Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors

Size: px
Start display at page:

Download "Current/voltage-mode third order quadrature oscillator employing two multiple outputs CCIIs and grounded capacitors"

Transcription

1 Indian Jurnal f Pure & Applied Physics Vl. 49 July 20 pp Current/vltage-mde third rder quadrature scillatr emplying tw multiple utputs CCIIs and grunded capacitrs Jiun-Wei Hrng Department f Electrnic Engineering Chung Yuan Christian University Chung-Li Taiwan jwhrng@cycu.edu.tw Received 4 Nvember 200; revised 26 April 20; accepted 3 May 20 A new quadrature scillatr circuit using tw multiple utputs secnd-generatin current cnveyrs (CCIIs) three grunded capacitrs and three resistrs is presented. Tw high utput impedance current-mde signals and tw vltagemde signals each pair with 90 phase difference are available in the prpsed circuit. The scillatin cnditin and scillatin frequency are independently cntrllable thrugh grunded resistrs. The use f nly grunded capacitrs makes the prpsed circuit attractive fr integrated circuit implementatin. Keywrds: Quadrature scillatr Current cnveyrs Current-mde Vltage-mde Intrductin A quadrature scillatr is used because the circuit prvides tw sinusids with 90 phase difference as fr example in telecmmunicatins fr quadrature mixers and single-sideband generatrs r fr measurement purpses in vectr generatrs r selective vltmeters. Therefre quadrature scillatrs cnstitute an imprtant unit in many cmmunicatin and instrumentatin systems. The quadrature scillatrs -8 generate vltage-mde signals. Several current-mde sinusidal scillatrs were prpsed in the literature. Hwever the current-mde high utput impedance sinusidal scillatrs 9- d nt prvide anther high utput impedance quadrature current utput. Mrever the current-mde quadrature scillatrs 2-3 require additinal current fllwers fr sensing and taking ut the quadrature utputs therein and the use f these additinal current fllwers with the virtual grunded inputs may result in flating capacitrs realizatin fr what is riginally described as grunded capacitrs realizatin. Hrng 4 prpsed a current-mde high utput impedance quadrature scillatr using tw differential vltage current cnveyrs tw resistrs and tw capacitrs. Hwever the scillatin cnditin and scillatin frequency cannt be independently tuned. Because the high-rder netwrk has high accuracy and high quality factr it gives gd frequency respnse with lw distrtin 56. Maheshwari and Khan 6 prpsed a third rder quadrature scillatr that generates bth vltage-mde and current-mde quadrature signals in the same circuit cnfiguratin by using fur current cntrlled current cnveyrs and three capacitrs 6. In this paper a new third rder quadrature scillatr circuit using tw multiple utputs secndgeneratin current cnveyrs (CCIIs) three grunded capacitrs and three resistrs is presented. Tw high utput impedance sinusid current-mde signals and tw vltage-mde signals each pair with 90 phase difference are available in the prpsed circuit. The scillatin cnditin and scillatin frequency are independently cntrllable thrugh grunded resistrs. The use f nly grunded capacitrs makes the prpsed circuit attractive fr integrated circuit implementatin 7. The prpsed circuit emplys less active cmpnents with respect t the previus quadrature scillatr 6. 2 Circuit Descriptin The circuit symbl f the multiple utputs CCII is shwn in Fig. which shws tw types f utput terminals the psitive utputs represented by terminal z+ and the negative by terminal z-. The terminal characteristic f the multiple utputs CCII can be described by the fllwing matrix equatin: iy vy v x i x i v z + z =... i v zm+ zm+ i z vz i zn vzn ()

2 HORNG: CURRENT/VOLTAGE-MODE THIRD ORDER QUADRATURE OSCILLATOR 495 Fig. Multiple utputs CCII circuit symbl The prpsed quadrature scillatr is shwn in Fig. 2. The characteristic equatin f the circuit can be expressed as: s 3 C C 2 C 3 R R 2 R 3 + s 2 (C + C 2 )C 3 R R 3 + sc 3 R 3 + = 0 (2) The scillatin cnditin and scillatin frequency can be btained as: Fig. 2 Prpsed CCIIs based quadrature scillatr The phase difference φ between V 2 and V is: φ = 90 (6) ensuring the vltages V 2 and V t be in quadrature. Frm Fig. 2 the current transfer functin frm I 2 t I is: CC 2R2 R3 = ( C + C ) C 2 3 (3) I2 ( s) = (7) I ( s) sc R 3 3 ω = (4) C C R R 2 2 The scillatin frequency can be adjusted by the grunded resistr R. The scillatin cnditin can be independently adjusted by the grunded resistr R 3. Fig. 2 emplys nly grunded capacitrs. The use f grunded capacitrs is particularly attractive fr integrated circuit implementatin 7. The passive sensitivities f this sinusidal scillatr are all lw and btained as: S ω C C2 R2 R = 3 2 Frm Fig. 2 the vltage transfer functin frm V 2 t V is : V 2 ( s) = (5) V ( s) sc R 3 The phase difference φ between I 2 and I is: φ = 90 (8) ensuring the currents I 2 and I t be in quadrature. Thus the prpsed circuit cnfiguratin can prvide bth vltage-mde and current-mde quadrature signals simultaneusly. Because the utput impedances f the currents I r I 2 are very high the tw utput terminals I and I 2 can be directly cnnected t the next stage respectively. The resistrs R and R 3 are cnnected t the tw x terminals f the CCII() and CCII(2) respectively. This design ffers anther feature f a direct incrpratin f the parasitic resistance (R x ) as a part f the main resistance. Frm Eqs (5) and (7) the magnitudes f V 2 and V r I 2 and I need nt be the same. Fr the applicatins needing equal magnitude quadrature utputs ther amplifying circuits are needed.

