ANSWER KEY. 3. B 15. A 27. 3m 39. B 51. D 63. C 40. C 52. A 64. D

Size: px
Start display at page:

Download "ANSWER KEY. 3. B 15. A 27. 3m 39. B 51. D 63. C 40. C 52. A 64. D"

Transcription

1 NSWE KEY CUMUIVE ES (5-7-8)_Solutions.. N/m. C C D. m 4. D 6. C 8. D D m D 6. C W 9 4. C D 5. C 7. C m 4. D 5. C 65. D 6. D 8. 4%. 4. a 4k M D N/m kgm m kpa D. C Pa 45. C C 4..9 Pa kpa 47. C 59.. D 4. D D SOUIONS. (..4) P avg N / m hen, ma avg. N / m m. ( ) d Consider an element of length d at a distance from end. So, df dm Now, So, dm m d m d df Maimum force will be at a cross section about which it is rotating F ma F m d ma m Fma m Maimum stress will be. () he density of fluid, S. G kg/ m 85 kg/ m Pressure at depth h from free surface gh Pressure at inside tank, P gh atm P 96 kpa.55 kpa P.586 kpa GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

2 CUMUIVE ES (5-7-8)_Solutions 4. () For free falling body relative acceleration due to gravity is zero P gh if g then P (but it is only hydrostatic pressure) and these will be atm. Pressure throughout the liquid. 5. (C) bsolute pressure = tm pressure + gauge pressure 5. bar 6. bar 6. (D) Since there is no flow of water in pipe. So there no raise or fall of meniscus in tube. Mercury will balance. 7. (D) ension in string and weight of body is equation to the upward buoyancy force. Mg uoyancy force S Hg hg g h H S 8. (.9 m from bottom surface.) pply the hydrostatic formula from point to point. P gh gh g h z P P 5 Pa, P air gasoline glycerin z z Solving for z, z.9 m 9. (D) 4 = and v = -y he equation of stream line in two Dimensional flow is dy v d dy d u u v On integration d dy y. () n ny nc where c constant ny nc or ny c For stream line passing through,), c = he required stream line equation is y = From the definition stream function u y and v, as =y v y, u y u, v y For irrotational flow v u, u, v y y, flow is irrotational for irrotational flow vorticity is zero (). () valid potential function must satisfy the laplace equation (i) 5y and y 5 and y Hence y 5y is a valid potential function (ii) 4 5y 8 and y y 8 and y Hence y Hence 4 5y 5y is not a valid potential function.. (D) For irritation flow following condition must be satisfied. (C) 4. (D) v u z y (i) u y; v y v u y Hence flow is irrotational (ii) u y, v v u z y y Hence flow is not irrotational. GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

3 5. () 6. () V V d V d V V 4 6 m / s V 6 Velocity head at sec = m g (C) head total P V at section = z g g head 8. (4) Given: total P V at section = z g g Difference between the two sections = 5. m ma min.5 ma min ma Now, C f.5.5 4% (.74) Case : k k m Now, Case : min ma min ma min k k k mg m. () Given: P 5 kw, N 8 rpm, F.48 kn, 4 So, N 8 P kNm 8 F D lso, CUMUIVE ES (5-7-8)_Solutions.6 D.997 m mm F.48 D D Now, 66 D.6 mm lso, by equal module of gear and, D D D.6 D (C) Given: C 4 N / m / s, C 4 N / m / s. (C) C 4 So,.95 C 4 c Now, logarithmic decrement C c C Fluid Film.4m From Fourier s law mof heat conduction d.4 4 Q K d.4 Q 5 W / m. () U b h k h U 5 U (D) U Q th GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

4 4 CUMUIVE ES (5-7-8)_Solutions 5. () W 6. (C) yma m 6 t 6MPa () V 4 kn 8. (D) M, So, 7 kn 4 4 nd kn ending moment at a distance ' ' from end will be M Now, the MD changes sign in section, so the point of contrafleure is where the M is zero. So, m w w V w M w So, w w w 6 ending moment at distance from left end, M w w w w dm For maimum M, d w w So, 6 6 w 6 6 w So, from equation (i), M ma w w 6 6 w w w w Now, w W w W Substituting in (ii), W So, M ma 9 9. Marks to ll (.5.56) Point of contrafleure is the position where bending moment changes sign. he point itself have zero bending moment 5.5kN m m m X aking moment about kn X kn ending moment at a section XX at a distance from end. M 4 M 4 8 aking M, 8 4 on solving.559 mas other value of is not admissible.. (-) P.8kPa M Z GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

