Solving models with (lots of) idiosyncratic risk

Size: px
Start display at page:

Download "Solving models with (lots of) idiosyncratic risk"

Transcription

1 Solving models with (lots of) idiosyncratic risk Wouter J. Den Haan November 8, 2009

2 Models with heterogeneous agents 1 Lots of idiosyncratic risk 2 If #2 leads to strong non-linearities in the policy function, then also high dimensional state space

3 Outline Projection methods and non-linearities Perturbation methods and non-linearities keeping problem well behaved exploiting idiosyncratic risk to nd perturbation points

4 Projection methods - functional forms Splines versus polynomials Splines be smart about grid points, e.g., log scale Polynomials be smart about the transformation of the variables

5 Projection methods - nding solution Possible choices Equation solver or minimization routine di cult to use for splines (too many coe cients) Iteration procedure xed-point iteration; easier but worse convergence properties time iteration; possibly a bit harder but better convergence properties

6 Projection methods - time versus xed-point iteration P

7 Projection methods - Choosing state variable Possible choices standard choice: k endogenous grid points: k 0 makes time iteration cheap

8 Projection methods - Endogenous grid points P

9 Perturbation and idiosyncratic risk Given the speed of perturbation it is naturally suited for models with heterogenous agents

10 Perturbation and idiosyncratic risk Given the speed of perturbation it is naturally suited for models with heterogenous agents Except...

11 Perturbation and idiosyncratic risk Given the speed of perturbation it is naturally suited for models with heterogenous agents Except... the non-linearities can easily create problems

12 Perturbation and idiosyncratic risk Given the speed of perturbation it is naturally suited for models with heterogenous agents Except... the non-linearities can easily create problems not just some inaccuracies but odd and explosive behavior

13 Perturbation and nonlinearities Limited radius of convergence (approximation to truth) Oscillating patterns; not shape preserving Regular polynomials: explosive behavior of dynamic systems x +1 = h(x) p N (x) p N (x) lim x! x = if if p N (x) lim x!+ x lim x!+ p N (x) x = + =) no global convergence = =) function must turn negative

14 ln(x) & Taylor series expansions at x = th th ln(x) st nd x 2

15 0.2 0 ln(x) &Taylor series expansions at x = x st nd x ln(x) 1 st 2 nd 5 th 25 th

16 limited radius of convergence and projection methods Less restricted to focus on particular perturbation point Chebyshev nodes & compact interval =) uniform convergence

17 ln(x) & uniform convergence in [0,2] U = 2 25 th th ln(x) st nd x 2

18 0.2 0 ln(x) & uniform convergence in [0,3] x U = nd st x ln(x) 1 st 2 nd 5 th 25 th

19 Problems within radius of convergence di culties in preserving shape h(x) = 0.5x α + 0.5x α is an integer, so h(x) is a polynomial

20 Perturbation solution & preserving shape nd th x true value 2 nd 10 th

21 Projection solution & preserving shape nodes nodes x true value 3 nodes 11 nodes

22 Problems within radius of convergence stability problems a = h(x) = α 0 + x + α 1 e α2x. x +1 = a + shock +1

23 Perturbation solution & stability 4 x** 2 nd x* x true value 2 nd 45-degree

24 Model max fc t,a t gt=1 t=1 β t 1 c1 ν t 1 1 ν P(a t ) s.t. c t + a t 1 + r = a t 1 + θ t, θ t = θ + ε t and ε t N(0, σ 2 ), a 0 given.

25 Penalty function Penalty function corresponding to commonly used inequality constraint: We use: P(a) = if a < 0 0 if a 0 P(a) = η 1 η 0 exp( η 0 a) η 2 a.

26 Penalty function functional form can be approximated globally with Taylor series expansion consider di erent values for curvature parameter, η 0 we do not think of penalty function as a way to implement inequality constraint η 1 and η 2 chosen to match mean and standard deviation of a t

27 FOC c ν t 1 + r + P(a t) a t = βe t c ν t+1

28 Penalty function we do not think of penalty function as a way to implement inequality constraint our calibration procedure and accurate solution =) many properties of "a 0" model similar to properties of "penalty-fcn" model

29 Perturbation solutions when η 0 = rd th a st x "Truth" 1 st 2 nd 3 rd 4 th 5 th

30 Perturbation solutions when η 0 = 20 3 rd 2 nd th a st th x "Truth" 1 st 2 nd 3 rd 4 th 5 th

31 Perturbation and higher uncertainty oscillations more problematic when σ " but higher-order perturbation solution adjust when σ "

32 Perturbation and more uncertainty th = a = x

33 Simulating 2nd & 3rd explode 4th & 5th are inaccurate

34 Pruning - summary simple generates stable solutions for sure just a trick generates policy correspondence not function

