24 volts (0.25 amps current-limited)

Size: px
Start display at page:

Download "24 volts (0.25 amps current-limited)"

Transcription

1 Question 1 Questions Suppose the lamp refuses to light up. A voltmeter registers 24 volts between test points C and D: A C E + 24 volts (0.25 amps current-limited) B D F First, list all the possible (single) faults that could account for all measurements and symptoms in this circuit, including failed wires as well as failed components: Now, determine the diagnostic value of each of the following tests, based on the faults you listed above. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure V CF Measure V ED Measure V AB Measure V AD Measure V CB Measure V EF Measure current through wire connecting A and C Jumper A and C together Jumper B and D together Jumper A and B together Finally, develop a rule you may use when assessing the value of each proposed test, based on a comprehensive list of possible faults. Suggestions for Socratic discussion Identify which fundamental principles of electric circuits apply to each step of your analysis of this circuit. In other words, be prepared to explain the reason(s) why for every step of your analysis, rather than merely describing those steps. Suppose the fault were intermittent: sometimes the lamp lights up, and other times it goes out. Explain how you could use a digital multimeter (DMM) set to record voltage as a troubleshooting tool to determine where the fault is located in the circuit over a span of time too long for you to personally observe the circuit. file i

2 Question 2 Suppose you are asked to check the integrity of a multi-conductor signal cable run between two locations. The cable has six signal conductors in it plus a shield, each one terminated at a terminal block at each end: a long distance! 1 2 Pair A Pair A Pair B Pair B Pair C Multi-conductor cable Pair C Shield wire Shield wire V A V OFF A A COM Faults you are looking for include open conductors, as well as shorts between conductors and/or shorts to ground. Devise a series of tests you could perform with nothing but a multimeter to comprehensively check the electrical integrity of this cable. file i

3 Question 3 Suppose a voltmeter registers 6 volts between test points C and D while the pushbutton is released (not pressed), and also 6 volts between the same test points while the pushbutton is pressed: A C 1 kω E R 1 1 kω R 2 1 kω R volts (0.25 amps current-limited) B D F Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure V AB with switch pressed Measure V AC with switch pressed Measure current through wire connecting B to D with switch pressed Measure V AB with switch unpressed Measure V AC with switch unpressed Measure R EF with switch pressed and source disconnected from E Measure R EF with switch unpressed and source disconnected from E file i

4 Question 4 The following electric heater seems to have a problem: it heats up slower than usual with all three switches turned on. 800 W Oven W Fuse 200 W volts With three differently-sized heating elements (200 watt, 400 watt, and 800 watt), the oven operator can set the power in seven discrete steps by turning on specific combinations of switches: 200 watts, 400 watts, 600 watts, 800 watts, 1000 watts, 1200 watts, and 1400 watts. You are summoned to diagnose this oven s problem without turning it off. You are allowed to turn off any single switch for a few seconds at most, but otherwise you need to leave all three heaters on because the oven needs to heat up as fast as it can! The idea is to figure out where the problem might be, then gather together any parts necessary for repairs while the oven is still being used, and fix the oven as fast as possible when you finally get the chance to turn it off completely. First, assess whether or not the following diagnostic test would provide any useful information about the fault: suppose a technician connects an AC voltmeter between terminals 4 and 8. Will this test provide information to help us diagnose the nature and/or location of the fault? Why or why not? Next, propose a diagnostic test that would definitely provide useful information about either the location or the nature of the fault in this system. Your proposal must identify the meaning of at least one possible result of the test (e.g. If I jumper terminals X and Y together and I measure a decrease in source voltage, it means the fault must be a short somewhere in branch A-B-C of the circuit ). Remember that the best diagnostic test is one that yields definitive answers no matter what its result might be. Directly checking a suspected component is not a good diagnostic test, unless there are simply no other options! file i

5 Question 5 A water-cooled generator at a power plant has two sources of cooling water flow, each source equipped with a flow switch that returns to its normally-open status if the water flow through the pipe stops. If either water source ceases supplying cooling water to the generator (for whatever reason), that flow switch will deactuate and turn the warning light on. This is all that is required, as the generator will still receive adequate cooling from only one source. If both water sources cease supplying water, however, a trip solenoid will energize to shut down the generator before it overheats: L 1 L 2 Cooling water flow (source A) TP1 TP2 CR1 Cooling water flow (source B) TP3 TP4 CR2 CR1 TP5 TP6 Warning light CR2 CR1 TP7 CR2 TP8 TP9 TP10 Shut-down solenoid One day the warning light comes on, but there is still cooling water flowing to the generator so it does not shut down. You are asked to determine what the problem is, while maintaining the system in an operating condition (i.e. you are not allowed to shut off control power or do anything else that might shut down the generator). First, assess whether or not the following diagnostic test would provide any useful information about the fault: suppose a technician connects an AC voltmeter between terminals TP6 and L2. Will this test provide information to help us diagnose the nature and/or location of the fault? Why or why not? Next, propose a diagnostic test that would definitely provide useful information about either the location or the nature of the fault in this system. Your proposal must identify the meaning of at least one possible result of the test (e.g. If I jumper terminals X and Y together and I measure a decrease in source voltage, it means the fault must be a short somewhere in branch A-B-C of the circuit ). Remember that the best diagnostic test is one that yields definitive answers no matter what its result might be. Directly checking a suspected component is not a good diagnostic test, unless there are simply no other options! file i