5 So,.8kPa t ma. (5 54) Given, h W W N, d. m, h 5 m, E GN / m, l m bar From the relation, W he W N / m 5.6 MN / m l 9. (9.47 kpa) Equating the pressure on both the limbs at horizontal plane P.8..8 g P. g.8 g P m P P P P P Pa P P 9.47 kpa. (478.8 Pa) ake reference line passing through point Pressure will same on reference line, Pressure at, gh P P Pa pa nd pressure at, 8 6 g Pa Pa Difference in pressure, P P Pa CUMUIVE ES (5-7-8)_Solutions 5 4. (.9 Kpa) eassure at, P P P P 9.45 Pa P P Pa C P P 4Pa C D P P Pa E D.9 kpa gauge 5. ( kPa ) ccording to the condition for static equilibrium, it y is measured downwards from free surface. P g or dp gdy y Hence, dp.y g dy Integration of above equation gives, y P y. g c Where c is constant of integration. Since gauge pressure p at the free surface (where y = ) is zero, c. y P y. g. 8 t y 8m P P Pa 6. () o check for steady flow use continuity equation. (i) u, v u v y y, So the flow is steady (ii) u v t, t Statistics the continuity y equation so the flow is steady (iii) u v t, t y y his does not satisfy the requirement for steady flow. o check for irrotational flow u v y (i) u v, Flow is irrotational y (ii) u v, Flow is not irrotational y (iii) u v yt Flow is not irrotational y GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

6 6 CUMUIVE ES (5-7-8)_Solutions 7. (C) y y u y y y y f (i) v y y (ii) nd from (i) y f ' hus f ' and hence y he required stream function is y y y y t point (,) t point (,) 4 8.5unit Flow rate between the stream line passing through (,) and (,) unit 8. Marks to all (6.55 unit) 5 y ; y y ut velocity component u and v are given by definition as u v y y y cceleration can be calculated by uu vu a y a y a y uy vv y a y y y t (,) a a y y cceleration a a a 6.55 unit 9. () We know that where - potential function y nd y - stream function. y y y...() y y Integrate equation () w.r.t y we get...() y d y dy or y c C-constant It can be function of let the of constant K then y y K...() Differentiating the above equation w.r.t. we get k ut from equation () =- hen k Integrating this equation K d substitute this value of K in () we get y y 4. (C) We know that where - potential function y nd y y y y y y - stream function....()...() Integrating equation () we get d d c c...() Where c is constant It can be function of y only c differentiating equation () w.r.t. we get y y From equation () c y y y y GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

7 Integrating this equation we get y c ydy y Substituting this value of c in equation y 4. (D) In the top plane, pressure at any radial distance r is r P and thrust on top plane 4 F r dr 4 F P. rdr nd,.94 rad /sec 6 putting the values F 55N CUMUIVE ES (5-7-8)_Solutions 7 4. (..) et the energy at So, E E E E.5 E E.5. E.7 C E E E.5 D E E E. E E E E.5 F EG E E.6 E E E H So, E Ema Emin EE E E. E.5.7cm Nm 8 lso, E I c 6.8 I.75kgm a 4k M O O a 44. () S qro h S 7 C Displacement, ' a sin a (For small angle, sin ) So, ' a he total energy of the system, U M I ky M Where, y ' a and I M So, U M k a U M k a 4 du Now, dt M k a 4k a M 4k a a 4k n M M 45. (C) For sphere gm 8 4m 46. () Heat lost by convectioin = Heat conducted by conduction h C K K K C K K K K.5 W / mk 47. (C) From the Fourier s law of conduction GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

8 8 CUMUIVE ES (5-7-8)_Solutions 48. () 49. () d Q K d K d W W 5. () q f h q f h ma W ir Surface heat flu qo h W f q qo h qo q K I 5. (D) K Fe C I mm K l Q l KFe Q Fe K K l Fe C Fe mm C C 7 5. () hermal resistance. 4 K / W K 5 5. (C) K Q C 54. () From the fourier law of heat conduction K 55. () t p t c 7 K 6 K K cold Hence MD = K hot K t p 4 K 4 K 56. () 57. () 58. () 59. () 6. (D) dart is a small type of spear while a gun is a small type of canon 6. (D) let N be the number of days Nikhil takes to complete the job working alone and be the number of days nkit takes to finish the job working alone. hus we have, /N = /4. Now, if Nikhil worked twice as efficiently, he will take N/ days to complete the job alone and if nkit works / rd as efficiently, he will take days to finish the same job alone, hus we can say that /(N/) + / = /8 Solving we get /N = /8 /7 => 5/N = /7 = > N = 4 days lternate Method: CM of 4 and 8 is 7. So let us assume the total work to be 7 units If rate of working for Nikhil is n units /day and rate of working for nkit is a units/day, we can say that n + a = 7/4 = (otal rate of working = otal work/otal time taken). lso, n + a/ = 7/8 = 4. Solving both equations, we get n = 9/5 units/day. hus the time taken by Nikhil to finish the job alone = 7/(9/5) = 4 days, 6. (D) Sum of n terms = n + n. Sum of (n-) terms = (n-) + (n-) = n + n Now, we know, n th term = Sum of n terms Sum of (n-) terms, herefore, n th in this case = n + n (n + n ) = n +. herefore, 5 th terms is5 + = 6. (C) 64. (D) he net movement of the monkey = steps in 4 seconds ie step for every second In our bid to solve question quickly, we may tend to directly multiply steps by seconds and arrive at 4 seconds. ut consider this after the monkey reaches the 8 th step, he has to climb another steps to reach which he will do in the net second (the fact that he slips another step after reaching the st is of no concern to us). herefore total time taken by the monkey is 8 + = 9 seconds. 65. (D) Since we do not know that total number of students graduating from all the IIs put together, we cannot find the percentage of students who did not get placed and hence the data is insufficient t c GEMENOEDUSEVICES PV. D., -, SEE-7, SMII NG, HII 49 CONC

