Sergei Shandarin. University of Kansas 11/19/04 1

Size: px
Start display at page:

Download "Sergei Shandarin. University of Kansas 11/19/04 1"

Transcription

1 Sergei Shandarin University of Kansas 11/19/04 1

2 Plan Introduction: Cosmic Web Non-morphological statistics N-point functions. Morphology of LSS Percolation. Genus. Minkowski Functionals. Shapefinders Lambda CDM cosmology Supercluster Void network Collaborators: J. Sheth, V. Sahni, Sathyaprakash Summary 11/19/04 2

3 Cosmic Web: first hints Observations Gregory & Thompson 1978 Simulations Shandarin D Zel dovich Approximation 11/19/04 Klypin & Shandarin D N-body Simulation 3

4 =uuruuruuuruuruuuururruuuur nini is initial Zel dovich position of a fluid Approximatin element (Zel'dovich ) is position 1970) of) a fluid elemen 11/19/04 4

5 SDSS Tegmark et al astro-ph/ /19/04 5

6 -3 1start3 0CDM CDM /19/04 6

7 Soneira & Peebles 1978 Both distributions have similar 1-point, 2-point, 3-point, and 4-point correlation functions 11/19/04 7

8 11/19/04 8

9 Einasto, Klypin, Saar, Shandarin 1984 Redshift catalog H.Rood, J.Huchra 11/19/04 9

10 Density fields vs. Pointwise distributions Linear (quasilinear) theory Real and mock galaxy catalogs N-body simulations *Superclusters vs.. voids* Smoothing with some window (Gaussian, top-hat, CIC), SPH, Wavelets, DTFE) Quasi Poisson process 11/19/04 10

11 Examples of multiscale stuctures in 2D N-body simulations 11/19/04 11

12 11/19/04 12

13 LCRS Bharadwaj, Sahni, Sathyaprakash, & Shandarin 2000, ApJ, 528, 21 central part of the slice n specifies the level of coarse graining FF = Filling Factor =Fraction of Area in Black 11/19/04 13

14 SUPERCLUSTERS and VOIDS are defined as the regions enclosed by isodensity surface. Interface surface is build by SURFGEN algorithm, using linear interpolation The density of a supercluster is higher than the density of the boundary surface. The density of a void is lower than the density of the boundary surface. The boundary surface may consist of any number of disjointed pieces. Each piece of the boundary surface must be closed. Boundary surface of SUPERCLUSTERS and VOIDS cut by volume boundary are closed by parts of the volume boundary 11/19/04 14

15 Filling Factor of overdense regions 23/ Smoothing 11/19/04 15

16 Superclusters in LCDM simulation (VIRGO consortium) by SURFGEN Percolating i.e. largest supercluster Sheth, Sahni, Shandarin, Sathyaprakash 2003, MNRAS, 343, 22 11/19/04 16

17 VOIDS Shandarin et al. 2004, MNRAS, 11/19/04 17

18 Approximation of a void by the inertia tensor ellipsoid 11/19/04 18

19 11/19/04 19

20 V Por = V VE min V max b a E = 1 c + b = 2 for perfect fit by ellipsoid for a sphere 11/19/04 20

21 15sLhMpc = Superclusters vs.. Voids Red: super clusters = overdense Blue: voids = underdense dashed: the largest object solid: all but the largest Solid: 90% Dashed: 10% Superclusters by mass Voids by volume 11/19/04 21

22 SUPERCLUSTERS and VOIDS should be studied before percolation in the corresponding phase occurs. 1.8δ Individual SUPERCLUSTERS should be studied at the density contrasts 0.07CFF corresponding to filling factors Individual VOIDS should be studied 0.22VFF at density contrasts corresponding to filling factors 0.5δ There are practically only two very complex structures in between: infinite supercluster and void. CAUTION: The above parameters depend on smoothing: with decreasing smoothing scale i.e. better resolution critical density contrast for SUPERCLUSTERS will increase while critical Filling Factor will decrease the critical density contrast for VOIDS will decrease while the critical Filling Factor will increase 11/19/04 22

23 Superclusters vs. Voids 15sLhMpc = Red: super clusters = overdense dashed: the largest object solid: all but the largest Blue: voids = underdense Solid: 90% Dashed: 10% Superclusters by mass Voids by volume VC FFFF for SC for V VC FFFF for SC for V 11/19/04 23

24 Plotting morphological CFF characteristics of SUPERCLUSTERS as a function of while morphological vff characteristics of VOIDS as a function of allows direct comparison of SUPERCLUSTERS and VOIDS 1CVFFFF+= 11/19/04 24

25 Genus vs. Percolation Red: Superclusters Blue: Voids Green: Gaussian Genus as a function of Filling Factor PERCOLATION Ratio Genus of the Largest Genus of Exc. Set 11/19/04 25

26 At percolation number of superclusters/voids and volume, mass and other parameters of the largest supercluster/void rapidly change but genus curve shows no peculiarity 11/19/04 26

27 Minkowski Functionals 12Surface Area: 111Integrated MeanVolume : Mecke, Buchert & Wagner /19/04 27

28 Percolation thresholds 1.8δ= Gauss Blue: mass estimator Red: volume estimator Green: area estimator Magenta: curvature estimator Gauss 0.5δ= Superclusters Voids 11/19/04 28

29 Set of Morphological Parameters Partial Minkowski Functionals vo MFs of percolating supercluster or void, Global MFs:,, iiiivvaaccg 11/19/04 29

30 Sizes and Shapes Sphere: C4T=B=L=R For each supercluster or void Sphere: P=F=0B - TPlanari Sahni, Sathyaprakash & Shandarin 1998 Convex boundaries! 11/19/04 30