6 Question 6 Suppose a voltmeter registers 0 volts between test points G and C, and 24 volts between test points C and F in this circuit: Current mirror 8 ma A B C R 1 G 250 Ω Q volts (0.5 amps current-limited) R 2 (Q 1 serves as a current regulator) D E F 250 Ω H Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure V BE with power applied Measure V GH with power applied Measure V FH with power applied Measure V AD with power applied Measure I R1 with power applied Measure R AD with wire disconnected between B and C Measure R GH with source disconnected from H file i

7 Question 7 This single-loop flow control system has a problem: the flow rate indicated on the controller s faceplate shows it to be precisely at setpoint (250 SCFM), yet the Annubar flow gauge does not agree. The two indications used to agree with one another just fine, until some time recently. Annubar 0 to 100 "WC Gauge reads 207 SCFM 250 Ω TB Single-loop controller H Input N G Output E.S. Black White Green V 1 L H V 2 10 I/P transducer (coil resistance unknown) H N G Power supply V 4 V 3 FC A.S. 24 VDC Air from blower Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure AC line voltage Measure DC power supply output voltage Inspect PID tuning parameters in controller Check pressure transmitter calibration Measure transmitter current signal Put controller into manual mode and move valve Measure DC voltage between TB1-3 and TB1-4 Measure DC voltage between TB1-7 and TB1-8 file i

8 Question 8 Examine the state of this fluid-heating system: Cold fluid in Position = 90% open Air-to-open valve (3 PSI = shut) (15 PSI = full open) Steam in Transducer Heat exchanger I/P Controller PV SP Temp = 160 o F Air supply Out PV = 167 o F SP = 250 o F Out = 7% Steam out TT Thermocouple Warm fluid out Temperature transmitter The temperature of the exiting fluid is well below setpoint, so we know there is a problem somewhere in this system. Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure millivolt signal output by thermocouple Measure 4-20 ma signal output by TT Measure 4-20 ma signal output by controller Measure instrument air supply pressure to I/P Measure 3-15 PSI signal output by I/P Measure temperature of incoming steam and compare with normal Also, explain the rationale of assuming only one fault when initially diagnosing a system problem. Why not keep an open mind to include multiple faults when first assessing possibilities? Does the prior history of the system matter (i.e. is it relevant whether or not it functioned properly in the past)? file i

9 Question 9 The flow computer connected to this turbine flowmeter (with electronic pick-up) does not register any flow, even though we know there to be fluid flowing through the pipe. A voltmeter connected between terminals TB1-1 and TB1-3 registers approximately 11.0 volts DC, and 10.8 volts AC at a frequency of 86 Hz: TB-1 1 TB amp fuse Cable 2 Cable 6 R VDC 4 Turbine flowmeter with transistor pulse output 8 Optocoupler R 2 To flow computer discrete input (sinking) TB ma fuse + 5 VDC Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure DC voltage between terminals TB2-5 and TB2-8 Measure resistance between TB2-7 and TB2-8 with the 1 amp fuse pulled Measure DC voltage across 100 ma fuse Measure DC voltage across 1 amp fuse Measure AC voltage between terminals TB3-9 and TB3-11 Measure continuity of conductor connecting terminals TB1-4 and TB2-8 file i

10 Question 10 Something is wrong with this valve control circuit. When the operator presses the open pushbutton, the valve position indicating lights still show it to be closed (green light on, red light off): E F G H Open Close To 480 VAC power source J K F1 F2 N Relay P L M Vent cap Silencer A B C D H4 H2 X2 H3 X1 H1 Control power transformer 480x120 VAC C NO NC Control valve C P V1 C P E E Q R Solenoid valve Green F3 Pressure gauge V2 Red F4 100 PSI air supply S T U V Determine the diagnostic value of each of the following tests. Assume only one fault in the system, including any single component or any single wire/cable/tube connecting components together. If a proposed test could provide new information to help you identify the location and/or nature of the one fault, mark yes. Otherwise, if a proposed test would not reveal anything relevant to identifying the fault (already discernible from the measurements and symptoms given so far), mark no. Measure AC voltage across Fuse F1 with Close button pressed Measure AC voltage across Fuse F3 with Close button pressed Measure AC voltage across solenoid coil with Open button pressed Measure AC voltage across solenoid coil with Closed button pressed Measure AC voltage between terminals X2 and T with Open button pressed Measure AC voltage between terminals L and D with Open button pressed Check air supply pressure (look at pressure gauge) file i

