ELT COMMUNICATION THEORY

Size: px
Start display at page:

Download "ELT COMMUNICATION THEORY"

Transcription

1 ELT COMMUNICATION THEORY Matlab Exercise #2 Randm variables and randm prcesses 1 RANDOM VARIABLES 1.1 ROLLING A FAIR 6 FACED DICE (DISCRETE VALIABLE) Generate randm samples fr rlling a fair 6 faced dice fr N times (i.e. there s an equal prbability fr each value f the dice). First, rll the dice fr N=10 times (help randi) N_faces = 6; %Number f faces in the dice N_trials = 10; %Number f trials (hw many times the dice is rlled) trials = randi(n_faces,1,n_trials); % Getting randm integers Plt the histgram f the utcme values (help histgram, help hist, help bar, help histcunts) histgram functin was intrduced in MATLAB R2014b x_histgram_centers = 1:6; %x-axis fr the bin center crdinates % Befre versin R2014b hist_cunt = hist(trials,x_histgram_centers); bar(x_histgram_centers,hist_cunt) xlabel('rlled number') ylabel('ccurrence number') grid n % Histgrams can be pltted directly as "hist(trials,x_histgram_centers)", % but the pltting parameters are mre difficult t handle. % Versin R2014b r after % x-axis fr the bin edge crdinates (last edge is fr the right edge) histgram_edges = 0.5:1:6.5; % Belw the ~ sign means that we discard that specific utput argument [hist_cunt, ~]= histcunts(trials,histgram_edges); bar(x_histgram_centers,hist_cunt) xlabel('rlled number') ylabel('ccurrence number')

2 grid n % Set a grid in the pltted title('dice rlling histgram') % Histgrams can pltted directly as "h = histgram(trials,'binlimits',[0.5 % 6.5],'BinMethd','integers')", where h is the histgram bject. Nrmalize the histgram values with N_trials (number f trials) s that we get the experimental prbability density functin (pdf) fr the dice. Hence, after the nrmalizatin the sum f the histgram bin area ( integral ) is equal t ne, as required with pdfs (actually when talking abut discrete pdf, we ften refer t pmf (prbability mass functin)). pdf_experimental = hist_cunt/n_trials; Plt the nrmalized histgram, and define the true (analytic) pdf fr the fair dice and plt it n tp f the experimental pdf (help hld) bar(x_histgram_centers,pdf_experimental) xlabel('rlled number') ylabel('pdf') grid n title('dice rlling nrmalized histgram') ne_face_prbability = 1/N_faces; % prbability f ne face f the dice hld n % avids remving the previus plt % pltting true pdf (a line between tw pints) plt([ ],[ne_face_prbability ne_face_prbability],'r') hld ff % Using legend we can name different data curves in the plt (in rder f % appearance) legend('experimental pdf','true pdf') Are the true pdf and the experimental pdf perfectly equal? Repeat the prcess fr a few f times and cmpare the utcmes: Is the experimental pdf varying between simulatins? Increase the number f trials t N= and repeat the prcess fr a few times Is the experimental pdf varying between simulatins nw? 1.2 NORMAL/GAUSSIAN DISTRIBUTED RANDOM VARIABLE Generate 1000 samples fr a nrmally distributed randm variable X~(μ,σ 2 ), where the mean and variance are given as μ=3, and σ 2 =4 (help randn) N_samples = 1000; mu = 3; sigma = sqrt(4); % the variance is 4 (i.e. sigma^2=4) Calculate the fllwing statistics f the bserved samples Mean (r average, r expected value) (help mean) Standard deviatin (help std) Variance (help var) Plt the experimental pdf (i.e. the nrmalized histgram s that the sum f histgram bin area is equal t ne) Define the histgram bin center x crdinates as bin_centers = 7:bin_width:13, where the bin_width = 0.5 defines the width f ne bin bin_width = 0.5; %bin width (in the x-axis)

3 bin_centers = -7:bin_width:13; %x-axis fr the bin center crdinates % x-axis fr the bin edge crdinates (last edge is fr the right edge): % (Three dts cntinues the cmmand in the fllwing line) bin_edges = (bin_centers(1)- bin_width/2):bin_width:(bin_centers(end)+bin_width/2); % ~ means that we discard that utput argument [hist_cunt, ~]= histcunts(x,bin_edges); pdf_experimental = hist_cunt/sum(hist_cunt*bin_width); bar(bin_centers,pdf_experimental,1) % and s n with the titles, xlabels, Plt the true (analytic) pdf f X~(μ,σ 2 ) n tp f the experimental pdf pdf_true = 1/(sqrt(2*pi)*sigma)*exp(-(mu-bin_edges).^2/(2*sigma^2)); hld n plt(bin_edges,pdf_true,'r','linewidth',3) % defines a specific line width % and s n with the titles, xlabels, (remember the legend als) Repeat the experiment with different number f samples: N=100 and N= See the difference in the fitting between the experimental pdf and the analytic pdf as the number f samples changes Based n the histgram with N= samples, define the prbability P(X>5.25) Integrate (i.e. sum) histgram bins, whse x axis center values are larger than 5.25 Nte that actually 5.25 is exactly n edge between tw histgram bins b = 5.25; indices_with_bin_center_larger_than_b = bin_centers > b; cnsidered_bin_values = pdf_experimental(indices_with_bin_center_larger_than_b); %area f the cnsidered bins prbability_x_larger_than_b = sum(cnsidered_bin_values*bin_width) Check yur answer with the Q functin P(X>b)= Q((b-μ)/σ) (help qfunc) analytic_prbability = qfunc((b-mu)/sigma) 2 RANDOM PROCESSES 2.1 WHITE NOISE VS. COLORED NOISE Generate a zer mean white Gaussian nise signal with variance σ 2 =3 N = 10000; % Number f generated samples nise_var = 3; % Desired nise variance nise = sqrt(nise_var)*randn(1,n); % Nise signal generatin Plt the nise signal plt(nise) xlabel('sample index') ylabel('nise amplitude') title('white nise') xlim([0 100]) %define the x-axis limits

