v2 [math.gt] 17 May 2018

arxiv: v2 [math.gt] 17 May 2018 FAMILIES OF NOT PERFECTLY STRAIGHT KNOTS arxiv:1804.04799v2 [math.gt] 17 May 2018 NICHOLAS OWAD Abstract. We present two families of knots which have straight number higher than crossing number. In the

More information

AQA Level 2 Further mathematics Further algebra. Section 4: Proof and sequences

AQA Level 2 Further mathematics Further algebra. Section 4: Proof and sequences AQA Level 2 Further mathematics Further algebra Section 4: Proof and sequences Notes and Examples These notes contain subsections on Algebraic proof Sequences The limit of a sequence Algebraic proof Proof

More information

Knot Homology from Refined Chern-Simons Theory

Knot Homology from Refined Chern-Simons Theory Knot Homology from Refined Chern-Simons Theory Mina Aganagic UC Berkeley Based on work with Shamil Shakirov arxiv: 1105.5117 1 the knot invariant Witten explained in 88 that J(K, q) constructed by Jones

More information

CURRICULUM MAP. Course/Subject: Honors Math I Grade: 10 Teacher: Davis. Month: September (19 instructional days)

CURRICULUM MAP. Course/Subject: Honors Math I Grade: 10 Teacher: Davis. Month: September (19 instructional days) Month: September (19 instructional days) Numbers, Number Systems and Number Relationships Standard 2.1.11.A: Use operations (e.g., opposite, reciprocal, absolute value, raising to a power, finding roots,

More information

RESEARCH STATEMENT MARGARET NICHOLS

RESEARCH STATEMENT MARGARET NICHOLS RESEARCH STATEMENT MARGARET NICHOLS 1. Introduction My research lies in geometry and topology, particularly in the study of 3-manifolds. A major theme in 3-manifold topology since the work of Haken in

More information

RESEARCH STATEMENT EUGENE GORSKY

RESEARCH STATEMENT EUGENE GORSKY RESEARCH STATEMENT EUGENE GORSKY My research is mainly focused on algebraic and algebro-geometric aspects of knot theory. A knot is a closed loop in three-dimensional space, a link is a union of several

More information

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is

LINEAR RECURSIVE SEQUENCES. The numbers in the sequence are called its terms. The general form of a sequence is LINEAR RECURSIVE SEQUENCES BJORN POONEN 1. Sequences A sequence is an infinite list of numbers, like 1) 1, 2, 4, 8, 16, 32,.... The numbers in the sequence are called its terms. The general form of a sequence

More information

ON CALCULATION OF THE WITTEN INVARIANTS OF 3-MANIFOLDS

ON CALCULATION OF THE WITTEN INVARIANTS OF 3-MANIFOLDS J Aust Math Soc 75 (2003), 385 398 ON CALCULATION OF THE WITTEN INVARIANTS OF 3-MANIFOLDS EUGENE RAFIKOV, DUŠAN REPOVŠ and FULVIA SPAGGIARI (Received 31 July 2001; revised 13 November 2002) Communicated

More information

A UNIFIED WITTEN-RESHETIKHIN-TURAEV INVARIANT FOR INTEGRAL HOMOLOGY SPHERES

A UNIFIED WITTEN-RESHETIKHIN-TURAEV INVARIANT FOR INTEGRAL HOMOLOGY SPHERES A UNIFIED WITTEN-RESHETIKHIN-TURAEV INVARIANT FOR INTEGRAL HOMOLOGY SPHERES KAZUO HABIRO Abstract. We construct an invariant J M of integral homology spheres M with values in a completion Z[] d of the

More information

Composing Two Non-Tricolorable Knots

Composing Two Non-Tricolorable Knots Composing Two Non-Tricolorable Knots Kelly Harlan August 2010, Math REU at CSUSB Abstract In this paper we will be using modp-coloring, determinants of coloring matrices and knots, and techniques from

More information

Reteach Simplifying Algebraic Expressions

Reteach Simplifying Algebraic Expressions 1-4 Simplifying Algebraic Expressions To evaluate an algebraic expression you substitute numbers for variables. Then follow the order of operations. Here is a sentence that can help you remember the order

More information

The Invariants of 4-Moves

The Invariants of 4-Moves Applied Mathematical Sciences, Vol. 6, 2012, no. 14, 667-674 The Invariants of 4-Moves Noureen A. Khan Department of Mathematics and Information Sciences University of North Texas at Dallas, TX 75241 USA

More information

The dynamics of mapping classes on surfaces

The dynamics of mapping classes on surfaces The dynamics of mapping classes on surfaces Eriko Hironaka May 16, 2013 1 Introduction to mapping classes and the minimum dilatation problem In this section, we define mapping classes on surfaces, and

More information

Generell Topologi. Richard Williamson. May 28, 2013

Generell Topologi. Richard Williamson. May 28, 2013 Generell Topologi Richard Williamson May 28, 2013 1 20 Thursday 21st March 20.1 Link colourability, continued Examples 20.1. (4) Let us prove that the Whitehead link is not p-colourable for any odd prime

More information

The Geometrization Theorem

The Geometrization Theorem The Geometrization Theorem Matthew D. Brown Wednesday, December 19, 2012 In this paper, we discuss the Geometrization Theorem, formerly Thurston s Geometrization Conjecture, which is essentially the statement

More information

Algebra Revision Guide

Algebra Revision Guide Algebra Revision Guide Stage 4 S J Cooper 1st Edition Collection of like terms... Solving simple equations... Factorisation... 6 Inequalities... 7 Graphs... 9 1. The straight line... 9. The quadratic curve...

More information