11 Answer 1 Answers Here is a comprehensive list of faults, each one individually capable of accounting for the symptom (no light) and the measurement of 24 volts between C and D: Lamp burned out (failed open) Wire failed open between A and C Wire failed open between B and D Based on this short list of possible faults assuming only one of them is actually true the value of each proposed test is as follows: Measure V CF Measure V ED Measure V AB Measure V AD Measure V CB Measure V EF Measure current through wire connecting A and C Jumper A and C together Jumper B and D together Jumper A and B together A good rule to apply when evaluating proposed tests is to ask the question: Will this test give me the exact same result no matter which one of the possible faults is true? If so, the test is useless. If not (i.e. the results would differ depending on which of the possible faults was true), then the test has value because it will help narrow the field of possibilities. Answer 2 Answer 3 Answer 4 Answer 5 Answer 6 Answer 7 Answer 8 Answer 9 11

12 Answer 10 12

Safety Barriers Series 9001, 9002 Standard Applications

Safety Barriers Series 9001, 9002 Standard Applications Standard s Analog input with transmitter Smart 9001/51-80-091-141 09949E0 Load of transmitter U N = + 0 V... 35 V I N = 3.6 ma... ma R L ( 350 O U min (I N= 0 ma) U N - 9.5 V 14 V U N ( 3.5 V > 3.5 V Maximum

More information

Kirchhoff s Laws. Resources and methods for learning about these subjects (list a few here, in preparation for your research):

Kirchhoff s Laws. Resources and methods for learning about these subjects (list a few here, in preparation for your research): Kirchhoff s Laws This worksheet and all related files are licensed under the Creative Commons ttribution License, version 1.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/1.0/,

More information

Circuit Analysis and Ohm s Law

Circuit Analysis and Ohm s Law Study Unit Circuit Analysis and Ohm s Law By Robert Cecci Circuit analysis is one of the fundamental jobs of an electrician or electronics technician With the knowledge of how voltage, current, and resistance

More information

ISOCON-6. 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER

ISOCON-6. 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER ISOCON-6 24V AC or DC POWERED ISOLATING SIGNAL CONVERTER Whilst every effort has been taken to ensure the accuracy of this document, we accept no responsibility for damage, injury, loss or expense resulting

More information

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test

ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test ASEN 2002 Experimental Laboratory 1: Temperature Measurement and an Blow Dryer Test Assigned 6 September 2000 Individual Lab Reports due 3 October 2000 OBJECTIVES Learn the basic concepts and definitions

More information

ISOCON-3 MAINS POWERED ISOLATING SIGNAL CONVERTER

ISOCON-3 MAINS POWERED ISOLATING SIGNAL CONVERTER ISOCON-3 MAINS POWERED ISOLATING SIGNAL CONVERTER CAUTION: This equipment is designed for connection to mains voltages and must be used in accordance with this guide. If it is not, the safety protection

More information

The Digital Multimeter (DMM)

The Digital Multimeter (DMM) The Digital Multimeter (DMM) Since Physics 152 covers electricity and magnetism, the analysis of both DC and AC circuits is required. In the lab, you will need to measure resistance, potential (voltage),

More information

TS02 - Pre-Instructional Survey

TS02 - Pre-Instructional Survey TS02 - Pre-Instructional Survey 1. Which type of drawing provides detailed piping and process information, including wire terminations? a. Loop Wiring Diagrams b. Piping and Instrument Diagrams (P&IDs)

More information

EXPERIMENT 12 OHM S LAW

EXPERIMENT 12 OHM S LAW EXPERIMENT 12 OHM S LAW INTRODUCTION: We will study electricity as a flow of electric charge, sometimes making analogies to the flow of water through a pipe. In order for electric charge to flow a complete

More information

Exercise 1: Thermocouple Characteristics

Exercise 1: Thermocouple Characteristics The Thermocouple Transducer Fundamentals Exercise 1: Thermocouple Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics

More information

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00

EXEMPLAR NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 ( ) (X-Paper) 09:00 12:00 NATIONAL CERTIFICATE (VOCATIONAL) ELECTRICAL PRINCIPLES AND PRACTICE NQF LEVEL 3 2008 (12041002) (X-Paper) 09:00 12:00 EXEMPLAR This question paper consists of 7 pages. EXEMPLAR -2- NC(V) TIME: 3 HOURS

More information

NATIONAL 5 PHYSICS ELECTRICITY

NATIONAL 5 PHYSICS ELECTRICITY NATIONAL 5 PHYSICS ELECTRICITY ELECTRICAL CHARGE CARRIERS AND CURRENT Electrical Charge Electrical charge exists in two distinct types positive charge and negative charge. It is also possible for an object

More information

MULTI-OUTPUT PROGRAMMABLE CONTROLLERS MODELS UMX-4 & UMX-8

MULTI-OUTPUT PROGRAMMABLE CONTROLLERS MODELS UMX-4 & UMX-8 February 1994 20/20 Interface Products MULTI-OUTPUT PROGRAMMABLE CONTROLLERS MODELS & DESCRIPTION The is a Multi-output Programmable Controller which expands the input or output capability of building

More information

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8.