3 496 INDIAN J PURE & APPL PHYS VOL 49 JULY 20 3 Effect f the CCII Parasitic Elements n the Prpsed Circuits A nn-ideal multiple utputs CCII mdel 89 is shwn in Fig. 3. It is shwn that the real multiple utputs CCII have parasitic resistrs and capacitrs frm the y and z terminals t the grund and als a series resistr at the input terminal x. The values f the parasitic impedances 9 are R x = 60Ω R y = 7 MΩ R z = R z2 = 3 MΩ C y = 8 pf C z = C z2 = 4 pf. The α k (s) (k = 2) and β(s) represent the frequency transfers f the internal current and vltage fllwers f the multiple utputs CCII respectively. They can be apprximated by first rder lw pass functins which can be cnsidered t have a near unity value fr frequencies much less than their crner frequencies 89. Taking int accunt the nn-ideal multiple utputs CCII mdel f Fig. 3 in Fig. 2 and assuming the circuit is wrking at frequencies much less than the crner frequencies f α k (s) and β(s) namely α k (s) = α k = ε k and ε k ( ε k <<) dentes the current tracking errr and β(s)=β= ε 2 and ε 2 ( ε 2 <<) dentes the vltage tracking errr f the multiple utputs CCII. The characteristic equatin f Fig. 2 becmes: s C ' C ' C ' R ' R R ' R R R + s R ' R '[ C ' C ' R R R y y + C ' C ' R R ( R + R ) + C ' C '( R + R ) R R ] y y + sr '[ C ' R ' R ( R + R ) + C ' R '( R + R ) R y y + C ' R ( R ' R + R ' R + R ' R + R R α β )] y 4 y + R '( R + R ) R ' + R ' R ' R + R ' R R α β y 3 4 y + R4R5 R y α2α2ββ 2 = 0 (9) where C ' = C + Cz + Cz2 C2 ' = C2 + Cy C3 ' = C3 + Cz2 + Cy2 R ' = R + Rx R3 ' = R3 + Rx2 R4 = Rz / / Rz 2 R = R / / R. 5 z2 y2 The mdified scillatin cnditin and scillatin frequency are: R '( R + R ) R ' + R ' R ' R + R ' R R α β y 3 4 y + R R R α α β β 4 5 y R ' R '[ C ' C ' R R R + C ' C ' R R ( R + R ) y y + C ' C '( R + R ) R R ] y C ' R ' R ( R + R ) + C ' R '( R + R ) R 4 2 y y + C3 ' R5 ( R ' R2 + R ' R4 + R ' Ry + R4Ryαβ ) = (0) C ' C ' C ' R ' R R R R ω = y C ' R ' R ( R + R ) + C ' R '( R + R ) R 4 2 y y + C ' R ( R ' R + R ' R + R ' R + R R α β ) y 4 y C ' C ' C ' R ' R R R R y () Eqs (0) and () are cupled due t the parasitic impedances especially because R 4 R 5 and R y are finite. This fact implies that the adjustment f the scillatin frequency affects the scillatin cnditin [R appears in bth Eqs (0) and ()]. Nevertheless the scillatin cnditin can be tuned by varying R 3 after adjusting the scillatin frequency by means f R. 4 Simulatin Results PSPICE simulatins were carried ut t demnstrate the feasibility f the prpsed circuit in Fig. 2 using 0.8 µm level 3 MOSFET frm TSMC. The multiple utputs CCII was realized by the CMOS implementatin 20 in Fig. 4. The aspect ratis f the MOS transistrs are shwn in Table. The multiple current utputs can be easily implemented by simply adding utput branches. Fig. 3 Nn-ideal multiple utputs CCII mdel Fig. 4 Implementatin f multiple utputs CCII

4 HORNG: CURRENT/VOLTAGE-MODE THIRD ORDER QUADRATURE OSCILLATOR 497 Table Aspect ratis f the MOS in Fig. 4. MOS transistr W/L MM2 36/0.9 M3 63/0.9 M4M5 54/0.9 M6 72/0.9 M7~M6 8/0.9 Table 2 Ttal harmnic distrtin analysis f V in Fig. 2 Harmnic number Frequency (Hz) Furier Nrmalized cmpnent cmpnent Nrmalized 2.0E E-0.000E E E E E-03.85E E E E E E E E E E E E E E E E E E E E E-03.57E E E E E E E E E E E E E E E E E+02 DC cmpnent: E-03 Ttal harmnic distrtin: E+00 PERCENT Table 3 Ttal harmnic distrtin analysis f I in Fig. 2 Harmnic number Frequency (Hz) Furier Nrmalized cmpnent cmpnent Nrmalized 2.0E E-0.000E+00.32E E E E E E E E E E E E E E E-03.40E E E E-03 8.E E E E E E E E E+06.45E E E E E+06.43E E E+0.046E E E E E+0.73E+03 DC cmpnent: E-03 Ttal harmnic distrtin: E+00 PERCENT Fig. 5 (a) Simulated utput wavefrms f vltage-mde signals in Fig. 2; (b) Simulated utput wavefrms f current-mde signals in Fig. 2. Fig. 6 Simulatin results f the scillatin frequency f Fig. 2 which is btained by varying the value f the resistr R Figure 5(a and b) shws the vltage-mde and current-mde quadrature sinusidal utput wavefrms f Fig. 2 respectively with C = C 2 = C 3 = 80 pf R = 6 kω R 2 = 5 kω R 3 = 6 kω and the pwer supply ±.25V V b = 0.65V. The results f the V and I ttal harmnic distrtin analysis are presented in Tables 2 and 3 respectively. Fig. 6 shws the simulatin results f the scillatin frequency f Fig. 2 by varying the value f the resistr R with C = C 2 = C 3 = 80 pf R 2 = 5 k Ω and R 3 =6 k Ω. 5 Cnclusins A new quadrature scillatr using tw multiple utputs CCIIs three resistrs and three grunded capacitrs is presented. This quadrature scillatr prvides the fllwing advantages: (i) tw vltagemde and tw current-mde sinusidal utput signals each pair with 90 phase difference are btained simultaneusly; (ii) the utput impedances f the current-mde signals are very high; (iii) the scillatin cnditin and scillatin frequency are independently cntrllable thrugh grunded resistrs; (iv) the use f nly grunded capacitrs; (v) a direct incrpratin f the parasitic resistances at the x terminals f the CCIIs (R x ) as a part f the main resistances. The prpsed circuit emplys less active cmpnents with respect t the previus quadrature scillatr 6. References Hlzel R IEEE Transactins n Instrumentatin and Measurement 42 (993) Ahmed M T Khan I A & Minhaj N Internatinal J Electrnics 83 (997) 20.