4 Plt the histgram f the nise signal t see that it is Gaussian distributed histgram(nise,40) xlabel('nise amplitude') ylabel('histgram cunt') title('white nise histgram') Implement a lw pass FIR filter (help firpm, recap frm the previus exercise) Use filter rder f 60 and a transitin band frm 0.1*Fs/2 t 0.2*Fs/2 N_filter = 60; %even number h = firpm(n_filter,[ ],[ ]); Plt the impulse respnse and amplitude (frequency) respnse f the filter Yu can define the amplitude respnse as a functin f nrmalized frequency (i.e. Fs/2 Fs/2 1 1) N_freq = length(nise); freq_vec_filter = -1:2/N_freq:(1-2/N_freq); %frequency vectr values nrmalized between -1 and 1,plt(freq_vec_filter,10*lg10(fftshift(abs(fft(h,N_freq))))) xlabel('nrmalized frequency (F_s/2=1)') ylabel('amplitude') title('amplitude respnse f the filter') Filter the nise signal using the abve filter (help filter) % Filter the nise signal: filtered_nise = filter(h,1,nise); Plt the white nise and filtered nise signals in the same and cmpare Remember the filter delay in rder t align the signals prperly in time filtered_nise = filtered_nise(n_filter/2+1:end); %remve the delay plt(nise(1:n_samples_plt)) hld n plt(filtered_nise(1:n_samples_plt),'r') legend('white nise','clred nise') xlabel('sample index') ylabel('nise amplitude') title('white nise and filtered (clred) nise') Plt the histgram f the filtered nise signal Hw it is distributed? (recap: What is the distributin f the utput signal f an LTI system, if the input signal is Gaussian distributed?) Cmpute and plt the autcrrelatin functin f the riginal white nise signal (help xcrr) [crr_fun, lags] = xcrr(nise); % we nrmalize the max-value t 1 and use stem-functin in rder t emphasize % the impulse-like nature f the utcme,stem(lags,crr_fun/max(crr_fun)) xlabel('\tau') % \tau gives the Greek tau-letter (\ wrks generally fr the Greek alphabet) ylabel('r(\tau)') title('autcrrelatin f white nise') xlim([-30 30]) What type f autcrrelatin functin shuld the white nise have?

5 Cmpute and plt the autcrrelatin functin f the filtered (i.e., clred) nise signal Use the abve statements, but with plt instead f stem : [crr_fun, lags] = xcrr(nise);,plt(lags,crr_fun/max(crr_fun)) %...and s n Cmpare this with the previusly pltted impulse respnse f the filter In the end, plt the pwer spectra (i.e., amplitude spectrum squared) f the tw nise signals in the same (use the decibel scale 20*lg10(abs(.))) nise_abs_spec = 20*lg10(abs(fft(nise(1:length(filtered_nise))))); filtered_nise_abs_spec = 20*lg10(abs(fft(filtered_nise))); %Define the frequency vectr values (nrmalized between -1 and 1): freq_vec = -1:2/length(nise_abs_spec):1-2/length(nise_abs_spec); plt(freq_vec,fftshift(nise_abs_spec)) hld n plt(freq_vec,fftshift(filtered_nise_abs_spec),'r') hld ff xlabel('nrmalized frequency (F_s/2=1)') ylabel('pwer [db]') title('nise spectra') legend('white nise','filtered (clured) nise') Ntice that bth signals are still Gaussian distributed (see the previus histgrams), but the pwer spectra are different. Try t remember what is the cnnectin between the crrelatin functin and the pwer spectral density functin? Make sure yu understand the difference between the fllwing cncepts: Gaussian nise and white nise I.e., here bth nise signals are Gaussian, but nly the ther ne is white 2.2 RANDOM WALK MODEL (EXAMPLE FROM THE CLASSROOM EXERCISES) Let s cnsider a randm sequence X[n], the s called randm walk mdel, as n X[ n] i W[ i] 1 where W[i] are binary i.i.d. (independent and identically distributed) randm variables with prbabilities P[W[i] = s] = p and P[W[i] = s] = 1 p Generate a randm prcess f 2000 samples and 5000 realizatins (=ensemble size) Use first p=0.5 and s=1, but write the cde s that yu can cnveniently test the prcess with ther values t N_samples = 2000; %Number f samples fr each realizatin N_ensemble = 5000; %Number f signal realizatins (i.e., the size f ensemble) %Step prbability and step size: p = 0.5; % P(Wi=s) = p, P(Wi=-s) = 1-p s = 1; %step length n = 1:N_samples; % vectr f samples indices % Generating matrix f randmly generated steps:

6 W = rand(n_ensemble,n_samples); % (i.e. unifrmly distributed randm values between 0 and 1) indices_with_psitive_s = W<p; % find ut steps ging "up" W(indices_with_psitive_s) = s; % Define steps fr ging "up" W(~indices_with_psitive_s) = -s; % Define steps fr ging "dwn" % The verall "randm walk" is achieved by taking the cumulative sum ver the % steps: X = cumsum(w,2); % (Ntice that nw each rw describes ne randm walk realizatin, s the sum % is taken ver the 2nd dimensin) Plt five example realizatins f the randm walk prcess (help fr) Use subplts inside ne (help subplt) fr ind = 1:5 subplt(5,1,ind) plt(n,x(ind,:)) xlabel('n') ylabel('x(n)') grid n title(['realizatin #' num2str(ind)]) %num2str cnverts a numerical value int a character value end % Here is a handy way t get a full screen % (therwise the might be t unclear): set(gcf,'units','nrmalized','uterpsitin',[ ]) Calculate the ensemble mean and the ensemble variance f the prcess Plt the calculated ensemble mean E[X[n]] and variance E[(X[n]- E[X[n]]) 2 ] in the same with the theretical values given as Theretical mean: E[X[n]] = ns(2p-1) Theretical variance: E[(X[n]- E[X[n]]) 2 ] = np(2s) 2 (1-p) Ntice that the ensemble mean and variance are nw functins f the sequence index n ( =time ), s there will be a specific mean and variance fr each sequence index mean_thery = n*s*(2*p-1); % Theretical mean var_thery = n*(2*s)^2*p*(1-p); % Theretical variance mean_bserved = mean(x); % Empirical mean (i.e., what we bserve) var_bserved = var(x); % Empirical variance (i.e., what we bserve) plt(n,mean_bserved,'b','linewidth',3) hld n plt(n,mean_thery,'r:','linewidth',2) hld ff legend('bserved mean','theretical mean') ylim([-2 2]) % set the axis limits in y-directin nly xlabel('n') ylabel('mean') title('mean ver the sample index') % % and the same fr the variance

7 Re run the prcess with different values f p, s, and try different number f realizatins Due t memry issues, d nt try t many realizatins at the same time (stay belw realizatins and 2000 samples) What if the number f realizatins is very lw? Is the prcess statinary (in wide sense)? Why?/Why nt?

, which yields. where z1. and z2

, which yields. where z1. and z2 The Gaussian r Nrmal PDF, Page 1 The Gaussian r Nrmal Prbability Density Functin Authr: Jhn M Cimbala, Penn State University Latest revisin: 11 September 13 The Gaussian r Nrmal Prbability Density Functin

More information

ENSC Discrete Time Systems. Project Outline. Semester

ENSC Discrete Time Systems. Project Outline. Semester ENSC 49 - iscrete Time Systems Prject Outline Semester 006-1. Objectives The gal f the prject is t design a channel fading simulatr. Upn successful cmpletin f the prject, yu will reinfrce yur understanding

More information

AP Statistics Notes Unit Two: The Normal Distributions

AP Statistics Notes Unit Two: The Normal Distributions AP Statistics Ntes Unit Tw: The Nrmal Distributins Syllabus Objectives: 1.5 The student will summarize distributins f data measuring the psitin using quartiles, percentiles, and standardized scres (z-scres).

More information

ELE Final Exam - Dec. 2018

ELE Final Exam - Dec. 2018 ELE 509 Final Exam Dec 2018 1 Cnsider tw Gaussian randm sequences X[n] and Y[n] Assume that they are independent f each ther with means and autcvariances μ ' 3 μ * 4 C ' [m] 1 2 1 3 and C * [m] 3 1 10

More information

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came.

CHAPTER 24: INFERENCE IN REGRESSION. Chapter 24: Make inferences about the population from which the sample data came. MATH 1342 Ch. 24 April 25 and 27, 2013 Page 1 f 5 CHAPTER 24: INFERENCE IN REGRESSION Chapters 4 and 5: Relatinships between tw quantitative variables. Be able t Make a graph (scatterplt) Summarize the

More information

Distributions, spatial statistics and a Bayesian perspective

Distributions, spatial statistics and a Bayesian perspective Distributins, spatial statistics and a Bayesian perspective Dug Nychka Natinal Center fr Atmspheric Research Distributins and densities Cnditinal distributins and Bayes Thm Bivariate nrmal Spatial statistics

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

Source Coding and Compression

Source Coding and Compression Surce Cding and Cmpressin Heik Schwarz Cntact: Dr.-Ing. Heik Schwarz heik.schwarz@hhi.fraunhfer.de Heik Schwarz Surce Cding and Cmpressin September 22, 2013 1 / 60 PartI: Surce Cding Fundamentals Heik

More information

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y=

making triangle (ie same reference angle) ). This is a standard form that will allow us all to have the X= y= Intrductin t Vectrs I 21 Intrductin t Vectrs I 22 I. Determine the hrizntal and vertical cmpnents f the resultant vectr by cunting n the grid. X= y= J. Draw a mangle with hrizntal and vertical cmpnents

More information

Activity Guide Loops and Random Numbers

Activity Guide Loops and Random Numbers Unit 3 Lessn 7 Name(s) Perid Date Activity Guide Lps and Randm Numbers CS Cntent Lps are a relatively straightfrward idea in prgramming - yu want a certain chunk f cde t run repeatedly - but it takes a

More information

SPH3U1 Lesson 06 Kinematics

SPH3U1 Lesson 06 Kinematics PROJECTILE MOTION LEARNING GOALS Students will: Describe the mtin f an bject thrwn at arbitrary angles thrugh the air. Describe the hrizntal and vertical mtins f a prjectile. Slve prjectile mtin prblems.

More information

Probability, Random Variables, and Processes. Probability

Probability, Random Variables, and Processes. Probability Prbability, Randm Variables, and Prcesses Prbability Prbability Prbability thery: branch f mathematics fr descriptin and mdelling f randm events Mdern prbability thery - the aximatic definitin f prbability

More information

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression

4th Indian Institute of Astrophysics - PennState Astrostatistics School July, 2013 Vainu Bappu Observatory, Kavalur. Correlation and Regression 4th Indian Institute f Astrphysics - PennState Astrstatistics Schl July, 2013 Vainu Bappu Observatry, Kavalur Crrelatin and Regressin Rahul Ry Indian Statistical Institute, Delhi. Crrelatin Cnsider a tw

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification

COMP 551 Applied Machine Learning Lecture 5: Generative models for linear classification COMP 551 Applied Machine Learning Lecture 5: Generative mdels fr linear classificatin Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Jelle Pineau Class web page: www.cs.mcgill.ca/~hvanh2/cmp551

More information

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical).