31 Toy Example: Triaxial Torus Sahni, Sathyaprakash & Shandarin /19/04 31

32 LCDM Superclusters vs.. Voids Mass Volume Density log(length) Breadth Thickness Median 25%± Planarity Filamentarity 11/19/04 32

33 LCDM Superclusters vs. Voids Mass Volume Density Length Breadth Thickness Top 25% Planarity Filamentarity 11/19/04 33

34 Correlation with mass (SC) or volume (V) Genus Green: at percolation Red: just before percolation Blue: just after percolation Planarity Filamentarity log(length) Breadth Thickness log(genus) Solid lines mark the radius of sphere having same volume as the object. 11/19/04 34

35 For both SUPERCLUSTERS and VOIDS Length > R, while Breadth < R and Thickness < R. Where R is radius of sphere having same volume as SUPERCLUSTER or VOID Difference increases with growth of mass of SUPERCLUSTERS and volume of VOIDS 11/19/04 35

36 SDSS mock catalog Cole et al Volume limited catalog J. Sheth Smoothing scalef 11/19/04 36

37 Cumulative probability functions Top curves TCDM Bottom curves LCDM 11/19/04 37

38 Top curves TCDM Cumulative probability functions Bottom curves LCDM 11/19/04 38

39 Galaxy Morphology 11/19/04 39

40 Ellipticity Rahman & Shandarin 2004 Ellipticals (e>0.2) Spirals (in optics) 11/19/04 40

41 Orientation Ellipticals (e>0.2) Spirals (in optics) 11/19/04 41

42 Summary Real space studies are interesting especially if we know cosmological model (parameters, initial spectrum ) LCDM: density field in real space seen with resolution 5/h Mpc displays filaments but no isolated pancakes have been detected. Web has both characteristics: filamentary network and bubble structure (at different density thresholds!) At percolation: number of superclusters/voids, volume, mass and other parameters of the largest supercluster/void rapidly change (phase transition) but genus curve shows no features/ peculiarites. Percolation and genus are different (independent?) characteristics of the web. Morphological parameters (L,B,T, P,F) can discriminate models. Voids defined as closed regions in underdense excurtion set are different from common-view voids. Why? 1) different definition, 2) uniform 5 Mpc smoothing, 3) DM distribution 4) real space Voids have complex substructure. Isolated structures are possible along with tunnels. Voids have more complex topology than superclusters. Voids: G~50; superclusters: G~a few 11/19/04 42

Supercluster Properties as a Cosmological Probe

Supercluster Properties as a Cosmological Probe Mon. Not. R. Astron. Soc. 000, 000 000 (2001) Supercluster Properties as a Cosmological Probe V. Kolokotronis 1, S. Basilakos 2, M. Plionis 1. 1 Institute of Astronomy & Astrophysics, National Observatory

More information

Quasi-sphericals. Pekka H., Pekka T., Pasi N., Maret E., Mirt G., Enn S., Jaan E.

Quasi-sphericals. Pekka H., Pekka T., Pasi N., Maret E., Mirt G., Enn S., Jaan E. Quasi-sphericals Pekka H., Pekka T., Pasi N., Maret E., Mirt G., Enn S., Jaan E. Previous works : Teerikorpi et al. 2015, Gramann et al. 2015, Einasto, M., et al. 2015 Definition of the superclusters Galaxies

More information

Topology and geometry of the dark matter web: a multistream view

Topology and geometry of the dark matter web: a multistream view Advance Access publication 2017 January 22 doi:10.1093/mnras/stx183 Topology and geometry of the dark matter web: a multistream view Nesar S. Ramachandra and Sergei F. Shandarin Department of Physics and

More information

arxiv:astro-ph/ v1 11 Jul 2003

arxiv:astro-ph/ v1 11 Jul 2003 Astronomy & Astrophysics manuscript no. sdss February 2, 2008 (DOI: will be inserted by hand later) Large Scale Structure in the SDSS DR1 Galaxy Survey A. Doroshkevich 1,2, D.L. Tucker 3, S. Allam 3,4,

More information

MORPHOLOGY OF THE GALAXY DISTRIBUTION FROM WAVELET DENOISING

MORPHOLOGY OF THE GALAXY DISTRIBUTION FROM WAVELET DENOISING The Astrophysical Journal, 634:744 755, 005 December 1 # 005. The American Astronomical Society. All rights reserved. Printed in U.S.A. A MORPHOLOGY OF THE GALAXY DISTRIBUTION FROM WAVELET DENOISING Vicent

More information

Cosmology from Topology of Large Scale Structure of the Universe

Cosmology from Topology of Large Scale Structure of the Universe RESCEU 2008 Cosmology from Topology of Large Scale Structure of the Universe RESCEU Symposium on Astroparticle Physics and Cosmology 11-14, November 2008 Changbom Park (Korea Institute for Advanced Study)

More information

arxiv:astro-ph/ v1 15 Aug 2005

arxiv:astro-ph/ v1 15 Aug 2005 Submitted for publication to ApJ Preprint typeset using L A TEX style emulateapj v. 6/22/4 MORPHOLOGY OF THE GALAXY DISTRIBUTION FROM WAVELET DENOISING Vicent J. Martínez Observatori Astronòmic, Universitat

More information

arxiv: v1 [astro-ph.co] 9 May 2011

arxiv: v1 [astro-ph.co] 9 May 2011 DRAFT VERSION MAY 1, 11 Preprint typeset using LATEX style emulateapj v. 8//9 THE SLOAN GREAT WALL. MORPHOLOGY AND GALAXY CONTENT M. EINASTO 1, L. J. LIIVAMÄGI 1, E. TEMPEL 1, E. SAAR 1, E. TAGO 1, P.