5 498 INDIAN J PURE & APPL PHYS VOL 49 JULY 20 3 Sliman A M J Franklin Institute 336 (999) Khan I A & Khwaja S Internatinal J Electrnics 87 (2000) Tangsrirat W Prasertsm D Piyatat T & Surakampntrn W Internatinal J Electrnics 95 (2008) 9. 6 Tangsrirat W Indian J Pure & Appl Phys 47 (2009) Hrng J W Cmputers and Electrical Engineering 3 (2005) 8. 8 Hrng J W Hu C L Chang C M Chung W Y Tang H W & Wen Y H Internatinal J Electrnics 92 (2005) 2. 9 Abuelma atti M T & Al-Zaher H A IEEE Transactins n Circuits and Systems-II: Analg and Digital Signal Prcessing 46 (999) Gupta S S & Senani R Electrnics Lett 36 (2000) 95. Cam U Tker A Cicekglu O & Kuntman H Analg Integrated Circuits and Signal Prcessing 24 (2000) Abuelma atti M T IEEE Transactins n Circuits and Systems-I: Fundamental Thery and Applicatins 39 (992) Abuelma atti M T & Al-Zaher H A Internatinal J Electrnics 85 (998) Hrng J W IEICE Transactins n Fundamentals f Electrnics Cmmunicatins and Cmputer Sciences E86- A (2003) Prmmee P & Dejhan K Internatinal J Electrnics 89 (2002) Maheshwari S & Khan I A IEE Prceedings Circuits Devices and Systems 52 (2005) Bhushan M & Newcmb R W Electrnic Lett 3 (967) Fabre A Saaid O & Barthelemy H Analg Integrated Circuits and Signal Prcessing 7 (995) 3. 9 Martinez P A Sabadell J Aldea C & Celma S IEEE Transactins n Circuits and Systems-I: Fundamental Thery and Applicatins 46 (999) Surakampntrn W Riewruja V Kumwachara K & Dejhan K IEEE Transactins n Instrument and Measur 40 (99) 699.

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator

Oscillator. Introduction of Oscillator Linear Oscillator. Stability. Wien Bridge Oscillator RC Phase-Shift Oscillator LC Oscillator Oscillatr Intrductin f Oscillatr Linear Oscillatr Wien Bridge Oscillatr Phase-Shift Oscillatr L Oscillatr Stability Oscillatrs Oscillatin: an effect that repeatedly and regularly fluctuates abut the mean

More information

A Novel Isolated Buck-Boost Converter

A Novel Isolated Buck-Boost Converter vel slated uck-st Cnverter S-Sek Kim *,WOO-J JG,JOOG-HO SOG, Ok-K Kang, and Hee-Jn Kim ept. f Electrical Eng., Seul atinal University f Technlgy, Krea Schl f Electrical and Cmputer Eng., Hanyang University,

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2012

ECEN620: Network Theory Broadband Circuit Design Fall 2012 ECEN60: Netwrk Thery Bradband Circuit Design Fall 01 Lecture 16: VCO Phase Nise Sam Palerm Analg & Mixed-Signal Center Texas A&M University Agenda Phase Nise Definitin and Impact Ideal Oscillatr Phase

More information

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V.

Linearization of the Output of a Wheatstone Bridge for Single Active Sensor. Madhu Mohan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Linearizatin f the Output f a Wheatstne Bridge fr Single Active Sensr Madhu Mhan N., Geetha T., Sankaran P. and Jagadeesh Kumar V. Dept. f Electrical Engineering, Indian Institute f Technlgy Madras, Chennai

More information

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax

Revision: August 19, E Main Suite D Pullman, WA (509) Voice and Fax .7.4: Direct frequency dmain circuit analysis Revisin: August 9, 00 5 E Main Suite D Pullman, WA 9963 (509) 334 6306 ice and Fax Overview n chapter.7., we determined the steadystate respnse f electrical

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 00 Circuit Analysis Lessn 6 Chapter 4 Sec 4., 4.5, 4.7 Series LC Circuit C Lw Pass Filter Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 00 Circuit Analysis Lessn 5 Chapter 9 &

More information

Section I5: Feedback in Operational Amplifiers

Section I5: Feedback in Operational Amplifiers Sectin I5: eedback in Operatinal mplifiers s discussed earlier, practical p-amps hae a high gain under dc (zer frequency) cnditins and the gain decreases as frequency increases. This frequency dependence

More information

ECEN620: Network Theory Broadband Circuit Design Fall 2014

ECEN620: Network Theory Broadband Circuit Design Fall 2014 ECEN60: Netwrk Thery Bradband Circuit Design Fall 014 Lecture 11: VCO Phase Nise Sam Palerm Analg & Mixed-Signal Center Texas A&M University Annuncements & Agenda HW3 is due tday at 5PM Phase Nise Definitin

More information

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis

Bicycle Generator Dump Load Control Circuit: An Op Amp Comparator with Hysteresis Bicycle Generatr Dump Lad Cntrl Circuit: An Op Amp Cmparatr with Hysteresis Sustainable Technlgy Educatin Prject University f Waterl http://www.step.uwaterl.ca December 1, 2009 1 Summary This dcument describes

More information

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC.

1. Transformer A transformer is used to obtain the approximate output voltage of the power supply. The output of the transformer is still AC. PHYSIS 536 Experiment 4: D Pwer Supply I. Intrductin The prcess f changing A t D is investigated in this experiment. An integrated circuit regulatr makes it easy t cnstruct a high-perfrmance vltage surce

More information

Micro and Smart Systems

Micro and Smart Systems Micr and Smart Systems Lecture 33 OpAmps Circuits and signal cnditining fr micrsystems devices Prf K.N.Bhat, ECE Department, IISc Bangalre email: knbhat@gmail.cm Tpics fr Discussin Amplifiers and Op Amp

More information

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink

Design and Simulation of Dc-Dc Voltage Converters Using Matlab/Simulink American Jurnal f Engineering Research (AJER) 016 American Jurnal f Engineering Research (AJER) e-issn: 30-0847 p-issn : 30-0936 Vlume-5, Issue-, pp-9-36 www.ajer.rg Research Paper Open Access Design and

More information

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic.