35 Pruning - procedure 1 Split up perturbation solution into two parts p N,pert (a t 1, θ t ) ā N = linear part γ N,k (a t 1 ā N ) + γ N,θ θ t θ nonlinear part + p N,pert (a t 1 ā N, θ t θ)

36 Pruning - procedure 2. Simulate a t using Simulate a prune,t using a t ā N = γ N,k a t 1 ā N + γn,θ θ t θ. a prune,t = γ N,k (a prune,t 1 ā N ) + γ N,θ θ t θ + p N,pert (a t 1 ā N, θ t θ). ā N

37 Pruning - state variables a prune,t is determined by: a prune,t 1 and a t 1 Thus, a prune,t is no longer a function of the regular set of state variables

38 Pruning - graphs Our model only has one state variable, x t = a t 1 + θ t Generate fa t g T t=1 and plot simulated a t as function of x t

39 Pruning - second-order

40 Pruning - third-order

41 Pruning - fourth-order

42 Pruning - fth-order

43 General idea Perturbation does not require you to use polynomials Suppose you are given h n (k) k n for n = 0, 1,, N x= x You would like to use g(k) = a 0 g 0 (k) + a 1 g 1 (k) + + a N g N (k) Solve for the values of a from the following N + 1 equations 2 3 h n (k) k n = [a 0, a 1,, a N ] 6 k= k 4 g n 0 (k) k n. g n N (k) k n k= k k= k 7 5

44 Trivial example 1/x Fourth-order Taylor series expansion 1/x 1 (x 1) + 2 (x 1) 2 6 (x 1) (x 1) 4 Alternative 1/x a 0 e 2x + a 1 e 2x x + a 2 e 2x x 2 + a 3 e 2x x 3 + a 4 e 2x x 4 note that this is not a transformation

45 Standard Taylor expansion

46 Alternative Taylor expansion

47 Properties of DSGE models The true solution of DSGE models typically satisfy monotoniciy stability Can perturbation be modi ed to impose this?

48 Solutions All solutions proposed satisfy the following 1 Use smooth di erentiable functions 2 Satisfy the perturbation principle Solutions considered 1 Change of variables 2 Other basis functions 3 True shape preserving

49 Change of variables - idea p N (x): regular N th -order perturbation solution x +1 = p N (x) x +1 = x +1 p 1 (x) x +1 = 2 γ 1 + exp( ˆx +1 ) γ

50 Change of variables - idea From p N (x) p 1 (x) = 2 γ 1 + exp( ˆx +1 ) obtain regular perturbation solution for ˆx Use as the alternative perturbation solution γ x +1 = p 1 (x) + x +1 p 1 (x) + 2 γ 1 + exp( ˆp N (x)) γ.

51 Change of variables -idea Properties For γ small enough close to p 1 (x) and, thus, monotone and stable

52 Change of variables - implementation Standard perturbation system (with p 1 (k) given) 1 (k α + (1 δ)k k +1 ) ν = k +1 p 1 (k) = β αk+1 α δ k+1 α + (1 δ)k ν, +1 k +2 2 γ 1 + exp( ˆk+1 ) γ, Use k +1 = p 1 (k) + 2 γ 1 + exp( ˆp N (k)) γ.

53 Pictures d

54 True underlying problem solved? Problem with standard polynomial basis functions higher-order terms always dominate away from steady state Still true for x +1 p 1 (x) + 2 γ 1 + exp( ˆp N (x)) Extension: use separate squashing function for each basis order γ

55 Alternative basis functions First-order: Higher-order: b 1 (x; γ 1,N ) = γ 1,N (x x). b n (x; γ n,n, γ n,n ) = 2γ n,n n γn,n 1 + exp n!γn,n (x x) no γ n,n Simple version: b n (x; γ n, γ ) = 2γ 1 + exp n γn n!γ (x x) no γ

56 Properties basis functions 1 Zero property at x = x. 8N and 8n N we have b n (0; γ n, γ ) = 0. 2 Levels are bounded from above and below. 3 Derivatives at x = x do not depend on γ =) solutions for γ n coe cients do not depend on γ 4 Even-order basis functions are not monotonic 5 γ n could have the wrong sign!