LCAO APPROXIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (cation, anion or radical). Principles f Organic Chemistry lecture 5, page LCAO APPROIMATIONS OF ORGANIC Pi MO SYSTEMS The allyl system (catin, anin r radical).. Draw mlecule and set up determinant. 2 3 0 3 C C 2 = 0 C 2 3 0 = -

More information

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA

Modelling of Clock Behaviour. Don Percival. Applied Physics Laboratory University of Washington Seattle, Washington, USA Mdelling f Clck Behaviur Dn Percival Applied Physics Labratry University f Washingtn Seattle, Washingtn, USA verheads and paper fr talk available at http://faculty.washingtn.edu/dbp/talks.html 1 Overview

More information

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System

Flipping Physics Lecture Notes: Simple Harmonic Motion Introduction via a Horizontal Mass-Spring System Flipping Physics Lecture Ntes: Simple Harmnic Mtin Intrductin via a Hrizntal Mass-Spring System A Hrizntal Mass-Spring System is where a mass is attached t a spring, riented hrizntally, and then placed

More information

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart

Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Key Wrds: Autregressive, Mving Average, Runs Tests, Shewhart Cntrl Chart Perfrmance f Sensitizing Rules n Shewhart Cntrl Charts with Autcrrelated Data Sandy D. Balkin Dennis K. J. Lin y Pennsylvania State University, University Park, PA 16802 Sandy Balkin is a graduate student

More information

Department of Electrical Engineering, University of Waterloo. Introduction

Department of Electrical Engineering, University of Waterloo. Introduction Sectin 4: Sequential Circuits Majr Tpics Types f sequential circuits Flip-flps Analysis f clcked sequential circuits Mre and Mealy machines Design f clcked sequential circuits State transitin design methd

More information

Physics 2010 Motion with Constant Acceleration Experiment 1

Physics 2010 Motion with Constant Acceleration Experiment 1 . Physics 00 Mtin with Cnstant Acceleratin Experiment In this lab, we will study the mtin f a glider as it accelerates dwnhill n a tilted air track. The glider is supprted ver the air track by a cushin

More information

Pattern Recognition 2014 Support Vector Machines

Pattern Recognition 2014 Support Vector Machines Pattern Recgnitin 2014 Supprt Vectr Machines Ad Feelders Universiteit Utrecht Ad Feelders ( Universiteit Utrecht ) Pattern Recgnitin 1 / 55 Overview 1 Separable Case 2 Kernel Functins 3 Allwing Errrs (Sft

More information

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) >

Bootstrap Method > # Purpose: understand how bootstrap method works > obs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(obs) > Btstrap Methd > # Purpse: understand hw btstrap methd wrks > bs=c(11.96, 5.03, 67.40, 16.07, 31.50, 7.73, 11.10, 22.38) > n=length(bs) > mean(bs) [1] 21.64625 > # estimate f lambda > lambda = 1/mean(bs);

More information

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007

CS 477/677 Analysis of Algorithms Fall 2007 Dr. George Bebis Course Project Due Date: 11/29/2007 CS 477/677 Analysis f Algrithms Fall 2007 Dr. Gerge Bebis Curse Prject Due Date: 11/29/2007 Part1: Cmparisn f Srting Algrithms (70% f the prject grade) The bjective f the first part f the assignment is

More information

Review Problems 3. Four FIR Filter Types

Review Problems 3. Four FIR Filter Types Review Prblems 3 Fur FIR Filter Types Fur types f FIR linear phase digital filters have cefficients h(n fr 0 n M. They are defined as fllws: Type I: h(n = h(m-n and M even. Type II: h(n = h(m-n and M dd.

More information

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 )

Part a: Writing the nodal equations and solving for v o gives the magnitude and phase response: tan ( 0.25 ) + - Hmewrk 0 Slutin ) In the circuit belw: a. Find the magnitude and phase respnse. b. What kind f filter is it? c. At what frequency is the respnse 0.707 if the generatr has a ltage f? d. What is the

More information

Tree Structured Classifier

Tree Structured Classifier Tree Structured Classifier Reference: Classificatin and Regressin Trees by L. Breiman, J. H. Friedman, R. A. Olshen, and C. J. Stne, Chapman & Hall, 98. A Medical Eample (CART): Predict high risk patients

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Chapter 3 Kinematics in Two Dimensions; Vectors

Chapter 3 Kinematics in Two Dimensions; Vectors Chapter 3 Kinematics in Tw Dimensins; Vectrs Vectrs and Scalars Additin f Vectrs Graphical Methds (One and Tw- Dimensin) Multiplicatin f a Vectr b a Scalar Subtractin f Vectrs Graphical Methds Adding Vectrs

More information

MATHEMATICS SYLLABUS SECONDARY 5th YEAR

MATHEMATICS SYLLABUS SECONDARY 5th YEAR Eurpean Schls Office f the Secretary-General Pedaggical Develpment Unit Ref. : 011-01-D-8-en- Orig. : EN MATHEMATICS SYLLABUS SECONDARY 5th YEAR 6 perid/week curse APPROVED BY THE JOINT TEACHING COMMITTEE

More information

Part 3 Introduction to statistical classification techniques

Part 3 Introduction to statistical classification techniques Part 3 Intrductin t statistical classificatin techniques Machine Learning, Part 3, March 07 Fabi Rli Preamble ØIn Part we have seen that if we knw: Psterir prbabilities P(ω i / ) Or the equivalent terms