Sections 15.1 to 15.12, 16.1 and 16.2 of the textbook (Robbins-Miller) cover the materials required for this topic. Tpic : AC Fundamentals, Sinusidal Wavefrm, and Phasrs Sectins 5. t 5., 6. and 6. f the textbk (Rbbins-Miller) cver the materials required fr this tpic.. Wavefrms in electrical systems are current r vltage

More information

JAZAN University. Department: Electrical Engineering. Names & ID: Electronics LAB - 1/ / Electronics LAB - EngE : 314 G:...

JAZAN University. Department: Electrical Engineering. Names & ID: Electronics LAB - 1/ / Electronics LAB - EngE : 314 G:... Electrnics LAB - EngE : 314 G:... Electrnics LAB - 1/2-201. /201. Electrnics LAB - EngE : 314 G:... Electrnics LAB - 2/2-201. /201. Silicn JAZAN University Experiment 1: characteristics Electrnics LAB

More information

Series and Parallel Resonances

Series and Parallel Resonances Series and Parallel esnances Series esnance Cnsider the series circuit shwn in the frequency dmain. The input impedance is Z Vs jl jl I jc C H s esnance ccurs when the imaginary part f the transfer functin

More information

Determining the Accuracy of Modal Parameter Estimation Methods

Determining the Accuracy of Modal Parameter Estimation Methods Determining the Accuracy f Mdal Parameter Estimatin Methds by Michael Lee Ph.D., P.E. & Mar Richardsn Ph.D. Structural Measurement Systems Milpitas, CA Abstract The mst cmmn type f mdal testing system

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit.

ZVS Boost Converter. (a) (b) Fig 6.29 (a) Quasi-resonant boost converter with M-type switch. (b) Equivalent circuit. EEL6246 Pwer Electrnics II Chapter 6 Lecture 6 Dr. Sam Abdel-Rahman ZVS Bst Cnverter The quasi-resnant bst cnverter by using the M-type switch as shwn in Fig. 6.29(a) with its simplified circuit shwn in

More information

A Comparative Study on Predictive and ISVM Direct Torque Control Methods for a Doubly Fed Induction Machine Fed by an Indirect Matrix Converter

A Comparative Study on Predictive and ISVM Direct Torque Control Methods for a Doubly Fed Induction Machine Fed by an Indirect Matrix Converter A Cmparative Study n Predictive and ISVM Direct Trque Cntrl Methds fr a Dubly Fed Inductin Machine Fed by an Indirect Matrix Cnverter Dwnladed frm ijeee.iust.ac.ir at 1:59 IRDT n Tuesday May 8th 018 M.

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Copyright Paul Tobin 63

Copyright Paul Tobin 63 DT, Kevin t. lectric Circuit Thery DT87/ Tw-Prt netwrk parameters ummary We have seen previusly that a tw-prt netwrk has a pair f input terminals and a pair f utput terminals figure. These circuits were

More information

Modeling the Nonlinear Rheological Behavior of Materials with a Hyper-Exponential Type Function

Modeling the Nonlinear Rheological Behavior of Materials with a Hyper-Exponential Type Function www.ccsenet.rg/mer Mechanical Engineering Research Vl. 1, N. 1; December 011 Mdeling the Nnlinear Rhelgical Behavir f Materials with a Hyper-Expnential Type Functin Marc Delphin Mnsia Département de Physique,

More information

Lab 11 LRC Circuits, Damped Forced Harmonic Motion

Lab 11 LRC Circuits, Damped Forced Harmonic Motion Physics 6 ab ab 11 ircuits, Damped Frced Harmnic Mtin What Yu Need T Knw: The Physics OK this is basically a recap f what yu ve dne s far with circuits and circuits. Nw we get t put everything tgether

More information

Lecture 02 CSE 40547/60547 Computing at the Nanoscale

Lecture 02 CSE 40547/60547 Computing at the Nanoscale PN Junctin Ntes: Lecture 02 CSE 40547/60547 Cmputing at the Nanscale Letʼs start with a (very) shrt review f semi-cnducting materials: - N-type material: Obtained by adding impurity with 5 valence elements

More information

A Comparison of AC/DC Piezoelectric Transformer Converters with Current Doubler and Voltage Doubler Rectifiers

A Comparison of AC/DC Piezoelectric Transformer Converters with Current Doubler and Voltage Doubler Rectifiers A Cmparisn f AC/DC Piezelectric Transfrmer Cnverters with Current Dubler and ltage Dubler Rectifiers Gregry vensky, Svetlana Brnstein and Sam Ben-Yaakv* Pwer Electrnics abratry Department f Electrical

More information

A Novel Electro-thermal Simulation Approach to Power IGBT Modules for Automotive Traction Applications

A Novel Electro-thermal Simulation Approach to Power IGBT Modules for Automotive Traction Applications Special Issue Recent R&D Activities f Pwer Devices fr Hybrid Electric Vehicles 27 Research Reprt A Nvel Electr-thermal Simulatin Apprach t Pwer IGBT Mdules fr Autmtive Tractin Applicatins Takashi Kjima,

More information

ECEN 4872/5827 Lecture Notes

ECEN 4872/5827 Lecture Notes ECEN 4872/5827 Lecture Ntes Lecture #5 Objectives fr lecture #5: 1. Analysis f precisin current reference 2. Appraches fr evaluating tlerances 3. Temperature Cefficients evaluatin technique 4. Fundamentals

More information

1.1 The main transmission network of Eskom The classical two generator model 11

1.1 The main transmission network of Eskom The classical two generator model 11 LIST OF FIGURS Figure Page 1.1 The main transmissin netwrk f skm 4 2.1 The classical tw generatr mdel 11 2.2 Obtaining the lcatin f the electrical centre. The line cnnecting A with B represents the netwrk

More information

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant)

Physics 102. Second Midterm Examination. Summer Term ( ) (Fundamental constants) (Coulomb constant) ε µ0 N mp T kg Kuwait University hysics Department hysics 0 Secnd Midterm Examinatin Summer Term (00-0) July 7, 0 Time: 6:00 7:0 M Name Student N Instructrs: Drs. bdel-karim, frusheh, Farhan, Kkaj, a,

More information

Module 4: General Formulation of Electric Circuit Theory

Module 4: General Formulation of Electric Circuit Theory Mdule 4: General Frmulatin f Electric Circuit Thery 4. General Frmulatin f Electric Circuit Thery All electrmagnetic phenmena are described at a fundamental level by Maxwell's equatins and the assciated

More information

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975

OTHER USES OF THE ICRH COUPL ING CO IL. November 1975 OTHER USES OF THE ICRH COUPL ING CO IL J. C. Sprtt Nvember 1975 -I,," PLP 663 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure.