More information

Measures of Cosmic Structure

Measures of Cosmic Structure Measures of Cosmic Structure Lecture course LSS2009 University Groningen Apr. 2009-July 2009 If Standard you want to Reference: know more... Martinez & Saar 1 Ergodic Theorem Statistical Cosmological Principle

More information

Interconnection of Cosmic Voids. Daeseong Park & Jounghun Lee! (Seoul National University)

Interconnection of Cosmic Voids. Daeseong Park & Jounghun Lee! (Seoul National University) Interconnection of Cosmic Voids Daeseong Park & Jounghun Lee! (Seoul National University) Formation and evolution of cosmic voids Rarefaction due to the self under density Tidal effect from the surrounding

More information

Alignment of voids in the cosmic web

Alignment of voids in the cosmic web Mon. Not. R. Astron. Soc. 387, 128 136 (2008) doi:10.1111/j.1365-2966.2008.13019.x Alignment of voids in the cosmic web Erwin Platen, Rien van de Weygaert and Bernard J. T. Jones Kapteyn Astronomical Institute,

More information

arxiv:astro-ph/ v1 31 Jan 2007

arxiv:astro-ph/ v1 31 Jan 2007 Void-Supercluster Alignments Daeseong Park and Jounghun Lee Department of Physics and Astronomy, FPRD, Seoul National University, Seoul 151-747, Korea arxiv:astro-ph/0701889v1 31 Jan 2007 pds2001@astro.snu.ac.kr,

More information

Zeldovich pancakes in observational data are cold

Zeldovich pancakes in observational data are cold Prepared for submission to JCAP Zeldovich pancakes in observational data are cold arxiv:1411.6650v3 [astro-ph.co] 3 May 2017 Thejs Brinckmann, a,b Mikkel Lindholmer, b Steen Hansen, b Martina Falco b,c,d

More information

arxiv: v2 [astro-ph.co] 13 May 2015

arxiv: v2 [astro-ph.co] 13 May 2015 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 14 May 2015 (MN LATEX style file v2.2) The Persistent Percolation of Single-Stream Voids B. Falck, 1 M. C. Neyrinck, 2 1 Institute of Cosmology and

More information

NEXUS: tracing the cosmic web connection

NEXUS: tracing the cosmic web connection MNRAS 429, 1286 1308 (2013) doi:10.1093/mnras/sts416 NEXUS: tracing the cosmic web connection Marius Cautun, Rien van de Weygaert and Bernard J. T. Jones Kapteyn Astronomical Institute, University of Groningen,

More information

An excursion set model of the cosmic web: The abundance of sheets, filaments and halos

An excursion set model of the cosmic web: The abundance of sheets, filaments and halos SLAC-PUB-11626 astro-ph/0511365 An excursion set model of the cosmic web: The abundance of sheets, filaments and halos Jiajian Shen Department of Astronomy and Astrophysics, The Pennsylvania State University,

More information

The effect of large scale environment on galaxy properties

The effect of large scale environment on galaxy properties The effect of large scale environment on galaxy properties Toulouse, June 2017 Iris Santiago-Bautista The LSS baryonic component is composed by substructures of gas and galaxies embedded in dark matter

More information

Ay 127. Large Scale Structure: Basic Observations, Redshift Surveys, Biasing

Ay 127. Large Scale Structure: Basic Observations, Redshift Surveys, Biasing Ay 127 Large Scale Structure: Basic Observations, Redshift Surveys, Biasing Structure Formation and Evolution From this (Δρ/ρ ~ 10-6 ) to this (Δρ/ρ ~ 10 +2 ) to this (Δρ/ρ ~ 10 +6 ) How Long Does It

More information

9.1 Large Scale Structure: Basic Observations and Redshift Surveys

9.1 Large Scale Structure: Basic Observations and Redshift Surveys 9.1 Large Scale Structure: Basic Observations and Redshift Surveys Large-Scale Structure Density fluctuations evolve into structures we observe: galaxies, clusters, etc. On scales > galaxies, we talk about

More information

The accuracy of parameters determined with the core-sampling method: Application to Voronoi tessellations

The accuracy of parameters determined with the core-sampling method: Application to Voronoi tessellations ASTRONOMY & ASTROPHYSICS JUNE II 1997, PAGE 495 SUPPLEMENT SERIES Astron. Astrophys. Suppl. Ser. 123, 495-506 (1997) The accuracy of parameters determined with the core-sampling method: Application to

More information

Cosmology in the Very Local Universe - Why Flow Models Matter

Cosmology in the Very Local Universe - Why Flow Models Matter Cosmology in the Very Local Universe - Why Flow Models Matter Karen L. Masters Department of Astronomy, Cornell University, Ithaca, NY, 14853, USA While much of the focus of observational cosmology is

More information

arxiv: v2 [astro-ph.co] 15 Nov 2012

arxiv: v2 [astro-ph.co] 15 Nov 2012 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 21 August 2018 (MN LATEX style file v2.2) NEXUS: Tracing the Cosmic Web Connection Marius Cautun 1, Rien van de Weygaert 1 and Bernard J. T. Jones

More information

The Flatness of Mass-to-Light Ratio on Large Scales

The Flatness of Mass-to-Light Ratio on Large Scales The Flatness of Mass-to-Light Ratio on Large Scales Li-Zhi Fang 1,andWenXu 2 ABSTRACT It has been suggested that the mass-to-light (M/L) ratio of gravitationally clustering objects is scale-independent