More information

Lab 1 The Scientific Method

Lab 1 The Scientific Method INTRODUCTION The fllwing labratry exercise is designed t give yu, the student, an pprtunity t explre unknwn systems, r universes, and hypthesize pssible rules which may gvern the behavir within them. Scientific

More information

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is

I. Analytical Potential and Field of a Uniform Rod. V E d. The definition of electric potential difference is Length L>>a,b,c Phys 232 Lab 4 Ch 17 Electric Ptential Difference Materials: whitebards & pens, cmputers with VPythn, pwer supply & cables, multimeter, crkbard, thumbtacks, individual prbes and jined prbes,

More information

Lecture 10, Principal Component Analysis

Lecture 10, Principal Component Analysis Principal Cmpnent Analysis Lecture 10, Principal Cmpnent Analysis Ha Helen Zhang Fall 2017 Ha Helen Zhang Lecture 10, Principal Cmpnent Analysis 1 / 16 Principal Cmpnent Analysis Lecture 10, Principal

More information

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling

Lecture 13: Markov Chain Monte Carlo. Gibbs sampling Lecture 13: Markv hain Mnte arl Gibbs sampling Gibbs sampling Markv chains 1 Recall: Apprximate inference using samples Main idea: we generate samples frm ur Bayes net, then cmpute prbabilities using (weighted)

More information

Checking the resolved resonance region in EXFOR database

Checking the resolved resonance region in EXFOR database Checking the reslved resnance regin in EXFOR database Gttfried Bertn Sciété de Calcul Mathématique (SCM) Oscar Cabells OECD/NEA Data Bank JEFF Meetings - Sessin JEFF Experiments Nvember 0-4, 017 Bulgne-Billancurt,

More information

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!)

The Law of Total Probability, Bayes Rule, and Random Variables (Oh My!) The Law f Ttal Prbability, Bayes Rule, and Randm Variables (Oh My!) Administrivia Hmewrk 2 is psted and is due tw Friday s frm nw If yu didn t start early last time, please d s this time. Gd Milestnes:

More information

Interference is when two (or more) sets of waves meet and combine to produce a new pattern.

Interference is when two (or more) sets of waves meet and combine to produce a new pattern. Interference Interference is when tw (r mre) sets f waves meet and cmbine t prduce a new pattern. This pattern can vary depending n the riginal wave directin, wavelength, amplitude, etc. The tw mst extreme

More information

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes

Chemistry 20 Lesson 11 Electronegativity, Polarity and Shapes Chemistry 20 Lessn 11 Electrnegativity, Plarity and Shapes In ur previus wrk we learned why atms frm cvalent bnds and hw t draw the resulting rganizatin f atms. In this lessn we will learn (a) hw the cmbinatin

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016

Maximum A Posteriori (MAP) CS 109 Lecture 22 May 16th, 2016 Maximum A Psteriri (MAP) CS 109 Lecture 22 May 16th, 2016 Previusly in CS109 Game f Estimatrs Maximum Likelihd Nn spiler: this didn t happen Side Plt argmax argmax f lg Mther f ptimizatins? Reviving an

More information

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter).

Three charges, all with a charge of 10 C are situated as shown (each grid line is separated by 1 meter). Three charges, all with a charge f 0 are situated as shwn (each grid line is separated by meter). ) What is the net wrk needed t assemble this charge distributin? a) +0.5 J b) +0.8 J c) 0 J d) -0.8 J e)

More information

Synchronous Motor V-Curves

Synchronous Motor V-Curves Synchrnus Mtr V-Curves 1 Synchrnus Mtr V-Curves Intrductin Synchrnus mtrs are used in applicatins such as textile mills where cnstant speed peratin is critical. Mst small synchrnus mtrs cntain squirrel

More information

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff

Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeoff Lecture 2: Supervised vs. unsupervised learning, bias-variance tradeff Reading: Chapter 2 STATS 202: Data mining and analysis September 27, 2017 1 / 20 Supervised vs. unsupervised learning In unsupervised

More information

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data

x 1 Outline IAML: Logistic Regression Decision Boundaries Example Data Outline IAML: Lgistic Regressin Charles Suttn and Victr Lavrenk Schl f Infrmatics Semester Lgistic functin Lgistic regressin Learning lgistic regressin Optimizatin The pwer f nn-linear basis functins Least-squares

More information

Computational modeling techniques

Computational modeling techniques Cmputatinal mdeling techniques Lecture 4: Mdel checing fr ODE mdels In Petre Department f IT, Åb Aademi http://www.users.ab.fi/ipetre/cmpmd/ Cntent Stichimetric matrix Calculating the mass cnservatin relatins

More information

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science

Weathering. Title: Chemical and Mechanical Weathering. Grade Level: Subject/Content: Earth and Space Science Weathering Title: Chemical and Mechanical Weathering Grade Level: 9-12 Subject/Cntent: Earth and Space Science Summary f Lessn: Students will test hw chemical and mechanical weathering can affect a rck

More information

Kinetic Model Completeness

Kinetic Model Completeness 5.68J/10.652J Spring 2003 Lecture Ntes Tuesday April 15, 2003 Kinetic Mdel Cmpleteness We say a chemical kinetic mdel is cmplete fr a particular reactin cnditin when it cntains all the species and reactins

More information

Chapter 8: The Binomial and Geometric Distributions

Chapter 8: The Binomial and Geometric Distributions Sectin 8.1: The Binmial Distributins Chapter 8: The Binmial and Gemetric Distributins A randm variable X is called a BINOMIAL RANDOM VARIABLE if it meets ALL the fllwing cnditins: 1) 2) 3) 4) The MOST

More information

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9.