57 Properties approximation 1 x t cannot go to in nity for any choice of γ 2 γ can always be chosen small enough to ensure monotonicity and a unique xed point 3 Letting γ depend on n and N obviously has advantages reduce γ n,n when n is odd or if b n,n has the wrong sign

58 Solving for the coe cients More properties of the basis functions i b n (x; γ n,n, γn,n ) x i = 0 for i < n x= x i b n (x; γ n,n, γn,n ) 6= 0 for i > n x= x This is enough to solve coe cient recursively x i

59 Solving for the coe cients h 1 = γ 1,N h 2 = γ 2 b 2 (x;,) 2,N x 2 h 3 = γ 2,N 3 b 2 (x;,) x 3. h N = γ N b 2 (x;,) 2,N x N x= x + γ 3,N x= x 3 b 3 (x;,) x x= x 3 x= x + γ 3,N N b 3 (x;,) x N + + γ N,N x= x N b N (x;,) x N

60 Multivariate version x is a J 1 vector First-order Higher-order b j,1 (x; Γ j,1,n ) = Γ 0 j,1,n (x x) b j,n (x; Γ n,n, γ n,n ) = 1 + exp 2γ j,n,n γ j,n,n 1 n!γj,n,n Q n x; Γ j,n,n Q n (x, Γ j,n,n ) is a n th -order polynomial basis function of the vector x with coe cients Γ j,n,n.

61 Multivariate version - 2nd order b j,1 (x; Γ j,1,2 ) = Γ 0 j,1,2 (x x), b j,2 (x; Γ j,2,2, γ j,2,2 ) = 1 + exp 2γ j,2,2 γ 1 2!γj,2,2 (x x) 0 j,2,2, Γ j,2,2 (x x)

62 True shape preserving d

Projection. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan

Projection. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan Projection Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Model [ ] ct ν = E t βct+1 ν αz t+1kt+1 α 1 c t + k t+1 = z t k α t ln(z t+1 ) = ρ ln (z t ) + ε t+1 ε t+1 N(0, σ 2 ) k

More information

Dynare. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan

Dynare. Wouter J. Den Haan London School of Economics. c by Wouter J. Den Haan Dynare Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Introduction What is the objective of perturbation? Peculiarities of Dynare & some examples Incorporating Dynare in other Matlab

More information

Nonlinear and Stable Perturbation-Based Approximations

Nonlinear and Stable Perturbation-Based Approximations Nonlinear and Stable Perturbation-Based Approximations Wouter J. Den Haan and Joris De Wind April 26, 2012 Abstract Users of regular higher-order perturbation approximations can face two problems: policy

More information

Introduction to Numerical Methods

Introduction to Numerical Methods Introduction to Numerical Methods Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan "D", "S", & "GE" Dynamic Stochastic General Equilibrium What is missing in the abbreviation? DSGE

More information

Solving Models with Heterogeneous Expectations

Solving Models with Heterogeneous Expectations Solving Models with Heterogeneous Expectations Wouter J. Den Haan London School of Economics c Wouter J. Den Haan August 29, 2014 Overview 1 Current approaches to model heterogeneous expectations 2 Numerical

More information

Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty Yann ALGAN, Olivier ALLAIS, Wouter J. DEN HAAN, and Pontus RENDAHL

Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty Yann ALGAN, Olivier ALLAIS, Wouter J. DEN HAAN, and Pontus RENDAHL Solving and Simulating Models with Heterogeneous Agents and Aggregate Uncertainty Yann ALGAN, Olivier ALLAIS, Wouter J. DEN HAAN, and Pontus RENDAHL August 24, 2010 Abstract Although almost nonexistent

More information

Function Approximation

Function Approximation 1 Function Approximation This is page i Printer: Opaque this 1.1 Introduction In this chapter we discuss approximating functional forms. Both in econometric and in numerical problems, the need for an approximating

More information

High-dimensional Problems in Finance and Economics. Thomas M. Mertens

High-dimensional Problems in Finance and Economics. Thomas M. Mertens High-dimensional Problems in Finance and Economics Thomas M. Mertens NYU Stern Risk Economics Lab April 17, 2012 1 / 78 Motivation Many problems in finance and economics are high dimensional. Dynamic Optimization:

More information

Accuracy of models with heterogeneous agents

Accuracy of models with heterogeneous agents Accuracy of models with heterogeneous agents Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Introduction Models with heterogeneous agents have many different dimensions Krusell-Smith

More information

Perturbation and Projection Methods for Solving DSGE Models

Perturbation and Projection Methods for Solving DSGE Models Perturbation and Projection Methods for Solving DSGE Models Lawrence J. Christiano Discussion of projections taken from Christiano Fisher, Algorithms for Solving Dynamic Models with Occasionally Binding

More information

Solving Heterogeneous Agent Models with Dynare

Solving Heterogeneous Agent Models with Dynare Solving Heterogeneous Agent Models with Dynare Wouter J. Den Haan University of Amsterdam March 12, 2009 Individual agent Subject to employment, i.e., labor supply shocks: e i,t = ρ e e i,t 1 + ε i,t ε

More information

Solving Models with Heterogeneous Agents Xpa algorithm

Solving Models with Heterogeneous Agents Xpa algorithm Solving Models with Heterogeneous Agents Xpa algorithm Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Individual agent Subject to employment shocks ε i,t {0, 1} or ε i,t {u, e} Incomplete