CHAPTER 2 Fluid Statics

CHAPTER 2 Fluid Statics Chapter / Fluid Statics CHPTER Fluid Statics FE-type Eam Review Problems: Problems - to -9. (C). (D). (C).4 ().5 () The pressure can be calculated using: p = γ h were h is the height of mercury. p= γ h=

More information

PROPERTIES OF FLUIDS

PROPERTIES OF FLUIDS Unit - I Chapter - PROPERTIES OF FLUIDS Solutions of Examples for Practice Example.9 : Given data : u = y y, = 8 Poise = 0.8 Pa-s To find : Shear stress. Step - : Calculate the shear stress at various

More information

CHAPTER 2 Pressure and Head

CHAPTER 2 Pressure and Head FLUID MECHANICS Gaza, Sep. 2012 CHAPTER 2 Pressure and Head Dr. Khalil Mahmoud ALASTAL Objectives of this Chapter: Introduce the concept of pressure. Prove it has a unique value at any particular elevation.

More information

Fluid Mechanics Answer Key of Objective & Conventional Questions

Fluid Mechanics Answer Key of Objective & Conventional Questions 019 MPROVEMENT Mechanical Engineering Fluid Mechanics Answer Key of Objective & Conventional Questions 1 Fluid Properties 1. (c). (b) 3. (c) 4. (576) 5. (3.61)(3.50 to 3.75) 6. (0.058)(0.05 to 0.06) 7.

More information

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability

Chapter 2 Hydrostatics Buoyancy, Floatation and Stability Chapter 2 Hydrostatics uoyancy, Floatation and Stability Zerihun Alemayehu Rm. E119 AAiT Force of buoyancy an upward force exerted by a fluid pressure on fully or partially floating body Gravity Archimedes

More information

Q1 Give answers to all of the following questions (5 marks each):

Q1 Give answers to all of the following questions (5 marks each): FLUID MECHANICS First Year Exam Solutions 03 Q Give answers to all of the following questions (5 marks each): (a) A cylinder of m in diameter is made with material of relative density 0.5. It is moored

More information

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water)

ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4. (Buoyancy and Viscosity of water) ME 262 BASIC FLUID MECHANICS Assistant Professor Neslihan Semerci Lecture 4 (Buoyancy and Viscosity of water) 16. BUOYANCY Whenever an object is floating in a fluid or when it is completely submerged in

More information

Chapter 1 INTRODUCTION

Chapter 1 INTRODUCTION Chapter 1 INTRODUCTION 1-1 The Fluid. 1-2 Dimensions. 1-3 Units. 1-4 Fluid Properties. 1 1-1 The Fluid: It is the substance that deforms continuously when subjected to a shear stress. Matter Solid Fluid

More information

Fluid Mechanics. du dy

Fluid Mechanics. du dy FLUID MECHANICS Technical English - I 1 th week Fluid Mechanics FLUID STATICS FLUID DYNAMICS Fluid Statics or Hydrostatics is the study of fluids at rest. The main equation required for this is Newton's

More information

CE MECHANICS OF FLUIDS

CE MECHANICS OF FLUIDS CE60 - MECHANICS OF FLUIDS (FOR III SEMESTER) UNIT II FLUID STATICS & KINEMATICS PREPARED BY R.SURYA, M.E Assistant Professor DEPARTMENT OF CIVIL ENGINEERING DEPARTMENT OF CIVIL ENGINEERING SRI VIDYA COLLEGE

More information

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016

Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 201 May 24/ 2016 Benha University College of Engineering at Benha Questions For Corrective Final Examination Subject: Fluid Mechanics M 01 May 4/ 016 Second year Mech. Time :180 min. Examiner:Dr.Mohamed Elsharnoby Attempt

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition:

Fluid Mechanics. Forces on Fluid Elements. Fluid Elements - Definition: Fluid Mechanics Chapter 2: Fluid Statics Lecture 3 Forces on Fluid Elements Fluid Elements - Definition: Fluid element can be defined as an infinitesimal region of the fluid continuum in isolation from

More information

Fluid Mechanics-61341

Fluid Mechanics-61341 An-Najah National University College of Engineering Fluid Mechanics-61341 Chapter [2] Fluid Statics 1 Fluid Mechanics-2nd Semester 2010- [2] Fluid Statics Fluid Statics Problems Fluid statics refers to

More information

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding

Fluid Mechanics. If deformation is small, the stress in a body is proportional to the corresponding Fluid Mechanics HOOKE'S LAW If deformation is small, the stress in a body is proportional to the corresponding strain. In the elasticity limit stress and strain Stress/strain = Const. = Modulus of elasticity.