Internal vs. external validity. External validity. This section is based on Stock and Watson s Chapter 9. Sectin 7 Mdel Assessment This sectin is based n Stck and Watsn s Chapter 9. Internal vs. external validity Internal validity refers t whether the analysis is valid fr the ppulatin and sample being studied.

More information

Least Squares Optimal Filtering with Multirate Observations

Least Squares Optimal Filtering with Multirate Observations Prc. 36th Asilmar Cnf. n Signals, Systems, and Cmputers, Pacific Grve, CA, Nvember 2002 Least Squares Optimal Filtering with Multirate Observatins Charles W. herrien and Anthny H. Hawes Department f Electrical

More information

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10]

Medium Scale Integrated (MSI) devices [Sections 2.9 and 2.10] EECS 270, Winter 2017, Lecture 3 Page 1 f 6 Medium Scale Integrated (MSI) devices [Sectins 2.9 and 2.10] As we ve seen, it s smetimes nt reasnable t d all the design wrk at the gate-level smetimes we just

More information

Hypothesis Tests for One Population Mean

Hypothesis Tests for One Population Mean Hypthesis Tests fr One Ppulatin Mean Chapter 9 Ala Abdelbaki Objective Objective: T estimate the value f ne ppulatin mean Inferential statistics using statistics in rder t estimate parameters We will be

More information

COMP 551 Applied Machine Learning Lecture 4: Linear classification

COMP 551 Applied Machine Learning Lecture 4: Linear classification COMP 551 Applied Machine Learning Lecture 4: Linear classificatin Instructr: Jelle Pineau (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted

More information

ELEG 635 Digital Communication Theory. Lecture 9

ELEG 635 Digital Communication Theory. Lecture 9 ELEG 635 Digital Cmmunicatin Thery Lecture 9 10501 Agenda Optimal receiver fr PSK Effects f fading n BER perfrmance Tw ray mdel Pulse shaping Rectangle Raised csine Rt raised csine Receivers and pulse

More information

Lyapunov Stability Stability of Equilibrium Points

Lyapunov Stability Stability of Equilibrium Points Lyapunv Stability Stability f Equilibrium Pints 1. Stability f Equilibrium Pints - Definitins In this sectin we cnsider n-th rder nnlinear time varying cntinuus time (C) systems f the frm x = f ( t, x),

More information

Chapter 3: Cluster Analysis

Chapter 3: Cluster Analysis Chapter 3: Cluster Analysis } 3.1 Basic Cncepts f Clustering 3.1.1 Cluster Analysis 3.1. Clustering Categries } 3. Partitining Methds 3..1 The principle 3.. K-Means Methd 3..3 K-Medids Methd 3..4 CLARA

More information

/ / Chemistry. Chapter 1 Chemical Foundations

/ / Chemistry. Chapter 1 Chemical Foundations Name Chapter 1 Chemical Fundatins Advanced Chemistry / / Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne

More information

Dead-beat controller design

Dead-beat controller design J. Hetthéssy, A. Barta, R. Bars: Dead beat cntrller design Nvember, 4 Dead-beat cntrller design In sampled data cntrl systems the cntrller is realised by an intelligent device, typically by a PLC (Prgrammable

More information

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp )

Ecology 302 Lecture III. Exponential Growth (Gotelli, Chapter 1; Ricklefs, Chapter 11, pp ) Eclgy 302 Lecture III. Expnential Grwth (Gtelli, Chapter 1; Ricklefs, Chapter 11, pp. 222-227) Apcalypse nw. The Santa Ana Watershed Prject Authrity pulls n punches in prtraying its missin in apcalyptic

More information

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1

Physics 212. Lecture 12. Today's Concept: Magnetic Force on moving charges. Physics 212 Lecture 12, Slide 1 Physics 1 Lecture 1 Tday's Cncept: Magnetic Frce n mving charges F qv Physics 1 Lecture 1, Slide 1 Music Wh is the Artist? A) The Meters ) The Neville rthers C) Trmbne Shrty D) Michael Franti E) Radiatrs

More information

Introduction to Smith Charts

Introduction to Smith Charts Intrductin t Smith Charts Dr. Russell P. Jedlicka Klipsch Schl f Electrical and Cmputer Engineering New Mexic State University as Cruces, NM 88003 September 2002 EE521 ecture 3 08/22/02 Smith Chart Summary

More information

Differentiation Applications 1: Related Rates

Differentiation Applications 1: Related Rates Differentiatin Applicatins 1: Related Rates 151 Differentiatin Applicatins 1: Related Rates Mdel 1: Sliding Ladder 10 ladder y 10 ladder 10 ladder A 10 ft ladder is leaning against a wall when the bttm

More information

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank

MATCHING TECHNIQUES. Technical Track Session VI. Emanuela Galasso. The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Emanuela Galass The Wrld Bank These slides were develped by Christel Vermeersch and mdified by Emanuela Galass fr the purpse f this wrkshp When can we use

More information

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning

Admin. MDP Search Trees. Optimal Quantities. Reinforcement Learning Admin Reinfrcement Learning Cntent adapted frm Berkeley CS188 MDP Search Trees Each MDP state prjects an expectimax-like search tree Optimal Quantities The value (utility) f a state s: V*(s) = expected

More information

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d)

COMP 551 Applied Machine Learning Lecture 9: Support Vector Machines (cont d) COMP 551 Applied Machine Learning Lecture 9: Supprt Vectr Machines (cnt d) Instructr: Herke van Hf (herke.vanhf@mail.mcgill.ca) Slides mstly by: Class web page: www.cs.mcgill.ca/~hvanh2/cmp551 Unless therwise

More information

Spring 2010 Instructor: Michele Merler.