More information

arxiv:astro-ph/ v1 12 Jul 1999

arxiv:astro-ph/ v1 12 Jul 1999 The Flatness of Mass-to-Light Ratio on Large Scales Li-Zhi Fang 1, and Wen Xu 2 ABSTRACT arxiv:astro-ph/9907141v1 12 Jul 1999 It has been suggested that the mass-to-light (M/L) ratio of gravitationally

More information

arxiv: v2 [astro-ph.co] 13 Nov 2016

arxiv: v2 [astro-ph.co] 13 Nov 2016 The Zeldovich Universe: Genesis and Growth of the Cosmic Web Proceedings IAU Symposium No. 308, 2014 c 2014 International Astronomical Union R. van de Weygaert, S.F. Shandarin, E. Saar & J. Einasto, eds.

More information

University of Groningen

University of Groningen University of Groningen The Cosmically Depressed Weygaert, Rien van de; Platen, Erwin; Tigrak, Esra; Hidding, Johan; van der Hulst, Jan; Stanonik, Kathryn; Gorkom, Jacqueline van Published in: EPRINTS-BOOK-TITLE

More information

Testing the Frozen Flow Approximation

Testing the Frozen Flow Approximation Testing the Frozen Flow Approximation Adrian L. Melott, 1 Francesco Lucchin, 2 Sabino Matarrese, 3 and Lauro Moscardini 2 arxiv:astro-ph/9308008v1 6 Aug 1993 1. Department of Physics and Astronomy, University

More information

arxiv: v1 [astro-ph] 10 Aug 2007

arxiv: v1 [astro-ph] 10 Aug 2007 The Cosmic Web: Geometric Analysis Rien van de Weygaert & Willem Schaap arxiv:0708.1441v1 [astro-ph] 10 Aug 2007 Kapteyn Astronomical Institute, University of Groningen, P.O. Box 800, 9700 AV Groningen,

More information

Dynamos on galactic scales, or Dynamos around us.

Dynamos on galactic scales, or Dynamos around us. Dynamos on galactic scales, or Dynamos around us. Part IV. Cluster dynamos Anvar Shukurov School of Mathematics and Statistics, Newcastle University, U.K. Outline 1. Evidence for intracluster magnetic

More information

Cosmic Web, IGM tomography and Clamato

Cosmic Web, IGM tomography and Clamato The mystery figure Cosmic Web, IGM tomography and Clamato Martin White with K-G Lee, J. Hennawi, E. Kitanidis, P. Nugent, J. Prochaska, D. Schlegel, M.Schmittfull, C. Stark, et al. http://clamato.lbl.gov

More information

arxiv: v1 [astro-ph.co] 25 Sep 2012

arxiv: v1 [astro-ph.co] 25 Sep 2012 Draft version May 23, 2018 Preprint typeset using L A TEX style emulateapj v. 5/2/11 THE CHALLENGE OF THE LARGEST STRUCTURES IN THE UNIVERSE TO COSMOLOGY arxiv:1209.5659v1 [astro-ph.co] 25 Sep 2012 Changbom

More information

Tomographic local 2D analyses of the WISExSuperCOSMOS all-sky galaxy catalogue

Tomographic local 2D analyses of the WISExSuperCOSMOS all-sky galaxy catalogue Tomographic local 2D analyses of the WISExSuperCOSMOS all-sky galaxy catalogue Camila P. Novaes, Armando Bernui, Henrique S. Xavier, Gabriela A. Marques [MNRAS, 478, 3253 (2018) ] Observatório Nacional

More information

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK

Large-scale structure as a probe of dark energy. David Parkinson University of Sussex, UK Large-scale structure as a probe of dark energy David Parkinson University of Sussex, UK Question Who was the greatest actor to portray James Bond in the 007 movies? a) Sean Connery b) George Lasenby c)

More information

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS

THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS GALAXY FORMATION - Durham -18 July 2011 THE BOLSHOI COSMOLOGICAL SIMULATIONS AND THEIR IMPLICATIONS JOEL PRIMACK, UCSC ΛCDM Cosmological Parameters for Bolshoi and BigBolshoi Halo Mass Function is 10x

More information

How the Dark-Matter Sheet Stretches and Folds up to Form Cosmic Structures

How the Dark-Matter Sheet Stretches and Folds up to Form Cosmic Structures How the Dark-Matter Sheet Stretches and Folds up to Form Cosmic Structures Mark Neyrinck Johns Hopkins University ICTP, May 15, 2015 Outline Stretching the dark matter sheet: Multiscale spherical collapse:

More information

Scale invariance of cosmic structure

Scale invariance of cosmic structure Scale invariance of cosmic structure José Gaite Instituto de Matemáticas y Física Fundamental, CSIC, Madrid (Spain) Scale invariance of cosmic structure p.1/25 PLAN OF THE TALK 1. Cold dark matter structure

More information

astro-ph/ Dec 94

astro-ph/ Dec 94 Mon. Not. R. Astron. Soc. 000, 000{000 (1994) Hierarchical Pancaking: Why the Zel'dovich Approximation Describes Coherent Large-Scale Structure in N-Body Simulations of Gravitational Clustering astro-ph/9408019

More information

The motion of emptiness

The motion of emptiness The motion of emptiness Dynamics and evolution of cosmic voids Laura Ceccarelli IATE, Observatorio Astronómico de Córdoba Large scale structure and galaxy flows Quy Nhon, July 2016 Motivations Universe

More information

Tracing the cosmic web with Vweb & DisPerSE

Tracing the cosmic web with Vweb & DisPerSE Tracing the cosmic web with Vweb & DisPerSE Tracing the Cosmic Web work shop Leiden, Netherlands 18/Feb./2014 Weiguang Cui* Vweb Authors: Yehuda Hoffman, Noam I. Libeskind, Ofer Metuki, Gustavo Yepes,

More information

Astronomy 330 Lecture Dec 2010

Astronomy 330 Lecture Dec 2010 Astronomy 330 Lecture 26 10 Dec 2010 Outline Clusters Evolution of cluster populations The state of HI sensitivity Large Scale Structure Cluster Evolution Why might we expect it? What does density determine?