More information

Physics 123 Unit #1 Review

Physics 123 Unit #1 Review Physics 123 Unit #1 Review I. Definitions & Facts Density Specific gravity (= material / water) Pressure Atmosphere, bar, Pascal Barometer Streamline, laminar flow Turbulence Gauge pressure II. Mathematics

More information

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad

Fluid Mechanics Discussion. Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad Discussion Prepared By: Dr.Khalil M. Al-Astal Eng.Ahmed S. Al-Agha Eng.Ruba M. Awad 2014-2015 Chapter (1) Fluids and their Properties Fluids and their Properties Fluids (Liquids or gases) which a substance

More information

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) Test Midterm 1 F2013 MULTIPLE-CHOICE PROBLEMS :(Two marks per answer) (Circle the Letter Beside the Most Correct nswer in the Questions Below.) 1. The absolute viscosity µ of a fluid is primarily a function

More information

Chapter 1 Introduction

Chapter 1 Introduction Fundamentals of Thermodynamics Chapter 1 Introduction Prof. Siyoung Jeong Thermodynamics I MEE2022-01 Thermodynamics : Science of energy and entropy - Science of heat and work and properties related to

More information

ANSWERS 391. Chapter 9

ANSWERS 391. Chapter 9 ANSWERS 391 ANSWERS Chapter 9 9.1 1.8 9. (a) From the given graph for a stress of 150 10 6 N m - the strain is 0.00 Approximate yield strength of the material is 3 10 8 N m - 9.3 (a) Material A Strength

More information

CHAPTER 28 PRESSURE IN FLUIDS

CHAPTER 28 PRESSURE IN FLUIDS CHAPTER 8 PRESSURE IN FLUIDS EXERCISE 18, Page 81 1. A force of 80 N is applied to a piston of a hydraulic system of cross-sectional area 0.010 m. Determine the pressure produced by the piston in the hydraulic

More information

b) (5) Find the tension T B in the cord connected to the wall.

b) (5) Find the tension T B in the cord connected to the wall. General Physics I Quiz 6 - Ch. 9 - Static Equilibrium July 15, 2009 Name: Make your work clear to the grader. Show formulas used. Give correct units and significant figures. Partial credit is available

More information

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola

CONCEPTS AND DEFINITIONS. Prepared by Engr. John Paul Timola CONCEPTS AND DEFINITIONS Prepared by Engr. John Paul Timola ENGINEERING THERMODYNAMICS Science that involves design and analysis of devices and systems for energy conversion Deals with heat and work and

More information

Answers to test yourself questions

Answers to test yourself questions Answers to test yourself questions Option B B Rotational dynamics ( ω + ω )t Use 0 ( +.).0 θ to get θ 46. 46 rad. Use ω ω0 + αθ to get ω.0 +. 4 and so ω 7.8 7 rad s. Use ω ω0 + αθ to get.4. + α 0 π. Hence

More information

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and

More information

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2

Pressure in stationary and moving fluid Lab- Lab On- On Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Lecture plan what is pressure e and how it s distributed in static fluid water pressure in engineering problems buoyancy y and archimedes law;

More information

Chapter 15 - Fluid Mechanics Thursday, March 24 th

Chapter 15 - Fluid Mechanics Thursday, March 24 th Chapter 15 - Fluid Mechanics Thursday, March 24 th Fluids Static properties Density and pressure Hydrostatic equilibrium Archimedes principle and buoyancy Fluid Motion The continuity equation Bernoulli

More information

Solution. a) (425 mn) 2 = 3425(10-3 ) N4 2 = N 2 Ans. b) ( ms) 2 = 367.3(10 3 )(10-3 ) s4 2 = 4.53(10 3 ) s 2 Ans.

Solution. a) (425 mn) 2 = 3425(10-3 ) N4 2 = N 2 Ans. b) ( ms) 2 = 367.3(10 3 )(10-3 ) s4 2 = 4.53(10 3 ) s 2 Ans. 1 1. Evaluate each of the following to three significant figures, and express each answer in SI units using an appropriate prefix: (a) (45 mn), (b) (67 300 ms), (c) 373(10 6 )4 1> mm. a) (45 mn) = 345(10-3

More information

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION

HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION AMEE 0 Introduction to Fluid Mechanics Instructor: Marios M. Fyrillas Email: m.fyrillas@frederick.ac.cy HOMEWORK ASSIGNMENT ON BERNOULLI S EQUATION. Conventional spray-guns operate by achieving a low pressure

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) Two men, Joel and Jerry, push against a wall. Jerry stops after 10 min, while Joel is

More information

CE 6303 MECHANICS OF FLUIDS L T P C QUESTION BANK 3 0 0 3 UNIT I FLUID PROPERTIES AND FLUID STATICS PART - A 1. Define fluid and fluid mechanics. 2. Define real and ideal fluids. 3. Define mass density

More information

Eric G. Paterson. Spring 2005

Eric G. Paterson. Spring 2005 Eric G. Paterson Department of Mechanical and Nuclear Engineering Pennsylvania State University Spring 2005 Reading and Homework Read Chapter 3. Homework Set #2 has been posted. Due date: Friday 21 January.