DUBLIN INSTITUTE OF TECHNOLOGY Kevin Street, Dublin 8. Question Sheet Page 1 of 5 Instructions for the student: Question 1 is compulsory [40 marks] Attempt any two other questions [30 marks per question] The following must be made available during the examination:

More information

CHAPTER D.C. CIRCUITS

CHAPTER D.C. CIRCUITS Solutions--Ch. 16 (D.C. Circuits) CHAPTER 16 -- D.C. CIRCUITS 16.1) Consider the circuit to the right: a.) The voltage drop across R must be zero if there is to be no current through it, which means the

More information

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components:

SECTION 1 - WHAT IS A BTU METER? BTU's = Flow x ΔT Any ISTEC BTU Meter System consists of the following main components: SECTION 1 - WHAT IS A BTU METER? ISTEC BTU Meters measure energy usage by multiplying flow rate and temperature difference. As the water (or other liquid) passes through these lines, the multi-wing turbine

More information

Exercise 1: Thermistor Characteristics

Exercise 1: Thermistor Characteristics Exercise 1: Thermistor Characteristics EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe and demonstrate the characteristics of thermistors. DISCUSSION A thermistor

More information

Chapter 19 Lecture Notes

Chapter 19 Lecture Notes Chapter 19 Lecture Notes Physics 2424 - Strauss Formulas: R S = R 1 + R 2 +... C P = C 1 + C 2 +... 1/R P = 1/R 1 + 1/R 2 +... 1/C S = 1/C 1 + 1/C 2 +... q = q 0 [1-e -t/(rc) ] q = q 0 e -t/(rc τ = RC

More information

PHOENIX CONTACT - 04/2016. Features

PHOENIX CONTACT - 04/2016. Features Signal conditioner Data sheet 100238_de_06 1 Description PHOENIX CONTACT - 04/2016 Features The MCR-C-UI-UI(-450)-DCI(-NC) 3-way isolation amplifier is used to electrically isolate and convert analog signals.

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

FOCUS: Water Pollkon Prevention and Control

FOCUS: Water Pollkon Prevention and Control FOCUS: Water Pollkon Prevention and Control Many industrial processes, such as wastewater treatment, require careful control of ph/orp... By THOMAS H. MARTIN Consulting Chemist Delta Chemicals & Equipment,

More information

Lab E3: The Wheatstone Bridge

Lab E3: The Wheatstone Bridge E3.1 Lab E3: The Wheatstone Bridge Introduction The Wheatstone bridge is a circuit used to compare an unknown resistance with a known resistance. The bridge is commonly used in control circuits. For instance,

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 2 Buchla, Kissell, Floyd Chapter Outline Electrical Fundamentals 2 Buchla, Kissell, Floyd 2-1 ENERGY, CHARGE, AND VOLTAGE 2-2 ELECTRICAL CURRENT 2-3 RESISTANCE AND OHM'S LAW 2-4

More information

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( )

resistance in the circuit. When voltage and current values are known, apply Ohm s law to determine circuit resistance. R = E/I ( ) DC Fundamentals Ohm s Law Exercise 1: Ohm s Law Circuit Resistance EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine resistance by using Ohm s law. You will verify

More information

Errors in Electrical Measurements

Errors in Electrical Measurements 1 Errors in Electrical Measurements Systematic error every times you measure e.g. loading or insertion of the measurement instrument Meter error scaling (inaccurate marking), pointer bending, friction,

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background

SIMPLE D.C. CIRCUITS AND MEASUREMENTS Background SIMPLE D.C. CICUITS AND MEASUEMENTSBackground This unit will discuss simple D.C. (direct current current in only one direction) circuits: The elements in them, the simple arrangements of these elements,

More information

Experiment 4: Resistances in Circuits

Experiment 4: Resistances in Circuits Name: Partners: Date: Experiment 4: Resistances in Circuits EQUIPMENT NEEDED: Circuits Experiment Board Multimeter Resistors Purpose The purpose of this lab is to begin experimenting with the variables

More information

Lab Manual Solutions Industrial Control Electronics: Devices, Systems, and Applications

Lab Manual Solutions Industrial Control Electronics: Devices, Systems, and Applications Lab Manual Solutions Industrial Control Electronics: Devices, Systems, and Applications 3rd edition Terry L.M. Bartelt Australia Canada Mexico Singapore Spain United Kingdom United States . analog 2. linear

More information

HVAC Electrical Wiring Diagrams / Ohm s Law / Sequence of Operation RV

HVAC Electrical Wiring Diagrams / Ohm s Law / Sequence of Operation RV PLEASE DO NOT BOOKMARK ANY ANYTIMECE WEBPAGES! Our system will remember the last page you viewed when logging out and back in but please DO NOT exit out when taking a test. Your place will NOT be saved.

More information

S Sapling INSTALLATION MANUAL FOR FIELD SELECTABLE ANALOG CLOCKS SAA SERIES SPECIFICATIONS. advanced time and control systems

S Sapling INSTALLATION MANUAL FOR FIELD SELECTABLE ANALOG CLOCKS SAA SERIES SPECIFICATIONS. advanced time and control systems INSTALLATION MANUAL FOR FIELD SELECTABLE ANALOG CLOCKS SAA SERIES SPECIFICATIONS Time base: 60 Hz (3-wire system) Quartz (2-wire system) Power input: 85 135 VAC / 60 Hz 7 28 VAC / 60 Hz Current consumption:

More information

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements.