Spring 2010 Instructor: Michele Merler. Spring 200 Instructr: Michele Merler http://www.cs.clumbia.edu/~mmerler/cmsw30-2.html . Generate the pythagric table (d nt insert the values manually) 2 3 4 5 6 7 8 9 0 2 2 4 6 8 0 2 4 6 8 20 22 24 3 6

More information

Comparing Several Means: ANOVA. Group Means and Grand Mean

Comparing Several Means: ANOVA. Group Means and Grand Mean STAT 511 ANOVA and Regressin 1 Cmparing Several Means: ANOVA Slide 1 Blue Lake snap beans were grwn in 12 pen-tp chambers which are subject t 4 treatments 3 each with O 3 and SO 2 present/absent. The ttal

More information

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving.

This section is primarily focused on tools to aid us in finding roots/zeros/ -intercepts of polynomials. Essentially, our focus turns to solving. Sectin 3.2: Many f yu WILL need t watch the crrespnding vides fr this sectin n MyOpenMath! This sectin is primarily fcused n tls t aid us in finding rts/zers/ -intercepts f plynmials. Essentially, ur fcus

More information

Chapter 2 GAUSS LAW Recommended Problems:

Chapter 2 GAUSS LAW Recommended Problems: Chapter GAUSS LAW Recmmended Prblems: 1,4,5,6,7,9,11,13,15,18,19,1,7,9,31,35,37,39,41,43,45,47,49,51,55,57,61,6,69. LCTRIC FLUX lectric flux is a measure f the number f electric filed lines penetrating

More information

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are:

and the Doppler frequency rate f R , can be related to the coefficients of this polynomial. The relationships are: Algrithm fr Estimating R and R - (David Sandwell, SIO, August 4, 2006) Azimith cmpressin invlves the alignment f successive eches t be fcused n a pint target Let s be the slw time alng the satellite track

More information

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa

PSU GISPOPSCI June 2011 Ordinary Least Squares & Spatial Linear Regression in GeoDa There are tw parts t this lab. The first is intended t demnstrate hw t request and interpret the spatial diagnstics f a standard OLS regressin mdel using GeDa. The diagnstics prvide infrmatin abut the

More information

BASIC DIRECT-CURRENT MEASUREMENTS

BASIC DIRECT-CURRENT MEASUREMENTS Brwn University Physics 0040 Intrductin BASIC DIRECT-CURRENT MEASUREMENTS The measurements described here illustrate the peratin f resistrs and capacitrs in electric circuits, and the use f sme standard

More information

Name AP CHEM / / Chapter 1 Chemical Foundations

Name AP CHEM / / Chapter 1 Chemical Foundations Name AP CHEM / / Chapter 1 Chemical Fundatins Metric Cnversins All measurements in chemistry are made using the metric system. In using the metric system yu must be able t cnvert between ne value and anther.

More information

Professional Development. Implementing the NGSS: High School Physics

Professional Development. Implementing the NGSS: High School Physics Prfessinal Develpment Implementing the NGSS: High Schl Physics This is a dem. The 30-min vide webinar is available in the full PD. Get it here. Tday s Learning Objectives NGSS key cncepts why this is different

More information

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History

Purpose: Use this reference guide to effectively communicate the new process customers will use for creating a TWC ID. Mobile Manager Call History Purpse: Use this reference guide t effectively cmmunicate the new prcess custmers will use fr creating a TWC ID. Overview Beginning n January 28, 2014 (Refer t yur Knwledge Management System fr specific

More information

Fall 2013 Physics 172 Recitation 3 Momentum and Springs

Fall 2013 Physics 172 Recitation 3 Momentum and Springs Fall 03 Physics 7 Recitatin 3 Mmentum and Springs Purpse: The purpse f this recitatin is t give yu experience wrking with mmentum and the mmentum update frmula. Readings: Chapter.3-.5 Learning Objectives:.3.

More information

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines

COMP 551 Applied Machine Learning Lecture 11: Support Vector Machines COMP 551 Applied Machine Learning Lecture 11: Supprt Vectr Machines Instructr: (jpineau@cs.mcgill.ca) Class web page: www.cs.mcgill.ca/~jpineau/cmp551 Unless therwise nted, all material psted fr this curse

More information

20 Faraday s Law and Maxwell s Extension to Ampere s Law

20 Faraday s Law and Maxwell s Extension to Ampere s Law Chapter 20 Faraday s Law and Maxwell s Extensin t Ampere s Law 20 Faraday s Law and Maxwell s Extensin t Ampere s Law Cnsider the case f a charged particle that is ming in the icinity f a ming bar magnet

More information

BLAST / HIDDEN MARKOV MODELS

BLAST / HIDDEN MARKOV MODELS CS262 (Winter 2015) Lecture 5 (January 20) Scribe: Kat Gregry BLAST / HIDDEN MARKOV MODELS BLAST CONTINUED HEURISTIC LOCAL ALIGNMENT Use Cmmnly used t search vast bilgical databases (n the rder f terabases/tetrabases)

More information

Resampling Methods. Chapter 5. Chapter 5 1 / 52

Resampling Methods. Chapter 5. Chapter 5 1 / 52 Resampling Methds Chapter 5 Chapter 5 1 / 52 1 51 Validatin set apprach 2 52 Crss validatin 3 53 Btstrap Chapter 5 2 / 52 Abut Resampling An imprtant statistical tl Pretending the data as ppulatin and

More information

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank

MATCHING TECHNIQUES Technical Track Session VI Céline Ferré The World Bank MATCHING TECHNIQUES Technical Track Sessin VI Céline Ferré The Wrld Bank When can we use matching? What if the assignment t the treatment is nt dne randmly r based n an eligibility index, but n the basis