More information

Chapter 3 Fluid Statics

Chapter 3 Fluid Statics Chapter 3 Fluid Statics 3.1 Pressure Pressure : The ratio of normal force to area at a point. Pressure often varies from point to point. Pressure is a scalar quantity; it has magnitude only It produces

More information

Alternate Midterm Examination Physics 100 Feb. 20, 2014

Alternate Midterm Examination Physics 100 Feb. 20, 2014 Alternate Midterm Examination Physics 100 Feb. 20, 2014 Name/Student #: Instructions: Formulas at the back (you can rip that sheet o ). Questions are on both sides. Calculator permitted. Put your name

More information

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY

PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 JUNE 2011 COURSE NAME: Mechanical Engineering Science CODE: GROUP: ADET 1 DATE: JUNE 28 TIME: DURATION:

More information

5 ENERGY EQUATION OF FLUID MOTION

5 ENERGY EQUATION OF FLUID MOTION 5 ENERGY EQUATION OF FLUID MOTION 5.1 Introduction In order to develop the equations that describe a flow, it is assumed that fluids are subject to certain fundamental laws of physics. The pertinent laws

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

Physics 107 HOMEWORK ASSIGNMENT #9

Physics 107 HOMEWORK ASSIGNMENT #9 Physics 07 HOMEORK ASSIGNMENT #9 Cutnell & Johnson, 7 th edition Chapter : Problems 6, 8, 33, 40, 44 *6 A 58-kg skier is going down a slope oriented 35 above the horizontal. The area of each ski in contact

More information

Homework Assignment on Fluid Statics

Homework Assignment on Fluid Statics AMEE 0 Introduction to Fluid Mecanics Instructor: Marios M. Fyrillas Email: m.fyrillas@fit.ac.cy Homework Assignment on Fluid Statics --------------------------------------------------------------------------------------------------------------

More information

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3

m V DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: SI Unit of Mass Density: kg/m 3 Chapter 11 Fluids 11.1 Mass Density DEFINITION OF MASS DENSITY The mass density of a substance is the mass of a substance divided by its volume: ρ m V SI Unit of Mass Density: kg/m 3 11.1 Mass Density

More information

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude.

CHARACTERISTIC OF FLUIDS. A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. CHARACTERISTIC OF FLUIDS A fluid is defined as a substance that deforms continuously when acted on by a shearing stress at any magnitude. In a fluid at rest, normal stress is called pressure. 1 Dimensions,

More information

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100

S.E. (Mech.) (First Sem.) EXAMINATION, (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum Marks : 100 Total No. of Questions 12] [Total No. of Printed Pages 8 Seat No. [4262]-113 S.E. (Mech.) (First Sem.) EXAMINATION, 2012 (Common to Mech/Sandwich) FLUID MECHANICS (2008 PATTERN) Time : Three Hours Maximum

More information

Fluid Statics. Pressure. Pressure

Fluid Statics. Pressure. Pressure Pressure Fluid Statics Variation of Pressure with Position in a Fluid Measurement of Pressure Hydrostatic Thrusts on Submerged Surfaces Plane Surfaces Curved Surfaces ddendum First and Second Moment of

More information

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14)

Chapter 14 - Fluids. -Archimedes, On Floating Bodies. David J. Starling Penn State Hazleton PHYS 213. Chapter 14 - Fluids. Objectives (Ch 14) Any solid lighter than a fluid will, if placed in the fluid, be so far immersed that the weight of the solid will be equal to the weight of the fluid displaced. -Archimedes, On Floating Bodies David J.

More information

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2

Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L. = 8η v R 2 PHY 302 K. Solutions for Problem set # 12. Textbook problem 10.55: Pressure drop due to viscosity in a round pipe of radius R is given by the Poiseuille equation: P L 8η v R 2 8ηF πr 4 (1) where η is viscosity

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a.

Determine the resultant internal loadings acting on the cross section at C of the beam shown in Fig. 1 4a. E X M P L E 1.1 Determine the resultant internal loadings acting on the cross section at of the beam shown in Fig. 1 a. 70 N/m m 6 m Fig. 1 Support Reactions. This problem can be solved in the most direct

More information

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD

CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS NOOR ALIZA AHMAD CHAPTER 3 BASIC EQUATIONS IN FLUID MECHANICS 1 INTRODUCTION Flow often referred as an ideal fluid. We presume that such a fluid has no viscosity. However, this is an idealized situation that does not exist.

More information

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #2: Fluid Kinematics and Conservation Laws April 13, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and UIN in the space

More information

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an

11.1 Mass Density. Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an Chapter 11 Fluids 11.1 Mass Density Fluids are materials that can flow, and they include both gases and liquids. The mass density of a liquid or gas is an important factor that determines its behavior

More information

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA

Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Thermodynamics I Spring 1432/1433H (2011/2012H) Saturday, Wednesday 8:00am - 10:00am & Monday 8:00am - 9:00am MEP 261 Class ZA Dr. Walid A. Aissa Associate Professor, Mech. Engg. Dept. Faculty of Engineering

More information

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m

Figure 3: Problem 7. (a) 0.9 m (b) 1.8 m (c) 2.7 m (d) 3.6 m 1. For the manometer shown in figure 1, if the absolute pressure at point A is 1.013 10 5 Pa, the absolute pressure at point B is (ρ water =10 3 kg/m 3, ρ Hg =13.56 10 3 kg/m 3, ρ oil = 800kg/m 3 ): (a)