Name Date Time to Complete. NOTE: The multimeter s 10 AMP range, instead of the 300 ma range, should be used for all current measurements. Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will continue your exploration of dc electric circuits with a steady current. The circuits will be

More information

National 5 Physics. Electricity and Energy. Notes

National 5 Physics. Electricity and Energy. Notes National 5 Physics Electricity and Energy Notes Name. 1 P a g e Key Area Notes, Examples and Questions Page 3 Conservation of energy Page 10 Electrical charge carriers and electric fields and potential

More information

Name Date Time to Complete

Name Date Time to Complete Name Date Time to Complete h m Partner Course/ Section / Grade Complex Circuits In this laboratory you will connect electric lamps together in a variety of circuits. The purpose of these exercises is to

More information

16.1 Electrical Current

16.1 Electrical Current 16.1 Electrical Current Electric Current Electric Current When the ends of an electric conductor are at different electric potentials, charge flows from one end to the other Flow of Charge Charge flows

More information

Drive electronics pq12

Drive electronics pq12 Drive electronics pq12 Amplifier module with constant current controller for proportional valves Control of one solenoid Easy mounting directly on bearing rails acc. to EN 50022 Standard voltage and current

More information

Remote Display Unit. Installers Handbook Copyright 2001 AirSense Technology Ltd. LM Remote Display Unit Installers Handbook Issue 1.

Remote Display Unit. Installers Handbook Copyright 2001 AirSense Technology Ltd. LM Remote Display Unit Installers Handbook Issue 1. Remote Display Unit Installers Handbook Copyright 2001 AirSense Technology Ltd AirSense, ClassiFire, FastLearn PipeCAD, SenseNET, Stratos-HSSD and Stratos-Quadra are trademarks. HSSD is a Registered Trademark.

More information

Designing a Thermostat Worksheet

Designing a Thermostat Worksheet Designing a Thermostat Worksheet Most of us have a thermostat in our homes to control heating and cooling systems of our home. These important devices help us save energy by automatically turning off energy

More information

Chapter 3. Chapter 3

Chapter 3. Chapter 3 Chapter 3 Review of V, I, and R Voltage is the amount of energy per charge available to move electrons from one point to another in a circuit and is measured in volts. Current is the rate of charge flow

More information

ELTR 105 (DC 2), section 1

ELTR 105 (DC 2), section 1 ELTR 105 (DC 2), section 1 Recommended schedule Day 1 Day 2 Day 3 Day 4 Day 5 Topics: Series-parallel circuit analysis Questions: 1 through 15 Lab Exercise: Kirchhoff s Voltage Law (question 61) Topics:

More information

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis

MEP 382: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Faculty of Engineering MEP 38: Design of Applied Measurement Systems Lecture 3: DC & AC Circuit Analysis Outline oltage and Current Ohm s Law Kirchoff s laws esistors Series and Parallel oltage Dividers

More information

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V.

U1 is zero based because its noninverting terminal is connected to circuit common. Therefore, the circuit reference voltage is 0 V. When you have completed this exercise, you will be able to operate a zener-clamped op amp comparator circuit using dc and ac voltages. You will verify your results with an oscilloscope. U1 is zero based

More information

PICK UP: Papers & Calc. TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit.

PICK UP: Papers & Calc. TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit. PICK UP: Papers & Calc HW: U7-9 (green) Next Test: QUIZ TOMORROW Exam 7 on 3/28 TURN IN: - (orange sheet if you did not yesterday) DO NOW: On a half-sheet, draw the schematic for the following circuit.

More information

An Ultra Low Resistance Continuity Checker

An Ultra Low Resistance Continuity Checker An Ultra Low Resistance Continuity Checker By R. G. Sparber Copyleft protects this document. 1 Some understanding of electronics is assumed. Although the title claims this is a continuity checker, its

More information

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron

Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Electricity is the movement of electrical charge through a circuit (usually, flowing electrons.) The Greek word for amber is electron Women in ancient Greece noticed that rubbing their amber jewelry against

More information

Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals.

Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals. Glossary Alternating Current (AC): Alternating Current is electric current that reverses directions at regular intervals. American National Standards Institute (ANSI): American National Standards Institute

More information

Electricity. What is electricity?

Electricity. What is electricity? Words attract = pull towards an object back and forth = to go in one direction and then in the other balanced = the same as stable carbon = a chemical material that is in coal or petrol. It is in its purest

More information

EXPERIMENT 9 Superconductivity & Ohm s Law

EXPERIMENT 9 Superconductivity & Ohm s Law Name: Date: Course number: MAKE SURE YOUR TA OR TI STAMPS EVERY PAGE BEFORE YOU START! Lab section: Partner's name(s): Grade: EXPERIMENT 9 Superconductivity & Ohm s Law 0. Pre-Laboratory Work [2 pts] 1.

More information

Lab 10: DC RC circuits

Lab 10: DC RC circuits Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

More information

Industrial Electricity

Industrial Electricity Industrial Electricity PRELAB / LAB 7: Series & Parallel Circuits with Faults Name PRELAB due BEFORE beginning the lab (initials required at the bottom of page 3) PLEASE TAKE THE TIME TO READ THIS PAGE

More information

Electrical measurements:

Electrical measurements: Electrical measurements: Last time we saw that we could define circuits though: current, voltage and impedance. Where the impedance of an element related the voltage to the current: This is Ohm s law.