2. Find i, v, and the power dissipated in the 6-Ω resistor in the following figure. CSC Class exercise DC Circuit analysis. Fr the ladder netwrk in the fllwing figure, find I and R eq. Slutin Req 4 ( 6 ) 5Ω 0 0 I Re q 5 A. Find i, v, and the pwer dissipated in the 6-Ω resistr in the fllwing

More information

ECE 2100 Circuit Analysis

ECE 2100 Circuit Analysis ECE 2100 Circuit Analysis Lessn 25 Chapter 9 & App B: Passive circuit elements in the phasr representatin Daniel M. Litynski, Ph.D. http://hmepages.wmich.edu/~dlitynsk/ ECE 2100 Circuit Analysis Lessn

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

Edexcel GCSE Physics

Edexcel GCSE Physics Edexcel GCSE Physics Tpic 10: Electricity and circuits Ntes (Cntent in bld is fr Higher Tier nly) www.pmt.educatin The Structure f the Atm Psitively charged nucleus surrunded by negatively charged electrns

More information

OP AMP CHARACTERISTICS

OP AMP CHARACTERISTICS O AM CHAACTESTCS Static p amp limitatins EFEENCE: Chapter 5 textbk (ESS) EOS CAUSED BY THE NUT BAS CUENT AND THE NUT OFFSET CUENT Op Amp t functin shuld have fr the input terminals a DC path thrugh which

More information

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES

THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC TESTS OF ELECTRONIC ASSEMBLIES PREFERRED RELIABILITY PAGE 1 OF 5 PRACTICES PRACTICE NO. PT-TE-1409 THERMAL-VACUUM VERSUS THERMAL- ATMOSPHERIC Practice: Perfrm all thermal envirnmental tests n electrnic spaceflight hardware in a flight-like

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6-3 Transductin Based n Changes in the Energy Stred in an Electrical ield Department f Mechanical Engineering Example:Capacitive Pressure Sensr Pressure sensitive capacitive device With separatin

More information

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance

Chapter 16. Capacitance. Capacitance, cont. Parallel-Plate Capacitor, Example 1/20/2011. Electric Energy and Capacitance summary C = ε A / d = πε L / ln( b / a ) ab C = 4πε 4πε a b a b >> a Chapter 16 Electric Energy and Capacitance Capacitance Q=CV Parallel plates, caxial cables, Earth Series and parallel 1 1 1 = + +..

More information

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85. Cascade connection - FET & BJT

General Amplifiers. Analog Electronics Circuits Nagamani A N. Lecturer, PESIT, Bangalore 85.  Cascade connection - FET & BJT Analg lectrnics Circuits Nagamani A N Lecturer, PST, Bangalre 85 mail nagamani@pes.edu General Amplifiers Cascade cnnectin - FT & BJT Numerical Cascde cnnectin arlingtn cnnectin Packaged arlingtn cnnectin

More information

The Study of a Dual-Mode Ring Oscillator

The Study of a Dual-Mode Ring Oscillator > ccepted fr publicatin in IEEE TCS - II < The Study f a Dual-Mde ing Oscillatr Zuw-Zun Chen and Tai-Cheng Lee Member IEEE bstract n analytical investigatin f a dual-mde ring scillatr is presented. The

More information

Finding the Minimum Input Impedance of a Second-Order Unity-Gain Sallen-Key Low-Pass Filter without Calculus

Finding the Minimum Input Impedance of a Second-Order Unity-Gain Sallen-Key Low-Pass Filter without Calculus University f New Orleans SchlarWrks@UNO Electrical Engineering Faculty Publicatins Department f Electrical Engineering -3 Finding the Minimum Input Impedance f a Secnd-Order Unity-Gain Sallen-Key Lw-Pass

More information

ENG2410 Digital Design Sequential Circuits: Part B

ENG2410 Digital Design Sequential Circuits: Part B ENG24 Digital Design Sequential Circuits: Part B Fall 27 S. Areibi Schl f Engineering University f Guelph Analysis f Sequential Circuits Earlier we learned hw t analyze cmbinatinal circuits We will extend

More information

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units l l l l l Advanced Prcess Technlgy Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully Avalanche Rated Descriptin Fifth Generatin HEXFETs frm Internatinal Rectifier utilize advanced prcessing

More information

Application Of Mealy Machine And Recurrence Relations In Cryptography

Application Of Mealy Machine And Recurrence Relations In Cryptography Applicatin Of Mealy Machine And Recurrence Relatins In Cryptgraphy P. A. Jytirmie 1, A. Chandra Sekhar 2, S. Uma Devi 3 1 Department f Engineering Mathematics, Andhra University, Visakhapatnam, IDIA 2

More information

Generation of Four Phase Oscillators Using Op Amps or Current Conveyors

Generation of Four Phase Oscillators Using Op Amps or Current Conveyors J. of Active and Passive Electronic Devices, Vol. 0, pp. 207 22 Reprints available directly from the publisher Photocopying permitted by license only 205 Old City Publishing, Inc. Published by license

More information

A Self-Sensing Homopolar Magnetic Bearing: Analysis and Experimental Results

A Self-Sensing Homopolar Magnetic Bearing: Analysis and Experimental Results A Self-Sensing Hmplar Magnetic Bearing: Analysis and Experimental Results Perry Tsa Seth R. Sanders Gabriel Risk Department f Electrical Engineering and Cmputer Science University f Califrnia, Berkeley

More information

Reactive Power Control of Isolated Wind-Diesel Hybrid Power Systems for Variable Slip

Reactive Power Control of Isolated Wind-Diesel Hybrid Power Systems for Variable Slip INDIAN INSTITUTE OF TECHNOLOGY, KHARAGUR 730, DECEMBER 79, 00 35 Reactive wer Cntrl f Islated WindDiesel Hybrid wer Systems fr Variable Slip R.C. Bansal, T.S. Bhatti, and D.. Kthari Abstract In this paper