More information

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A

ASSOCIATE DEGREE IN ENGINEERING EXAMINATIONS SEMESTER /15 PAPER A SSOCITE DEGREE IN ENGINEERING EXMINTIONS SEMESTER 2 2014/15 PPER COURSE NME: ENGINEERING MECHNICS - STTICS CODE: ENG 2008 GROUP: D ENG II DTE: May 2015 TIME: DURTION: 2 HOURS INSTRUCTIONS: 1. This paper

More information

ME3560 Tentative Schedule Spring 2019

ME3560 Tentative Schedule Spring 2019 ME3560 Tentative Schedule Spring 2019 Week Number Date Lecture Topics Covered Prior to Lecture Read Section Assignment Prep Problems for Prep Probs. Must be Solved by 1 Monday 1/7/2019 1 Introduction to

More information

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka

Hydrostatics. ENGR 5961 Fluid Mechanics I: Dr. Y.S. Muzychka 1 Hydrostatics 2 Introduction In Fluid Mechanics hydrostatics considers fluids at rest: typically fluid pressure on stationary bodies and surfaces, pressure measurements, buoyancy and flotation, and fluid

More information

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ

A B = AB cos θ = 100. = 6t. a(t) = d2 r(t) a(t = 2) = 12 ĵ 1. A ball is thrown vertically upward from the Earth s surface and falls back to Earth. Which of the graphs below best symbolizes its speed v(t) as a function of time, neglecting air resistance: The answer

More information

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions

CHEN 3200 Fluid Mechanics Spring Homework 3 solutions Homework 3 solutions 1. An artery with an inner diameter of 15 mm contains blood flowing at a rate of 5000 ml/min. Further along the artery, arterial plaque has partially clogged the artery, reducing the

More information

Department of Physics

Department of Physics Department of Physics PHYS101-051 FINAL EXAM Test Code: 100 Tuesday, 4 January 006 in Building 54 Exam Duration: 3 hrs (from 1:30pm to 3:30pm) Name: Student Number: Section Number: Page 1 1. A car starts

More information

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I

s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum equations E. Pipe and other internal flow 7% of FE Morning Session I Fundamentals of Engineering (FE) Exam General Section Steven Burian Civil & Environmental Engineering October 26, 2010 s and FE X. A. Flow measurement B. properties C. statics D. impulse, and momentum

More information

MECHANICAL PROPERTIES OF FLUIDS

MECHANICAL PROPERTIES OF FLUIDS CHAPTER-10 MECHANICAL PROPERTIES OF FLUIDS QUESTIONS 1 marks questions 1. What are fluids? 2. How are fluids different from solids? 3. Define thrust of a liquid. 4. Define liquid pressure. 5. Is pressure

More information

Final Examination Thursday May Please initial the statement below to show that you have read it

Final Examination Thursday May Please initial the statement below to show that you have read it EN40: Dynamics and Vibrations Final Examination Thursday May 0 010 Division of Engineering rown University NME: General Instructions No collaboration of any kind is permitted on this examination. You may

More information

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b.

E21-3 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear. T S = mt C + b, (0) = m( C) + b. E1-1 (a) We ll assume that the new temperature scale is related to the Celsius scale by a linear transformation; then T S = mt C + b, where m and b are constants to be determined, T S is the temperature

More information

ME3560 Tentative Schedule Fall 2018

ME3560 Tentative Schedule Fall 2018 ME3560 Tentative Schedule Fall 2018 Week Number 1 Wednesday 8/29/2018 1 Date Lecture Topics Covered Introduction to course, syllabus and class policies. Math Review. Differentiation. Prior to Lecture Read

More information

Chapter (6) Energy Equation and Its Applications

Chapter (6) Energy Equation and Its Applications Chapter (6) Energy Equation and Its Applications Bernoulli Equation Bernoulli equation is one of the most useful equations in fluid mechanics and hydraulics. And it s a statement of the principle of conservation

More information

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g)

1.4 Perform the following unit conversions: (b) (c) s. g s. lb min. (d) (e) in. ft s. m 55 h. (f) ft s. km h. (g) 1.4 Perform the following unit conversions: 0.05 ft 1 in. (a) 1L 61in. 1L 1ft (b) 1kJ 650 J 10 J 1Btu 1.0551kJ 0.616 Btu (c) 41 Btu/h 0.15 kw 1kW 1h 600 s 778.17 ft lbf 1Btu ft lbf 99.596 s (d) g 78 s

More information

PHYSICS 126 Fall 2010 Midterm 1

PHYSICS 126 Fall 2010 Midterm 1 PHYSICS 16 Fall 010 Midterm 1 Name: SOLUTIONS Student ID: Section Number: Closed book with one sheet of notes and a calculator. Answer the questions in spaces provided on each sheet. If you run out of

More information

PHYS 101: Solutions to Chapter 4 Home Work

PHYS 101: Solutions to Chapter 4 Home Work PHYS 101: Solutions to Chapter 4 Home ork 3. EASONING In each case, we will appl Newton s second law. emember that it is the net force that appears in the second law. he net force is the vector sum of

More information

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C.