More information

Tracing the cosmic web

Tracing the cosmic web Advance Access publication 2017 August 3 doi:10.1093/mnras/stx1976 Tracing the cosmic web Noam I. Libeskind, 1 Rien van de Weygaert, 2 Marius Cautun, 3 Bridget Falck, 4 Elmo Tempel, 1,5 Tom Abel, 6,7 Mehmet

More information

arxiv:astro-ph/ v1 27 Sep 1998

arxiv:astro-ph/ v1 27 Sep 1998 Mon. Not. R. Astron. Soc., () Printed 9 August 213 (MN LATEX style file v1.4) The Superactic Plane revisited with the Optical Redshift Survey arxiv:astro-ph/989343v1 27 Sep 1998 O. Lahav 1,2, B.X. Santiago

More information

Measuring Shapes of Galaxy Images I: Ellipticity and Orientation

Measuring Shapes of Galaxy Images I: Ellipticity and Orientation Mon. Not. R. Astron. Soc., (3) Measuring Shapes of Galaxy Images I: Ellipticity and Orientation Nurur Rahman and Sergei F. Shandarin Department of Physics and Astronomy, University of Kansas, Lawrence,

More information

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe

Astronomy 422. Lecture 15: Expansion and Large Scale Structure of the Universe Astronomy 422 Lecture 15: Expansion and Large Scale Structure of the Universe Key concepts: Hubble Flow Clusters and Large scale structure Gravitational Lensing Sunyaev-Zeldovich Effect Expansion and age

More information

Morphology and Topology of the Large Scale Structure of the Universe

Morphology and Topology of the Large Scale Structure of the Universe Morphology and Topology of the Large Scale Structure of the Universe Stephen Appleby KIAS Research Fellow Collaborators Changbom Park, Juhan Kim, Sungwook Hong The 6th Survey Science Group Workshop 28th

More information

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges

Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Cosmology and Astrophysics with Galaxy Clusters Recent Advances and Future Challenges Daisuke Nagai Yale University IPMU, July 15 th, 2010 Large-scale structure in the Universe SDSS (optical) Today δρ/ρ>>1

More information

Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web

Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web Rien van de Weygaert, Gert Vegter, Herbert Edelsbrunner, Bernard J.T. Jones, Pratyush Pranav, Changbom Park, Wojciech A. Hellwing,

More information

Non-linear structure in the Universe Cosmology on the Beach

Non-linear structure in the Universe Cosmology on the Beach Non-linear structure in the Universe Cosmology on the Beach Puerto Vallarta January, 2011 Martin White UC Berkeley/LBNL (http://mwhite.berkeley.edu/talks) Strong non-linearity Martin White UCB/LBNL Limited

More information

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013

GALAXY CLUSTERING. Emmanuel Schaan AST 542 April 10th 2013 GALAXY CLUSTERING Emmanuel Schaan AST 542 April 10th 2013 INTRODUCTION: SCALES GALAXIES: 10kpc Milky Way: 10kpc, 10 12 Mo GALAXY GROUPS: 100kpc or «poor clusters» Local Group: ~50gal, 3Mpc, 10 13 Mo GALAXY

More information

Alpha, Betti and the Megaparsec Universe:

Alpha, Betti and the Megaparsec Universe: Alpha, Betti and the Megaparsec Universe: on the Topology of the Cosmic Web Abstract. We study the topology of the Megaparsec Cosmic Web in terms of the scale-dependent Betti numbers, which formalize the

More information

arxiv:astro-ph/ v3 6 Jan 1999

arxiv:astro-ph/ v3 6 Jan 1999 Mon. Not. R. Astron. Soc.,, () Printed 5 March 1 (MN LATEX style file v1.) Cluster Winds Blow Along Supercluster Axes Dmitri I. Novikov 1, Adrian L. Melott 1, Brian C. Wilhite 1, Michael Kaufman 1, Jack

More information

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation?

2. What are the largest objects that could have formed so far? 3. How do the cosmological parameters influence structure formation? Einführung in die beobachtungsorientierte Kosmologie I / Introduction to observational Cosmology I LMU WS 2009/10 Rene Fassbender, MPE Tel: 30000-3319, rfassben@mpe.mpg.de 1. Cosmological Principles, Newtonian

More information

LSS: Achievements & Goals. John Peacock Munich 20 July 2015

LSS: Achievements & Goals. John Peacock Munich 20 July 2015 LSS: Achievements & Goals John Peacock LSS @ Munich 20 July 2015 Outline (pre-)history and empirical foundations The ΛCDM toolkit Open issues and outlook Fundamentalist Astrophysical A century of galaxy

More information

Accepted 2014 June 4. Received 2014 May 12; in original form 2013 November (AW);

Accepted 2014 June 4. Received 2014 May 12; in original form 2013 November (AW); doi:10.1093/mnras/stu1118 irect Minkowski Functional analysis of large redshift surveys: a new high-speed code tested on the luminous red galaxy Sloan igital Sky Survey-R7 catalogue Alexander Wiegand,

More information

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY

N-body Simulations. Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY N-body Simulations N-body Simulations N-body Simulations Initial conditions: What kind of Dark Matter? How much Dark Matter? Initial density fluctuations P(k) GRAVITY Final distribution of dark matter.