More information

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit :

Applying Kirchoff s law on the primary circuit. V = - e1 V+ e1 = 0 V.D. e.m.f. From the secondary circuit e2 = v2. K e. Equivalent circuit : TRANSFORMERS Definitin : Transfrmers can be defined as a static electric machine which cnverts electric energy frm ne ptential t anther at the same frequency. It can als be defined as cnsists f tw electric

More information

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture

A Few Basic Facts About Isothermal Mass Transfer in a Binary Mixture Few asic Facts but Isthermal Mass Transfer in a inary Miture David Keffer Department f Chemical Engineering University f Tennessee first begun: pril 22, 2004 last updated: January 13, 2006 dkeffer@utk.edu

More information

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan

^YawataR&D Laboratory, Nippon Steel Corporation, Tobata, Kitakyushu, Japan Detectin f fatigue crack initiatin frm a ntch under a randm lad C. Makabe," S. Nishida^C. Urashima,' H. Kaneshir* "Department f Mechanical Systems Engineering, University f the Ryukyus, Nishihara, kinawa,

More information

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents

Supplementary Course Notes Adding and Subtracting AC Voltages and Currents Supplementary Curse Ntes Adding and Subtracting AC Vltages and Currents As mentined previusly, when cmbining DC vltages r currents, we nly need t knw the plarity (vltage) and directin (current). In the

More information

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1.

T(s) 1+ T(s) 2. Phase Margin Test for T(s) a. Unconditionally Stable φ m = 90 o for 1 pole T(s) b. Conditionally Stable Case 1. Lecture 49 Danger f Instability/Oscillatin When Emplying Feedback In PWM Cnverters A. Guessing Clsed Lp Stability Frm Open Lp Frequency Respnse Data. T(s) versus T(s) + T(s) 2. Phase Margin Test fr T(s)

More information

EXPERIMENTAL STUDY ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE

EXPERIMENTAL STUDY ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE EXPERIMENTAL STUD ON DISCHARGE COEFFICIENT OF OUTFLOW OPENING FOR PREDICTING CROSS-VENTILATION FLOW RATE Tmnbu Gt, Masaaki Ohba, Takashi Kurabuchi 2, Tmyuki End 3, shihik Akamine 4, and Tshihir Nnaka 2

More information

A Non-Insulated Resonant Boost Converter

A Non-Insulated Resonant Boost Converter A Nn-Insulated Resnant Bst Cnverter Peng Shuai, Yales R. De Nvaes, Francisc Canales and Iv Barbi ISEA-Institute fr Pwer Electrnics and Electrical Drives, RWTH-Aachen University, Aachen, Germany Email:

More information

MODULE TITLE : OPERATIONAL AMPLIFIERS TOPIC TITLE : FILTERS LESSON 1 : FILTERS

MODULE TITLE : OPERATIONAL AMPLIFIERS TOPIC TITLE : FILTERS LESSON 1 : FILTERS MODULE TITLE : OPEATIONAL AMPLIFIES TOPIC TITLE : FILTES LESSON : FILTES OA - 4 - Teesside University 0 INTODUCTION An electrical filter is a device which is designed t pass sme frequencies and reject

More information

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment

Numerical Simulation of the Thermal Resposne Test Within the Comsol Multiphysics Environment Presented at the COMSOL Cnference 2008 Hannver University f Parma Department f Industrial Engineering Numerical Simulatin f the Thermal Respsne Test Within the Cmsl Multiphysics Envirnment Authr : C. Crradi,

More information

Introduction to Smith Charts

Introduction to Smith Charts Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary

More information

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur

initially lcated away frm the data set never win the cmpetitin, resulting in a nnptimal nal cdebk, [2] [3] [4] and [5]. Khnen's Self Organizing Featur Cdewrd Distributin fr Frequency Sensitive Cmpetitive Learning with One Dimensinal Input Data Aristides S. Galanpuls and Stanley C. Ahalt Department f Electrical Engineering The Ohi State University Abstract

More information

Robust Power Flow Control of Grid-tied Inverters Based on the Uncertainty and Disturbance Estimator

Robust Power Flow Control of Grid-tied Inverters Based on the Uncertainty and Disturbance Estimator 2016 American Cntrl Cnference (ACC) Bstn Marritt Cpley Place July 6-8, 2016. Bstn, MA, USA Rbust Pwer Flw Cntrl f Grid-tied Inverters Based n the Uncertainty and Disturbance Estimatr Yeqin Wang, Beibei

More information

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern

Methods for Determination of Mean Speckle Size in Simulated Speckle Pattern 0.478/msr-04-004 MEASUREMENT SCENCE REVEW, Vlume 4, N. 3, 04 Methds fr Determinatin f Mean Speckle Size in Simulated Speckle Pattern. Hamarvá, P. Šmíd, P. Hrváth, M. Hrabvský nstitute f Physics f the Academy

More information

Protection of ungrounded systems using an advanced relay element

Protection of ungrounded systems using an advanced relay element ENG 460 Prtectin f ungrunded systems using an advanced relay element A reprt submitted t the schl f Engineering and Energy, Murdch University in partial fulfilment f the requirements fr the degree f Bachelr

More information

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme

Enhancing Performance of MLP/RBF Neural Classifiers via an Multivariate Data Distribution Scheme Enhancing Perfrmance f / Neural Classifiers via an Multivariate Data Distributin Scheme Halis Altun, Gökhan Gelen Nigde University, Electrical and Electrnics Engineering Department Nigde, Turkey haltun@nigde.edu.tr

More information

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp

1996 Engineering Systems Design and Analysis Conference, Montpellier, France, July 1-4, 1996, Vol. 7, pp THE POWER AND LIMIT OF NEURAL NETWORKS T. Y. Lin Department f Mathematics and Cmputer Science San Jse State University San Jse, Califrnia 959-003 tylin@cs.ssu.edu and Bereley Initiative in Sft Cmputing*

More information

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance

Verification of Quality Parameters of a Solar Panel and Modification in Formulae of its Series Resistance Verificatin f Quality Parameters f a Slar Panel and Mdificatin in Frmulae f its Series Resistance Sanika Gawhane Pune-411037-India Onkar Hule Pune-411037- India Chinmy Kulkarni Pune-411037-India Ojas Pandav

More information

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India

CHAPTER 3 INEQUALITIES. Copyright -The Institute of Chartered Accountants of India CHAPTER 3 INEQUALITIES Cpyright -The Institute f Chartered Accuntants f India INEQUALITIES LEARNING OBJECTIVES One f the widely used decisin making prblems, nwadays, is t decide n the ptimal mix f scarce

More information

POWER AMPLIFIERS. 1. Explain what are classes A, B, AB and C amplifiers in terms of DC biasing using a MOSFET drain characteristic.