Approximate physical properties of selected fluids All properties are given at pressure kn/m 2 and temperature 15 C. Appendix FLUID MECHANICS Approximate physical properties of selected fluids All properties are given at pressure 101. kn/m and temperature 15 C. Liquids Density (kg/m ) Dynamic viscosity (N s/m ) Surface

More information

Introduction to Marine Hydrodynamics

Introduction to Marine Hydrodynamics 1896 1920 1987 2006 Introduction to Marine Hydrodynamics (NA235) Department of Naval Architecture and Ocean Engineering School of Naval Architecture, Ocean & Civil Engineering Shanghai Jiao Tong University

More information

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy

Introduction CHAPTER Prime Movers. 1.2 Sources of Energy Introduction CHAPTER 1 1.1 Prime Movers Prime mover is a device which converts natural source of energy into mechanical work to drive machines for various applications. In olden days, man had to depend

More information

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN

WRITE ALL YOUR CALCULATIONS IN THE BLUEBOOK PUT YOUR NAME AND THE TEST IN THE BLUEBOOK AND HAND IN Physics 6B - MWF - Midterm 1 Test #: A Name: Perm #: Section (10-11 or 12-1): You MUST put the TEST # in the first answer bubble. The TA will explain. YOU MUST do this or the test will not be graded. WRITE

More information

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 16: Fluid Mechanics. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 16: Fluid Mechanics Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ Motivations Newton s laws for fluid statics? Force pressure Mass density How to treat

More information

Applied Fluid Mechanics

Applied Fluid Mechanics Applied Fluid Mechanics 1. The Nature of Fluid and the Study of Fluid Mechanics 2. Viscosity of Fluid 3. Pressure Measurement 4. Forces Due to Static Fluid 5. Buoyancy and Stability 6. Flow of Fluid and

More information

with Solution Mechanical By: Mr. Arvind Rai your success our pride i-gate Mentor

with Solution Mechanical By: Mr. Arvind Rai your success our pride i-gate Mentor Gate Mock Test-I I with Solution Mechanical By: Mr. Arvind Rai GM your success our pride i-gate Mentor www.kopykitab.com i-gatementor Test Series for GATE 013- Mock Test (Mechanical) 1 Q.1 Q.5 Carry One

More information

Physical Sciences 2: Assignments for Oct Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM

Physical Sciences 2: Assignments for Oct Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM Physical Sciences 2: Assignments for Oct. 24 - Oct 31 Homework #7: Elasticity and Fluid Statics Due Tuesday, Oct 31, at 9:30AM After completing this homework, you should Be able to describe what is meant

More information

Mechanical Engineering Programme of Study

Mechanical Engineering Programme of Study Mechanical Engineering Programme of Study Fluid Mechanics Instructor: Marios M. Fyrillas Email: eng.fm@fit.ac.cy SOLVED EXAMPLES ON VISCOUS FLOW 1. Consider steady, laminar flow between two fixed parallel

More information

Pressure in a fluid P P P P

Pressure in a fluid P P P P Fluids Gases (compressible) and liquids (incompressible) density of gases can change dramatically, while that of liquids much less so Gels, colloids, liquid crystals are all odd-ball states of matter We

More information

Steven Burian Civil & Environmental Engineering September 25, 2013

Steven Burian Civil & Environmental Engineering September 25, 2013 Fundamentals of Engineering (FE) Exam Mechanics Steven Burian Civil & Environmental Engineering September 25, 2013 s and FE Morning ( Mechanics) A. Flow measurement 7% of FE Morning B. properties Session

More information

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a)

Chapter Work, Energy and Power. Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Ans: (a) Chapter Work, Energy and Power Q1. The co-efficient of restitution e for a perfectly elastic collision is [1988] (a) 1 (b) 0 (c) (d) 1 Q2. A bullet of mass 10g leaves a rifle at an initial velocity of

More information

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS

Physics P201 D. Baxter/R. Heinz. EXAM #3 November 21, :00 9:00 PM INSTRUCTIONS Seat # Your exam is form 1. Physics P201 D. Baxter/R. Heinz EXAM #3 November 21, 2002 7:00 9:00 PM INSTRUTIONS 1. Please indicate which form (1, 2, 3, or 4) exam you have by marking the appropriate bubble

More information

Fluids. Fluids in Motion or Fluid Dynamics

Fluids. Fluids in Motion or Fluid Dynamics Fluids Fluids in Motion or Fluid Dynamics Resources: Serway - Chapter 9: 9.7-9.8 Physics B Lesson 3: Fluid Flow Continuity Physics B Lesson 4: Bernoulli's Equation MIT - 8: Hydrostatics, Archimedes' Principle,

More information

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian

Chapter 14. Lecture 1 Fluid Mechanics. Dr. Armen Kocharian Chapter 14 Lecture 1 Fluid Mechanics Dr. Armen Kocharian States of Matter Solid Has a definite volume and shape Liquid Has a definite volume but not a definite shape Gas unconfined Has neither a definite

More information

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout

Physics 153 Introductory Physics II. Week One: FLUIDS. Dr. Joseph J. Trout Physics 153 Introductory Physics II Week One: FLUIDS Dr. Joseph J. Trout joseph.trout@drexel.edu 610-348-6495 States (Phases) of Matter: Solid: Fixed shape. Fixed size. Even a large force will not readily