More information

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor.

Experiment 3. Electrical Energy. Calculate the electrical power dissipated in a resistor. Experiment 3 Electrical Energy 3.1 Objectives Calculate the electrical power dissipated in a resistor. Determine the heat added to the water by an immersed heater. Determine if the energy dissipated by

More information

BASIC ELECTRICITY STUDY COURSE

BASIC ELECTRICITY STUDY COURSE BASIC ELECTRICITY STUDY COURSE for Home Appliances HOW TO READ: VOLT-OHM-MILLIAMMETER TEST INSTRUMENTS VOLT-OHM-MILLIAMMETER TEST LEADS Module 4 LIT 787742 Rev. B WHIRLPOOL CORPORATION does not assume

More information

Demonstration 1: Faraday Ice Pail and Charge Production

Demonstration 1: Faraday Ice Pail and Charge Production Osservazioni e Misure Lezioni I e II Laboratorio di Elettromagnetismo Demonstration 1: Faraday Ice Pail and Charge Production Equipment Required: Electrometer (ES-9078) Charge Producers (ES-9057B) Earth

More information

(Refer Slide Time: 01:16)

(Refer Slide Time: 01:16) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module - 4 Lecture - 50 Case Studies This will be lecture 50 in

More information

NR2 Thermal Overload Relay

NR2 Thermal Overload Relay Contactors,, Starters. Type designation N - Current class Design sequence No. N Thermal Overload elay. General. Certificates: CE, KEM, UkrSEPO, GOST, CC, UL;. Electric ratings: C 0/0z, 90V, 0.~30;.3 Tripping

More information

5SJ4...-.HG Circuit Breakers to IEC and UL 489

5SJ4...-.HG Circuit Breakers to IEC and UL 489 Siemens AG 009 5SJ...-.HG Circuit Breakers to IEC and UL 89 BETA Low-Voltage Circuit Protection Compliance with industry standards is a must in today's manufacturing environment. Worldwide acceptance is

More information

NR2 Thermal Overload Relay. 4. Technical Data. 1. General. 2. Type Designation. 3. Features. Item Series No. I/In Operating time Tp Test condition

NR2 Thermal Overload Relay. 4. Technical Data. 1. General. 2. Type Designation. 3. Features. Item Series No. I/In Operating time Tp Test condition s elays C US N Thermal Overload elay. General. Certificates: CB,CE, UL, PCT, CC, VDE;. Electric ratings: C 0/0z, V, 0.~;.3 Tripping class: 0;. Mounting version: a. Plug-in: vailable for N-.,, 3, 93, 0;

More information

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut

mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut mith College Computer Science CSC270 Spring 16 Circuits and Systems Lecture Notes Week 3 Dominique Thiébaut dthiebaut@smith.edu Crash Course in Electricity and Electronics Zero Physics background expected!

More information

RC Circuit (Power amplifier, Voltage Sensor)

RC Circuit (Power amplifier, Voltage Sensor) Object: RC Circuit (Power amplifier, Voltage Sensor) To investigate how the voltage across a capacitor varies as it charges and to find its capacitive time constant. Apparatus: Science Workshop, Power

More information

Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, (5 :30 pm - 6 :45 pm) Instructor : Bret Allen

Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, (5 :30 pm - 6 :45 pm) Instructor : Bret Allen ':_~ 4~~ Z ṭ.1 Page 1 ELTECH 113 Lecture (Ouiz #1, In Class) Date : Thursday, 8-29-2002 (5 :30 pm - 6 :45 pm) Instructor : Bret Allen Instructions : Select the best possible answer from each of the following

More information

Energy. E d. Energy Power = time. E t P = E t = P

Energy. E d. Energy Power = time. E t P = E t = P Energy Forms of energy Energy can never be created or destroyed. It can only be transformed from one type to another (or other types). here are many different forms of energy: Kinetic (movement) Energy

More information

Lab 8 Simple Electric Circuits

Lab 8 Simple Electric Circuits Lab 8 Simple Electric Circuits INTRODUCTION When we talk about the current in a river, we are referring to the flow of water. Similarly, when we refer to the electric current in a circuit, we are talking

More information

Lesson Plan: Electric Circuits (~130 minutes) Concepts

Lesson Plan: Electric Circuits (~130 minutes) Concepts Lesson Plan: Electric Circuits (~130 minutes) Concepts 1. Electricity is the flow of electric charge (electrons). 2. Electric Charge is a property of subatomic particles. 3. Current is the movement of

More information

Electron Theory. Elements of an Atom

Electron Theory. Elements of an Atom Electron Theory Elements of an Atom All matter is composed of molecules which are made up of a combination of atoms. Atoms have a nucleus with electrons orbiting around it. The nucleus is composed of protons

More information

For an electric current to flow between two points, two conditions must be met.

For an electric current to flow between two points, two conditions must be met. ELECTROSTATICS LAB Electric Circuits For an electric current to flow between two points, two conditions must be met. 1. There must be a conducting path between the points along which the charges can move.