POWER AMPLIFIERS. 1. Explain what are classes A, B, AB and C amplifiers in terms of DC biasing using a MOSFET drain characteristic. CTONIC 3 XCI OW AMII. xpla what are classes A, B, AB and C amplifiers terms f DC biasg usg a MOT dra characteristic.. efer t the graphs f page and the table at the tp f page 3 f the thery ntes t answer

More information

Engineering Approach to Modelling Metal THz Structures

Engineering Approach to Modelling Metal THz Structures Terahertz Science and Technlgy, ISSN 1941-7411 Vl.4, N.1, March 11 Invited Paper ngineering Apprach t Mdelling Metal THz Structures Stepan Lucyszyn * and Yun Zhu Department f, Imperial Cllege Lndn, xhibitin

More information

TOPPER SAMPLE PAPER 2 Class XII- Physics

TOPPER SAMPLE PAPER 2 Class XII- Physics TOPPER SAMPLE PAPER 2 Class XII- Physics Time: Three Hurs Maximum Marks: 70 General Instructins (a) All questins are cmpulsry. (b) There are 30 questins in ttal. Questins 1 t 8 carry ne mark each, questins

More information

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations

Plan o o. I(t) Divide problem into sub-problems Modify schematic and coordinate system (if needed) Write general equations STAPLE Physics 201 Name Final Exam May 14, 2013 This is a clsed bk examinatin but during the exam yu may refer t a 5 x7 nte card with wrds f wisdm yu have written n it. There is extra scratch paper available.

More information

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam

Schedule. ECEN 301 Discussion #17 Operational Amplifiers 1. Date Day Class No. Lab Due date. Exam chedule Date Day Class N. Title Chapters HW Due date 29 Oct Wed 17 Operatinal mplifiers 8.1 8.2 Lab Due date Exam 30 Oct Thu 31 Oct ri ecitatin HW 7 1 N at 2 N un 3 N Mn 18 Operatinal mplifiers 8.3 8.4

More information

C Soldering Temperature, for 10 seconds 300 (1.6mm from case )

C Soldering Temperature, for 10 seconds 300 (1.6mm from case ) l l l l l l Advanced Prcess Technlgy Dynamic dv/dt Rating 175 C Operating Temperature Fast Switching Fully Avalanche Rated Lead-Free Descriptin Fifth Generatin HEXFET Pwer MOSFETs frm Internatinal Rectifier

More information

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION

NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION NUROP Chinese Pinyin T Chinese Character Cnversin NUROP CONGRESS PAPER CHINESE PINYIN TO CHINESE CHARACTER CONVERSION CHIA LI SHI 1 AND LUA KIM TENG 2 Schl f Cmputing, Natinal University f Singapre 3 Science

More information

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units

Description Absolute Maximum Ratings Parameter Max. Units Thermal Resistance Parameter Typ. Max. Units l Advanced Prcess Technlgy l Dynamic dv/dt Rating l 175 C Operating Temperature l Fast Switching l Fully Avalanche Rated l Lead-Free Descriptin Fifth Generatin HEXFETs frm Internatinal Rectifier utilize

More information

A Study on Pullout Strength of Cast-in-place Anchor bolt in Concrete under High Temperature

A Study on Pullout Strength of Cast-in-place Anchor bolt in Concrete under High Temperature Transactins f the 7 th Internatinal Cnference n Structural Mechanics in Reactr Technlgy (SMiRT 7) Prague, Czech Republic, August 7 22, 23 Paper #H-2 A Study n Pullut Strength f Cast-in-place Anchr blt

More information

An Equivalent pi Network Model for Power System State Estimation with Network Parameter Errors

An Equivalent pi Network Model for Power System State Estimation with Network Parameter Errors 1 An Equivalent pi Netwrk Mdel fr Pwer System State Estimatin with Netwrk Parameter Errrs Amit Jain, Member, IEEE, and Sivaramakrishnan Raman Abstract With the rle f state estimatin in energy management

More information

Data Sheet. ACPL-8x7 Multi-Channel Full-Pitch Phototransistor Optocoupler. Description. Features. ACPL-827 pin layout.

Data Sheet. ACPL-8x7 Multi-Channel Full-Pitch Phototransistor Optocoupler. Description. Features. ACPL-827 pin layout. ACPL-8x7 Multi-Channel ull-pitch Phttransistr Optcupler Data Sheet Lead (Pb) ree RHS 6 fully cmpliant RHS 6 fully cmpliant ptins available; -xxxe dentes a lead-free prduct Descriptin The ACPL-827 is a

More information

Optical property of Few-Mode Fiber with Non-uniform Refractive Index for Cylindrical Vector Beam Generation

Optical property of Few-Mode Fiber with Non-uniform Refractive Index for Cylindrical Vector Beam Generation Optical prperty f Few-Mde Fiber with Nn-unifrm Refractive Index fr ylindrical Vectr Beam Generatin Hngye Li a, Hngdan Wan* a, Zuxing Zhang* a, b, Bing Sun a, Lin Zhang a, b a Nanjing University f Psts

More information

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK

MODULE TITLE : ELECTRONICS TOPIC TITLE : AMPLIFIERS LESSON 1 : FEEDBACK MODULE TITLE : ELECTONICS TOPIC TITLE : AMPLIFIES LESSON : FEEDBACK EL - 3 - INTODUCTION This lessn trduces the ideas f negative feedback, which we shw can vercme the disadvantages f wide parameter variat