More information

arxiv: v1 [astro-ph.co] 4 Oct 2018

arxiv: v1 [astro-ph.co] 4 Oct 2018 Article The Geometry and Formation of the Cosmic Web Jose Gaite ID Applied Physics Dept., ETSIAE, Univ. Politécnica de Madrid, E-28040 Madrid, Spain; jose.gaite@upm.es Received: date; Accepted: date; Published:

More information

Velocity Based Feature Extraction of Multistreaming Events in Cosmological Simulations

Velocity Based Feature Extraction of Multistreaming Events in Cosmological Simulations Velocity Based Feature Extraction of Multistreaming Events in Cosmological Simulations Uliana Popov, Eddy Chandra, Katrin Heitmann, Salman Habib, James Ahrens, and Alex Pang Abstract Multistreaming events

More information

arxiv: v1 [astro-ph.co] 9 Jan 2015 Accepted XXX. Received XXX; in original form XXX

arxiv: v1 [astro-ph.co] 9 Jan 2015 Accepted XXX. Received XXX; in original form XXX Mon. Not. R. Astron. Soc. 000, 1?? (XXXX) Printed 11 October 2018 (MN LATEX style file v2.2) Clues on void evolution III: Structure and dynamics in void shells Andrés N. Ruiz 1,2, Dante J. Paz 1,2, Marcelo

More information

The spatial distribution of galaxies within the CMB cold spot in the Corona Borealis supercluster

The spatial distribution of galaxies within the CMB cold spot in the Corona Borealis supercluster Mon. Not. R. Astron. Soc. 000, 1?? (2008a) Printed 13 February 2009 (MN LATEX style file v2.2) The spatial distribution of galaxies within the CMB cold spot in the Corona Borealis supercluster Carmen Pilar

More information

The imprint of the initial conditions on large-scale structure

The imprint of the initial conditions on large-scale structure Stars, Planets and Galaxies 2018 Harnack House, Berlin The imprint of the initial conditions on large-scale structure Simon White Max Planck Institute for Astrophysics The Planck map of TCMB the initial

More information

Citation for published version (APA): Aragón Calvo, M. A. (2007). Morphology and dynamics of the cosmic web s.n.

Citation for published version (APA): Aragón Calvo, M. A. (2007). Morphology and dynamics of the cosmic web s.n. University of Groningen Morphology and dynamics of the cosmic web Aragón Calvo, Miguel Angel IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from

More information

On the Large-Scale Structure of the Universe as given by the Voronoi Diagrams

On the Large-Scale Structure of the Universe as given by the Voronoi Diagrams Chin. J. Astron. Astrophys. Vol. 6 (2006), No. 4, 387 395 (http://www.chjaa.org) Chinese Journal of Astronomy and Astrophysics On the Large-Scale Structure of the Universe as given by the Voronoi Diagrams

More information

Structure formation in the concordance cosmology

Structure formation in the concordance cosmology Structure formation in the Universe, Chamonix, May 2007 Structure formation in the concordance cosmology Simon White Max Planck Institute for Astrophysics WMAP3 team WMAP3 team WMAP3 team WMAP3 team In

More information

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation

Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Concentration and segregation of particles and bubbles by turbulence : a numerical investigation Enrico Calzavarini Physics of Fluids Group University of Twente The Netherlands with Massimo Cencini CNR-ISC

More information

1 h 23 h. 2 h. 3 h. 22 h. 4 h 21 h. -39 o -42 o -45 o Dec. 30 cz (1000 km/s) South galaxies

1 h 23 h. 2 h. 3 h. 22 h. 4 h 21 h. -39 o -42 o -45 o Dec. 30 cz (1000 km/s) South galaxies LARGE SCALE STRUCTURE OF THE UNIVERSE NETA A. BAHCALL Princeton University Observatory Princeton, NJ Abstract How is the universe organized on large scales? How did this structure evolve from the unknown

More information

Structure Formation and Evolution"

Structure Formation and Evolution Structure Formation and Evolution" From this (Δρ/ρ ~ 10-6 )! to this! (Δρ/ρ ~ 10 +2 )! to this! (Δρ/ρ ~ 10 +6 )! How Long Does It Take?" The (dissipationless) gravitational collapse timescale is on the

More information

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12

Dark Matter. Jaan Einasto Tartu Observatory and ICRANet 16 December Saturday, December 15, 12 Dark Matter Jaan Einasto Tartu Observatory and ICRANet 16 December 2012 Local Dark Matter: invisible matter in the Galaxy in Solar vicinity Global Dark Matter: invisible matter surrounding galaxies Global

More information

Linear Theory and perturbations Growth

Linear Theory and perturbations Growth Linear Theory and perturbations Growth The Universe is not homogeneous on small scales. We want to study how seed perturbations (like the ones we see in the Cosmic Microwave Background) evolve in an expanding

More information

Large Scale Structure with the Lyman-α Forest

Large Scale Structure with the Lyman-α Forest Large Scale Structure with the Lyman-α Forest Your Name and Collaborators Lecture 1 - The Lyman-α Forest Andreu Font-Ribera - University College London Graphic: Anze Slozar 1 Large scale structure The