More information

1b) =.215 1c).080/.215 =.372

1b) =.215 1c).080/.215 =.372 Practice Exam 1 - Answers 1. / \.1/ \.9 (D+) (D-) / \ / \.8 / \.2.15/ \.85 (T+) (T-) (T+) (T-).080.020.135.765 1b).080 +.135 =.215 1c).080/.215 =.372 2. The data shwn in the scatter plt is the distance

More information

Five Whys How To Do It Better

Five Whys How To Do It Better Five Whys Definitin. As explained in the previus article, we define rt cause as simply the uncvering f hw the current prblem came int being. Fr a simple causal chain, it is the entire chain. Fr a cmplex

More information

Data Analysis, Statistics, Machine Learning

Data Analysis, Statistics, Machine Learning Data Analysis, Statistics, Machine Learning Leland Wilkinsn Adjunct Prfessr UIC Cmputer Science Chief Scien

More information

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b

MODULE 1. e x + c. [You can t separate a demominator, but you can divide a single denominator into each numerator term] a + b a(a + b)+1 = a + b . REVIEW OF SOME BASIC ALGEBRA MODULE () Slving Equatins Yu shuld be able t slve fr x: a + b = c a d + e x + c and get x = e(ba +) b(c a) d(ba +) c Cmmn mistakes and strategies:. a b + c a b + a c, but

More information

Homology groups of disks with holes

Homology groups of disks with holes Hmlgy grups f disks with hles THEOREM. Let p 1,, p k } be a sequence f distinct pints in the interir unit disk D n where n 2, and suppse that fr all j the sets E j Int D n are clsed, pairwise disjint subdisks.

More information

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics

Module 3: Gaussian Process Parameter Estimation, Prediction Uncertainty, and Diagnostics Mdule 3: Gaussian Prcess Parameter Estimatin, Predictin Uncertainty, and Diagnstics Jerme Sacks and William J Welch Natinal Institute f Statistical Sciences and University f British Clumbia Adapted frm

More information

Lecture 5: Equilibrium and Oscillations

Lecture 5: Equilibrium and Oscillations Lecture 5: Equilibrium and Oscillatins Energy and Mtin Last time, we fund that fr a system with energy cnserved, v = ± E U m ( ) ( ) One result we see immediately is that there is n slutin fr velcity if

More information

Lab #3: Pendulum Period and Proportionalities

Lab #3: Pendulum Period and Proportionalities Physics 144 Chwdary Hw Things Wrk Spring 2006 Name: Partners Name(s): Intrductin Lab #3: Pendulum Perid and Prprtinalities Smetimes, it is useful t knw the dependence f ne quantity n anther, like hw the

More information

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd

https://goo.gl/eaqvfo SUMMER REV: Half-Life DUE DATE: JULY 2 nd NAME: DUE DATE: JULY 2 nd AP Chemistry SUMMER REV: Half-Life Why? Every radiistpe has a characteristic rate f decay measured by its half-life. Half-lives can be as shrt as a fractin f a secnd r as lng

More information

Math 105: Review for Exam I - Solutions

Math 105: Review for Exam I - Solutions 1. Let f(x) = 3 + x + 5. Math 105: Review fr Exam I - Slutins (a) What is the natural dmain f f? [ 5, ), which means all reals greater than r equal t 5 (b) What is the range f f? [3, ), which means all

More information

Pipetting 101 Developed by BSU CityLab

Pipetting 101 Developed by BSU CityLab Discver the Micrbes Within: The Wlbachia Prject Pipetting 101 Develped by BSU CityLab Clr Cmparisns Pipetting Exercise #1 STUDENT OBJECTIVES Students will be able t: Chse the crrect size micrpipette fr

More information

Revised 2/07. Projectile Motion

Revised 2/07. Projectile Motion LPC Phsics Reised /07 Prjectile Mtin Prjectile Mtin Purpse: T measure the dependence f the range f a prjectile n initial elcit height and firing angle. Als, t erif predictins made the b equatins gerning

More information

Simple Linear Regression (single variable)

Simple Linear Regression (single variable) Simple Linear Regressin (single variable) Intrductin t Machine Learning Marek Petrik January 31, 2017 Sme f the figures in this presentatin are taken frm An Intrductin t Statistical Learning, with applicatins

More information

Finite Automata. Human-aware Robo.cs. 2017/08/22 Chapter 1.1 in Sipser

Finite Automata. Human-aware Robo.cs. 2017/08/22 Chapter 1.1 in Sipser Finite Autmata 2017/08/22 Chapter 1.1 in Sipser 1 Last time Thery f cmputatin Autmata Thery Cmputability Thery Cmplexity Thery Finite autmata Pushdwn autmata Turing machines 2 Outline fr tday Finite autmata

More information

GENESIS Structural Optimization for ANSYS Mechanical

GENESIS Structural Optimization for ANSYS Mechanical P3 STRUCTURAL OPTIMIZATION (Vl. II) GENESIS Structural Optimizatin fr ANSYS Mechanical An Integrated Extensin that adds Structural Optimizatin t ANSYS Envirnment New Features and Enhancements Release 2017.03

More information

Relationships Between Frequency, Capacitance, Inductance and Reactance.

Relationships Between Frequency, Capacitance, Inductance and Reactance. P Physics Relatinships between f,, and. Relatinships Between Frequency, apacitance, nductance and Reactance. Purpse: T experimentally verify the relatinships between f, and. The data cllected will lead

More information

Equilibrium of Stress

Equilibrium of Stress Equilibrium f Stress Cnsider tw perpendicular planes passing thrugh a pint p. The stress cmpnents acting n these planes are as shwn in ig. 3.4.1a. These stresses are usuall shwn tgether acting n a small

More information