More information

Multi Level Reinjection ac/dc Converters for HVDC

Multi Level Reinjection ac/dc Converters for HVDC Multi Level Reinjectin ac/dc Cnverters fr HVDC Lasantha Bernard Perera A thesis presented fr the degree f Dctr f Philsphy in Electrical and Cmputer Engineering at the University f Canterbury, Christchurch,

More information

Curvature Effects on Thermal Buckling Load of DWCNT Under Axial Compression Force

Curvature Effects on Thermal Buckling Load of DWCNT Under Axial Compression Force Jurnal f Slid Mechanics Vl. 3,. (0) pp. -8 Curvature Effects n Thermal Buckling Lad f DWCT Under Aial Cmpressin Frce A. Ghrbanpur Arani,,*, M. Mhammadimehr, M. Ghazi Department f Mechanical Engineering,

More information

A Scalable Recurrent Neural Network Framework for Model-free

A Scalable Recurrent Neural Network Framework for Model-free A Scalable Recurrent Neural Netwrk Framewrk fr Mdel-free POMDPs April 3, 2007 Zhenzhen Liu, Itamar Elhanany Machine Intelligence Lab Department f Electrical and Cmputer Engineering The University f Tennessee

More information

Phase Noise in LC Oscillators: From Basic Concepts to Advanced Topologies. Carlo Samori. Politecnico di Milano Milano, Italy

Phase Noise in LC Oscillators: From Basic Concepts to Advanced Topologies. Carlo Samori. Politecnico di Milano Milano, Italy Phase Nise in LC Oscillatrs: Frm Basic Cncepts t Advanced Tplgies Carl Samri carl.samri@plimi.it Plitecnic di Milan Milan, Italy Carl Samri Outline Basics f LC Vltage-Cntrlled Oscillatrs (VCOs) Phase Nise

More information

Performance Bounds for Detect and Avoid Signal Sensing

Performance Bounds for Detect and Avoid Signal Sensing Perfrmance unds fr Detect and Avid Signal Sensing Sam Reisenfeld Real-ime Infrmatin etwrks, University f echnlgy, Sydney, radway, SW 007, Australia samr@uts.edu.au Abstract Detect and Avid (DAA) is a Cgnitive

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Figure 1a. A planar mechanism.

Figure 1a. A planar mechanism. ME 5 - Machine Design I Fall Semester 0 Name f Student Lab Sectin Number EXAM. OPEN BOOK AND CLOSED NOTES. Mnday, September rd, 0 Write n ne side nly f the paper prvided fr yur slutins. Where necessary,

More information

4) What is the magnitude of the net electric field at the center of the square?

4) What is the magnitude of the net electric field at the center of the square? Fur charges are n the fur crners f a square. Q = +5C, Q = -0C, Q 3 = +5C, Q 4 = -0C. The side length f each side f the square is 3 m. Q Q ) What is the directin f the frce n Q due t ONLY Q 4? (a) up (b)

More information

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution)

CBSE Board Class XII Physics Set 1 Board Paper 2008 (Solution) CBSE Bard Class XII Physics Set 1 Bard Paper 2008 (Slutin) 1. The frce is given by F qv B This frce is at right angles t &. 2. Micrwaves. It is used in radar & cmmunicatin purpses. 3. Or As m e e m S,

More information

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters

Laboratory #2: Introduction to Microstripline Transmission Lines, Reflection and Transmission Coefficients, and S-Parameters EEE 7 La # Laratry #: Intrductin t Micrstripline Transmissin Lines, Reflectin and Transmissin Cefficients, and -Parameters I. OBJECTIVE A micrstrip transmissin line is designed fr nminally 50Ω. The reflectin

More information

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin

GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS. J.e. Sprott. Plasma Studies. University of Wisconsin GENERAL FORMULAS FOR FLAT-TOPPED WAVEFORMS J.e. Sprtt PLP 924 September 1984 Plasma Studies University f Wiscnsin These PLP Reprts are infrmal and preliminary and as such may cntain errrs nt yet eliminated.

More information

A mathematical model for complete stress-strain curve prediction of permeable concrete

A mathematical model for complete stress-strain curve prediction of permeable concrete A mathematical mdel fr cmplete stress-strain curve predictin f permeable cncrete M. K. Hussin Y. Zhuge F. Bullen W. P. Lkuge Faculty f Engineering and Surveying, University f Suthern Queensland, Twmba,

More information

ECE 497 JS Lecture - 14 Projects: FDTD & LVDS

ECE 497 JS Lecture - 14 Projects: FDTD & LVDS ECE 497 JS Lecture - 14 Prjects: FDTD & LVDS Spring 2004 Jse E. Schutt-Aine Electrical & Cmputer Engineering University f Illinis jse@emlab.uiuc.edu 1 ECE 497 JS - Prjects All prjects shuld be accmpanied

More information

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2.

Q1. A) 48 m/s B) 17 m/s C) 22 m/s D) 66 m/s E) 53 m/s. Ans: = 84.0 Q2. Phys10 Final-133 Zer Versin Crdinatr: A.A.Naqvi Wednesday, August 13, 014 Page: 1 Q1. A string, f length 0.75 m and fixed at bth ends, is vibrating in its fundamental mde. The maximum transverse speed

More information

Supporting information

Supporting information Electrnic Supplementary Material (ESI) fr Physical Chemistry Chemical Physics This jurnal is The wner Scieties 01 ydrgen perxide electrchemistry n platinum: twards understanding the xygen reductin reactin

More information

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1

Phys102 Second Major-102 Zero Version Coordinator: Al-Shukri Thursday, May 05, 2011 Page: 1 Crdinatr: Al-Shukri Thursday, May 05, 2011 Page: 1 1. Particles A and B are electrically neutral and are separated by 5.0 μm. If 5.0 x 10 6 electrns are transferred frm particle A t particle B, the magnitude

More information

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition)

Chem 163 Section: Team Number: ALE 24. Voltaic Cells and Standard Cell Potentials. (Reference: 21.2 and 21.3 Silberberg 5 th edition) Name Chem 163 Sectin: Team Number: ALE 24. Vltaic Cells and Standard Cell Ptentials (Reference: 21.2 and 21.3 Silberberg 5 th editin) What des a vltmeter reading tell us? The Mdel: Standard Reductin and

More information