More information

arxiv:astro-ph/ v1 19 Nov 1996

arxiv:astro-ph/ v1 19 Nov 1996 Clusters and Superclusters of Galaxies Neta A. Bahcall Princeton University Observatory Princeton, NJ 08544 arxiv:astro-ph/9611148 v1 19 Nov 1996 ABSTRACT Rich clusters of galaxies are the most massive

More information

A Catalogue of Galaxy Clusters and Groups as the Basis for a New Galaxy Supercluster Catalogue

A Catalogue of Galaxy Clusters and Groups as the Basis for a New Galaxy Supercluster Catalogue A Catalogue of Galaxy Clusters and Groups as the Basis for a New Galaxy Supercluster Catalogue Elena Panko Department of Astronomy, Odessa National University T. G. Shevchenko Park, Odessa 65014, Ukraine

More information

arxiv:astro-ph/ v1 27 Nov 2000

arxiv:astro-ph/ v1 27 Nov 2000 A&A manuscript no. (will be inserted by hand later) Your thesaurus codes are: 02 (3.13.18) - methods: N-body simulations ASTRONOMY AND ASTROPHYSICS The mass of a halo Martin White arxiv:astro-ph/0011495v1

More information

Reconstructing the cosmic density field with the distribution of dark matter haloes

Reconstructing the cosmic density field with the distribution of dark matter haloes Mon. Not. R. Astron. Soc. 394, 398 414 (2009) doi:10.1111/j.1365-2966.2008.14301.x Reconstructing the cosmic density field with the distribution of dark matter haloes Huiyuan Wang, 1,2,3 H. J. Mo, 1 Y.

More information

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations

halo formation in peaks halo bias if halos are formed without regard to the underlying density, then δn h n h halo bias in simulations Physics 463, Spring 07 Bias, the Halo Model & Halo Occupation Statistics Lecture 8 Halo Bias the matter distribution is highly clustered. halos form at the peaks of this distribution 3 2 1 0 halo formation

More information

The darkness that shaped the void: dark energy and cosmic voids

The darkness that shaped the void: dark energy and cosmic voids Mon. Not. R. Astron. Soc. 426, 440 461 (2012) doi:10.1111/j.1365-2966.2012.21478.x The darkness that shaped the void: dark energy and cosmic voids E. G. Patrick Bos, 1 Rien van de Weygaert, 1 Klaus Dolag

More information

Temporal optimization of Lagrangian perturbation schemes

Temporal optimization of Lagrangian perturbation schemes Astron. Astrophys. 326, 873 884 (1997) ASTRONOMY AND ASTROPHYSICS Temporal optimization of Lagrangian perturbation schemes Georgios Karakatsanis 1,4, Thomas Buchert 2, and Adrian L. Melott 3 1 Max Planck

More information

Lecture 19: Clusters and Dark Matter

Lecture 19: Clusters and Dark Matter GALAXIES 626 Lecture 19: Clusters and Dark Matter Fundamental plane Plots show edge-on views of the fundamental plane for observed elliptical galaxies in a galaxy cluster. Approximately:. 82 R e µs1. 24

More information

The mass of a halo. M. White

The mass of a halo. M. White A&A 367, 27 32 (2001) DOI: 10.1051/0004-6361:20000357 c ESO 2001 Astronomy & Astrophysics The mass of a halo M. White Harvard-Smithsonian Center for Astrophysics, Cambridge, MA 02138, USA e-mail: mwhite@cfa.harvard.edu

More information

The supercluster-void network V.

The supercluster-void network V. (will be inserted by hand later) Your thesaurus codes are: 12 (12.3.3; 12.12.1) AND ASTROPHYSICS October 17, 2 The supercluster-void network V. Alternative evidence for its regularity O. Toomet 1, H. Andernach

More information

Signal Model vs. Observed γ-ray Sky

Signal Model vs. Observed γ-ray Sky Signal Model vs. Observed γ-ray Sky Springel+, Nature (2008) Two main dark matter signal components: 1. galactocentric diffuse 2. small structures Observed sky modeled with bremsstrahlung π 0 decay up-scattered

More information

Extreme value sta-s-cs of smooth Gaussian random fields in cosmology

Extreme value sta-s-cs of smooth Gaussian random fields in cosmology Extreme value sta-s-cs of smooth Gaussian random fields in cosmology Stéphane Colombi Ins2tut d Astrophysique de Paris with O. Davis, J. Devriendt, S. Prunet, J. Silk The large scale galaxy distribu-on

More information

Confronting the CDM paradigm with numerical simulations

Confronting the CDM paradigm with numerical simulations Evrard et al. (2002) Miyoshi & Kihara (1975) 1/4 century Ludwig-Maximilians- University August 6, 2003 Munich, Germany Confronting the CDM paradigm with numerical simulations Yasushi Suto Department of

More information

The Large-Scale Structure of the Universe

The Large-Scale Structure of the Universe Copyright 2015 by Sylwester Kornowski All rights reserved The Large-Scale Structure of the Universe Sylwester Kornowski Abstract: A single equation within Theory of Everything would be infinitely complex

More information

Observational Cosmology: 3.Structure Formation

Observational Cosmology: 3.Structure Formation Observational Cosmology: 3.Structure Formation An ocean traveler has even more vividly the impression that the ocean is made of waves than that it is made of water. Arthur S. Eddington (1882-1944) 1 Radiation:

More information

Comments on the size of the simulation box in cosmological N-body simulations

Comments on the size of the simulation box in cosmological N-body simulations Mon. Not. R. Astron. Soc. 358, 1076 1082 (2005) doi:10.1111/j.1365-2966.2005.08858.x Comments on the size of the simulation box in cosmological N-body simulations J. S. Bagla and Suryadeep Ray Harish-Chandra