More information

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved)

Aerodynamics. Basic Aerodynamics. Continuity equation (mass conserved) Some thermodynamics. Energy equation (energy conserved) Flow with no friction (inviscid) Aerodynamics Basic Aerodynamics Continuity equation (mass conserved) Flow with friction (viscous) Momentum equation (F = ma) 1. Euler s equation 2. Bernoulli s equation

More information

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012

Fluid Mechanics. Chapter 14. Modified by P. Lam 6_7_2012 Chapter 14 Fluid Mechanics PowerPoint Lectures for University Physics, Twelfth Edition Hugh D. Young and Roger A. Freedman Lectures by James Pazun Modified by P. Lam 6_7_2012 Goals for Chapter 14 To study

More information

Physics 106 Lecture 13. Fluid Mechanics

Physics 106 Lecture 13. Fluid Mechanics Physics 106 Lecture 13 Fluid Mechanics SJ 7 th Ed.: Chap 14.1 to 14.5 What is a fluid? Pressure Pressure varies with depth Pascal s principle Methods for measuring pressure Buoyant forces Archimedes principle

More information

Chapter 11. Fluids. continued

Chapter 11. Fluids. continued Chapter 11 Fluids continued 11.2 Pressure Pressure is the amount of force acting on an area: Example 2 The Force on a Swimmer P = F A SI unit: N/m 2 (1 Pa = 1 N/m 2 ) Suppose the pressure acting on the

More information

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS

HYDRAULICS STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL HYDRAULICS 1 STAFF SELECTION COMMISSION CIVIL ENGINEERING STUDY MATERIAL Syllabus Hydraulics ( Fluid Mechanics ) Fluid properties, hydrostatics, measurements of flow, Bernoulli's theorem and its application, flow

More information

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering)

FE Fluids Review March 23, 2012 Steve Burian (Civil & Environmental Engineering) Topic: Fluid Properties 1. If 6 m 3 of oil weighs 47 kn, calculate its specific weight, density, and specific gravity. 2. 10.0 L of an incompressible liquid exert a force of 20 N at the earth s surface.

More information

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion

Fluids. Fluid = Gas or Liquid. Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Chapter 14 Fluids Fluids Density Pressure in a Fluid Buoyancy and Archimedes Principle Fluids in Motion Fluid = Gas or Liquid MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised 10/13/01 Densities MFMcGraw-PHY45 Chap_14Ha-Fluids-Revised

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information

Lecture 3 - Pull! A Puzzle... m g. m g. = d Sin[θ] F μ N 1 (2)

Lecture 3 - Pull! A Puzzle... m g. m g. = d Sin[θ] F μ N 1 (2) Lecture 3 - Pull! A Puzzle... Recall from last time that we computed the stability criterion 1 an[] for a leaning ladder (of length d): 2 μ We computed the stability using the base of the ladder as the

More information

PORTMORE COMMUNITY COLLEGE

PORTMORE COMMUNITY COLLEGE PORTMORE COMMUNITY COLLEGE ASSOCIATE DEGREE IN ENGINEERING TECHNOLOGY RESIT EXAMINATIONS SEMESTER 2 July 2012 COURSE NAME: Mechanical Engineering Science CODE: GROUP: ADET 1 DATE: July 3, 2012 TIME: DURATION:

More information

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur

Module 6. Approximate Methods for Indeterminate Structural Analysis. Version 2 CE IIT, Kharagpur Module 6 Approximate Methods for Indeterminate Structural Analysis Lesson 35 Indeterminate Trusses and Industrial rames Instructional Objectives: After reading this chapter the student will be able to

More information

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1

Hydraulics. B.E. (Civil), Year/Part: II/II. Tutorial solutions: Pipe flow. Tutorial 1 Hydraulics B.E. (Civil), Year/Part: II/II Tutorial solutions: Pipe flow Tutorial 1 -by Dr. K.N. Dulal Laminar flow 1. A pipe 200mm in diameter and 20km long conveys oil of density 900 kg/m 3 and viscosity

More information

1 Fluid Statics. 1.1 Fluid Properties. Fluid

1 Fluid Statics. 1.1 Fluid Properties. Fluid 1 Fluid Statics 1.1 Fluid Properties Fluid A fluid is a substance, which deforms when subjected to a force. A fluid can offer no permanent resistance to any force causing change of shape. Fluid flow under

More information

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2

Pressure in stationary and moving fluid. Lab-On-Chip: Lecture 2 Pressure in stationary and moving fluid Lab-On-Chip: Lecture Fluid Statics No shearing stress.no relative movement between adjacent fluid particles, i.e. static or moving as a single block Pressure at

More information

ENGI 3424 First Order ODEs Page 1-01

ENGI 3424 First Order ODEs Page 1-01 ENGI 344 First Order ODEs Page 1-01 1. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with respect

More information

Rigid Body Kinetics :: Virtual Work

Rigid Body Kinetics :: Virtual Work Rigid Body Kinetics :: Virtual Work Work-energy relation for an infinitesimal displacement: du = dt + dv (du :: total work done by all active forces) For interconnected systems, differential change in

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information