More information

BASICS IN ELECTRICITY

BASICS IN ELECTRICITY BASICS IN ELECTRICITY SECTION OBJECTIVES 1. Definitions & Major Concepts. Wire Calculations 3. Useful Formulas 1. Definitions A comparison between electrical energy and water flow will be useful in explaining

More information

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K

Community College of Allegheny County Unit 9 Page #1. Thermocouples R1 = 1K 10K Community College of Allegheny County Unit 9 Page #1 Thermocouples +12V Thermocouple Junction Vin Copper Wire Constantan Wire + - 3 2 741 7 4 1 5-12V 6 V Vout R1 = 1K Rf = 100K Engineers are not expected

More information

Electricity Test Review

Electricity Test Review Electricity Test Review Definitions; Series Circuit, Parallel Circuit, Equivalent Resistance, Fuse, Circuit Breaker, kilowatt hour, load, short circuit, dry cell, wet cell, fuel cells, solar cells, fossil

More information

PRACTICAL APPLICATION OF ELECTRICAL CIRCUITS IN MEASUREMENT. Terry Jackson, Master Electrician. RT Technical Solutions, LLC.

PRACTICAL APPLICATION OF ELECTRICAL CIRCUITS IN MEASUREMENT. Terry Jackson, Master Electrician. RT Technical Solutions, LLC. PRACTICAL APPLICATION OF ELECTRICAL CIRCUITS IN MEASUREMENT Terry Jackson, Master Electrician RT Technical Solutions, LLC. The use of electronics is evolving in the measurement industry. The technology

More information

Summary Notes ALTERNATING CURRENT AND VOLTAGE

Summary Notes ALTERNATING CURRENT AND VOLTAGE HIGHER CIRCUIT THEORY Wheatstone Bridge Circuit Any method of measuring resistance using an ammeter or voltmeter necessarily involves some error unless the resistances of the meters themselves are taken

More information

Critical parameters of

Critical parameters of Critical parameters of superconductors 2005-03-30 Why do this experiment? Superconductivity is a very interesting property from both commercial and basic scientific points of view. Superconductors are

More information

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t

( ) ( ) = q o. T 12 = τ ln 2. RC Circuits. 1 e t τ. q t Objectives: To explore the charging and discharging cycles of RC circuits with differing amounts of resistance and/or capacitance.. Reading: Resnick, Halliday & Walker, 8th Ed. Section. 27-9 Apparatus:

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Lab 6: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section

Lab 6: Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section : Capacitors and Resistor-Capacitor Circuits Phy208 Spr 2008 Name Section Your TA will use this sheet to score your lab. It is to be turned in at the end of lab. You must use complete sentences and clearly

More information

BB1 & BB2 INSTALLATION & MAINTENANCE INSTRUCTIONS

BB1 & BB2 INSTALLATION & MAINTENANCE INSTRUCTIONS BB1 & BB2 INSTALLATION & MAINTENANCE INSTRUCTIONS DESCRIPTION / IDENTIFICATION The BB series valve uses Proportion- Air closed loop technology for pressure control. It gives an output pressure proportional

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Parallel DC circuits

Parallel DC circuits Parallel DC circuits This worksheet and all related files are licensed under the Creative Commons Attribution License, version.0. To view a copy of this license, visit http://creativecommons.org/licenses/by/.0/,

More information

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2

STEAM Clown Production. Series Circuits. STEAM Clown & Productions Copyright 2017 STEAM Clown. Page 2 Production Series Circuits Page 2 Copyright 2017 Series Parallel Circuits + + SERIES CIRCUIT PARALLEL CIRCUIT Page 3 Copyright 2017 Trick to Remember Ohm s Law V V=I*R R = V I I R I = V R Page 4 Copyright

More information

Ohm s Law and Electronic Circuits

Ohm s Law and Electronic Circuits Production Ohm s Law and Electronic Circuits Page 1 - Cyber Security Class ELECTRICAL CIRCUITS All you need to be an inventor is a good imagination and a pile of junk. -Thomas Edison Page 2 - Cyber Security

More information

Upon completion and review of this chapter, you should be able to:

Upon completion and review of this chapter, you should be able to: Chapter 2 Basic Theories Upon completion and review of this chapter, you should be able to: Explain the theories and laws of electricity. Describe the difference between insulators, conductors, and semiconductors.

More information

Semiconductor thermogenerator

Semiconductor thermogenerator Semiconductor thermogenerator LEP 4.1.07 Related topics Seebeck effect (thermoelectric effect), thermoelectric e.m.f., efficiency, Peltier coefficient, Thomson coefficient, Seebeck coefficient, direct

More information

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1

Electric Current. Note: Current has polarity. EECS 42, Spring 2005 Week 2a 1 Electric Current Definition: rate of positive charge flow Symbol: i Units: Coulombs per second Amperes (A) i = dq/dt where q = charge (in Coulombs), t = time (in seconds) Note: Current has polarity. EECS

More information

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents.