More information

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University

Physics of the Large Scale Structure. Pengjie Zhang. Department of Astronomy Shanghai Jiao Tong University 1 Physics of the Large Scale Structure Pengjie Zhang Department of Astronomy Shanghai Jiao Tong University The observed galaxy distribution of the nearby universe Observer 0.7 billion lys The observed

More information

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics

LARGE QUASAR GROUPS. Kevin Rahill Astrophysics LARGE QUASAR GROUPS Kevin Rahill Astrophysics QUASARS Quasi-stellar Radio Sources Subset of Active Galactic Nuclei AGNs are compact and extremely luminous regions at the center of galaxies Identified as

More information

astro-ph/ Jul 94

astro-ph/ Jul 94 Mon. Not. R. Astron. Soc. 000, 000{000 (1994) The Two-Point Correlation Function of Rich Clusters of Galaxies: Results From An Extended APM Cluster Redshift Survey G. B. Dalton 1, R. A. C. Croft 1, G.

More information

Ay1 Lecture 15. Large Scale Structure, its Formation and Evolution

Ay1 Lecture 15. Large Scale Structure, its Formation and Evolution Ay1 Lecture 15 Large Scale Structure, its Formation and Evolution 15.1 Large Structure: Basic Observations and Redshift Surveys Large-Scale Structure Density fluctuations in the early universe evolve into

More information

Preliminaries. Growth of Structure. Today s measured power spectrum, P(k) Simple 1-D example of today s P(k) Growth in roughness: δρ/ρ. !(r) =!!

Preliminaries. Growth of Structure. Today s measured power spectrum, P(k) Simple 1-D example of today s P(k) Growth in roughness: δρ/ρ. !(r) =!! Growth of Structure Notes based on Teaching Company lectures, and associated undergraduate text with some additional material added. For a more detailed discussion, see the article by Peacock taken from

More information

astro-ph/ Jan 1995

astro-ph/ Jan 1995 UTAP-96/95 January, 995 WEAKLY NONLINEAR EVOLUTION OF TOPOLOGY OF LARGE-SCALE STRUCTURE Takahiko Matsubara Department of Physics, The University of Tokyo Tokyo,, Japan and Department of Physics, Hiroshima

More information

arxiv:astro-ph/ v1 7 Jan 2000

arxiv:astro-ph/ v1 7 Jan 2000 Biased Estimates of Ω from Comparing Smoothed Predicted Velocity Fields to Unsmoothed Peculiar Velocity Measurements Andreas A. Berlind, Vijay K. Narayanan 1 and David H. Weinberg Department of Astronomy,

More information

arxiv: v2 [astro-ph.co] 16 Jan 2015

arxiv: v2 [astro-ph.co] 16 Jan 2015 arxiv:1501.00749v2 [astro-ph.co] 16 Jan 2015 Topology of neutral hydrogen distribution with the Square Kilometer Array Yougang Wang 1, Yidong Xu 1, Fengquan Wu 1, 1, Xin Wang 2, Juhan Kim 3, Changbom Park

More information

arxiv:astro-ph/ v2 3 Sep 2001

arxiv:astro-ph/ v2 3 Sep 2001 to appear in The Astrophysical Journal Letters Preprint typeset using L A TEX style emulateapj v. 14/09/00 CONSTRAINTS ON Ω m, Ω Λ, AND σ 8 FROM GALAXY CLUSTER REDSHIFT DISTRIBUTIONS Gilbert Holder 1,

More information

Dark Matter Halos of Spiral Galaxies

Dark Matter Halos of Spiral Galaxies Dark Matter Halos of Spiral Galaxies Arunima Banerjee National Centre for Radio Astrophysics Tata Institute of Fundamental Research Pune, India email: arunima@ncra.tifr.res.in Web: http://www.ncra.tifr.res.in/~arunima

More information

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter)

Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) Hunting for dark matter in the forest (astrophysical constraints on warm dark matter) ICC, Durham! with the Eagle collaboration: J Schaye (Leiden), R Crain (Liverpool), R Bower, C Frenk, & M Schaller (ICC)

More information

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS

STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS STUDY OF THE LARGE-SCALE STRUCTURE OF THE UNIVERSE USING GALAXY CLUSTERS BÙI VĂN TUẤN Advisors: Cyrille Rosset, Michel Crézé, James G. Bartlett ASTROPARTICLE AND COSMOLOGY LABORATORY PARIS DIDEROT UNIVERSITY

More information

80333 Munchen. Germany. Postfach Garching bei Munchen. Germany

80333 Munchen. Germany. Postfach Garching bei Munchen. Germany astro-ph 9312028 ROBUST MORPHOLOGICAL MEASURES FOR LARGE-SCALE STRUCTURE IN THE UNIVERSE by K.R. Mecke 1, T. Buchert 2,H.Wagner 1 1Sektion Physik der Universitat Munchen Theresienstr. 37 80333 Munchen

More information

arxiv:astro-ph/ v1 20 Jun 1996

arxiv:astro-ph/ v1 20 Jun 1996 Mon. Not. R. Astron. Soc. 000, 000 000 (0000) Printed 1 February 2008 (MN LATEX style file v1.4) Minkowski Functionals of Abell/ACO Clusters arxiv:astro-ph/9606133v1 20 Jun 1996 M. Kerscher 1, J. Schmalzing

More information

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum

Physics 463, Spring 07. Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum Physics 463, Spring 07 Lecture 3 Formation and Evolution of Structure: Growth of Inhomogenieties & the Linear Power Spectrum last time: how fluctuations are generated and how the smooth Universe grows

More information