Outline. Week 5: Circuits. Course Notes: 3.5. Goals: Use linear algebra to determine voltage drops and branch currents. Outline Week 5: Circuits Course Notes: 3.5 Goals: Use linear algebra to determine voltage drops and branch currents. Components in Resistor Networks voltage source current source resistor Components in

More information

E2T0 DVP

E2T0 DVP 29-5-26 5116868-E2T DVP-11363-1 ENGLISH Thank you for choosing Delta s DVP series PLC. DVP4TC-E2 temperature measurement module receives 4 points of external thermocouple temperature sensors (J-type, K-type,

More information

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can

By-Pass. This voltage is proportional to the liquid level (threewire potentiometer circuit). The resistance reading can " " ' " ' / The magnetic field which is in the ball or cylindrical floats actuates very small reed contacts through the wall of a guide tube and these pick up an uninterrupted measuring-circuit voltage

More information

Applied Electrical Trainer Model 4810 STUDENT MANUAL

Applied Electrical Trainer Model 4810 STUDENT MANUAL Applied Electrical Trainer Model 4810 STUDENT MANUAL ATech Training, Inc. 12290 Chandler Drive Walton, KY 41094 Toll Free: 1-888-738-9924 Phone: (859) 485-7229 Fax (859) 485-7299 Email: sales@atechtraining.com

More information

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS

MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS MECHANICAL ENGINEERING TECHNOLOGY ESSENTIALS FOR LABORATORY REPORTS The laboratory report should be clear and concise. A well written laboratory report should have an acceptable form, and free of any grammatical

More information

To order, specify : Types Protection functions Current surge Asymmetry and loss of phase. Operating principle

To order, specify : Types Protection functions Current surge Asymmetry and loss of phase. Operating principle otor protection relays - T - FWIT Since % of -phase motor failures are due to load problems or loss of phase, the CROUZET range of motor protection relays is indispensable! models give motor protection

More information

Experiment 2-5. Wheatstone Bridge experiment

Experiment 2-5. Wheatstone Bridge experiment Experiment 2-5. Wheatstone Bridge experiment Use the Wheatstone Bridge to measure the unknown electrical resistance and learn the structure and principles of the Wheatstone Bridge. In the laboratory, the

More information

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current

Note on Posted Slides. Flow of Charge. Electricity/Water Analogy: Continuing the Analogy. Electric Current Note on Posted Slides These are the slides that I intended to show in class on Tue. Mar. 18, 2014. They contain important ideas and questions from your reading. Due to time constraints, I was probably

More information

THERMOCOUPLE CHARACTERISTICS TRAINER

THERMOCOUPLE CHARACTERISTICS TRAINER THERMOCOUPLE CHARACTERISTICS TRAINER (Model No : ) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge.

PHY222 - Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. PHY222 Lab 7 RC Circuits: Charge Changing in Time Observing the way capacitors in RC circuits charge and discharge. Print Your Name Print Your Partners' Names You will return this handout to the instructor

More information

From this analogy you can deduce some rules that you should keep in mind during all your electronics work:

From this analogy you can deduce some rules that you should keep in mind during all your electronics work: Resistors, Volt and Current Posted on April 4, 2008, by Ibrahim KAMAL, in General electronics, tagged In this article we will study the most basic component in electronics, the resistor and its interaction

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

Minute Impulse Clock Controller I01DN

Minute Impulse Clock Controller I01DN 99b-mi USER S MANUAL Minute Impulse Clock Controller Mon Jun 01, 2009 12:00:00 PM DST HOLD ENTER KEY TO BEGIN CANCEL HR I01DN 97 West Street Medfield, MA 02052 U.S.A. (508) 359-4396 Pg. 2 of 20 TABLE OF

More information

Simple circuits - 3 hr

Simple circuits - 3 hr Simple circuits - 3 hr Resistances in circuits Analogy of water flow and electric current An electrical circuit consists of a closed loop with a number of different elements through which electric current

More information

Electric Current & DC Circuits How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits

Electric Current & DC Circuits  How to Use this File Electric Current & DC Circuits Click on the topic to go to that section Circuits Slide 1 / 127 Slide 2 / 127 Electric Current & DC Circuits www.njctl.org Slide 3 / 127 How to Use this File Slide 4 / 127 Electric Current & DC Circuits Each topic is composed of brief direct instruction

More information

400 Volts, 50HZ 480 Volts, 60HZ 600 Volts, 60HZ TECHNICAL REFERENCE MANUAL

400 Volts, 50HZ 480 Volts, 60HZ 600 Volts, 60HZ TECHNICAL REFERENCE MANUAL 400 Volts, 50HZ 480 Volts, 60HZ 600 Volts, 60HZ TECHNICAL REFERENCE MANUAL FORM: MAP-TRM-E REL. July 2013 REV. 015 2013 MTE Corporation IMPORTANT USER INFORMATION NOTICE The MTE Corporation Matrix AP Harmonic

More information

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I

NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT. Physics 211 E&M and Quantum Physics Spring Lab #4: Electronic Circuits I NORTHERN ILLINOIS UNIVERSITY PHYSICS DEPARTMENT Physics 211 E&M and Quantum Physics Spring 2018 Lab #4: Electronic Circuits I Lab Writeup Due: Mon/Wed/Thu/Fri, Feb. 12/14/15/16, 2018 Background The concepts

More information