More information

Perturbation and Projection Methods for Solving DSGE Models

Perturbation and Projection Methods for Solving DSGE Models Perturbation and Projection Methods for Solving DSGE Models Lawrence J. Christiano Discussion of projections taken from Christiano Fisher, Algorithms for Solving Dynamic Models with Occasionally Binding

More information

Discrete State Space Methods for Dynamic Economies

Discrete State Space Methods for Dynamic Economies Discrete State Space Methods for Dynamic Economies A Brief Introduction Craig Burnside Duke University September 2006 Craig Burnside (Duke University) Discrete State Space Methods September 2006 1 / 42

More information

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29

Projection Methods. Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Projection Methods Michal Kejak CERGE CERGE-EI ( ) 1 / 29 Introduction numerical methods for dynamic economies nite-di erence methods initial value problems (Euler method) two-point boundary value problems

More information

Dynare Summer School - Accuracy Tests

Dynare Summer School - Accuracy Tests Dynare Summer School - Accuracy Tests Wouter J. Den Haan University of Amsterdam July 4, 2008 outer J. Den Haan (University of Amsterdam)Dynare Summer School - Accuracy Tests July 4, 2008 1 / 35 Accuracy

More information

Deterministic Models

Deterministic Models Deterministic Models Perfect foreight, nonlinearities and occasionally binding constraints Sébastien Villemot CEPREMAP June 10, 2014 Sébastien Villemot (CEPREMAP) Deterministic Models June 10, 2014 1 /

More information

Parameterized Expectations Algorithm

Parameterized Expectations Algorithm Parameterized Expectations Algorithm Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Overview Two PEA algorithms Explaining stochastic simulations PEA Advantages and disadvantages

More information

Learning in Macroeconomic Models

Learning in Macroeconomic Models Learning in Macroeconomic Models Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Overview A bit of history of economic thought How expectations are formed can matter in the long run

More information

Lecture XI. Approximating the Invariant Distribution

Lecture XI. Approximating the Invariant Distribution Lecture XI Approximating the Invariant Distribution Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Invariant Distribution p. 1 /24 SS Equilibrium in the Aiyagari model G.

More information

Solution Methods. Jesús Fernández-Villaverde. University of Pennsylvania. March 16, 2016

Solution Methods. Jesús Fernández-Villaverde. University of Pennsylvania. March 16, 2016 Solution Methods Jesús Fernández-Villaverde University of Pennsylvania March 16, 2016 Jesús Fernández-Villaverde (PENN) Solution Methods March 16, 2016 1 / 36 Functional equations A large class of problems

More information

1 Computing the Invariant Distribution

1 Computing the Invariant Distribution LECTURE NOTES ECO 613/614 FALL 2007 KAREN A. KOPECKY 1 Computing the Invariant Distribution Suppose an individual s state consists of his current assets holdings, a [a, ā] and his current productivity

More information

Solving Models with Heterogeneous Agents: Reiter Hybrid Method

Solving Models with Heterogeneous Agents: Reiter Hybrid Method Solving Models with Heterogeneous Agents: Reiter Hybrid Method Wouter J. Den Haan London School of Economics c Wouter J. Den Haan Background Macroeconomic models with heterogeneous agents: idiosyncratic

More information

Numerically Stable and Accurate Stochastic Simulation Approaches for Solving Dynamic Economic Models

Numerically Stable and Accurate Stochastic Simulation Approaches for Solving Dynamic Economic Models Numerically Stable and Accurate Stochastic Simulation Approaches for Solving Dynamic Economic Models Kenneth L. Judd, Lilia Maliar and Serguei Maliar QUANTITATIVE ECONOMICS (forthcoming) July 1, 2011 Judd,

More information

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain.

Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. Lecture 32: Taylor Series and McLaurin series We saw last day that some functions are equal to a power series on part of their domain. For example f(x) = 1 1 x = 1 + x + x2 + x 3 + = ln(1 + x) = x x2 2

More information

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω

TAKEHOME FINAL EXAM e iω e 2iω e iω e 2iω ECO 513 Spring 2015 TAKEHOME FINAL EXAM (1) Suppose the univariate stochastic process y is ARMA(2,2) of the following form: y t = 1.6974y t 1.9604y t 2 + ε t 1.6628ε t 1 +.9216ε t 2, (1) where ε is i.i.d.

More information

Taylor series - Solutions

Taylor series - Solutions Taylor series - Solutions. f(x) sin(x) sin(0) + x cos(0) + x x ( sin(0)) +!! ( cos(0)) + + x4 x5 (sin(0)) + 4! 5! 0 + x + 0 x x! + x5 5! x! + 0 + x5 (cos(0)) + x6 6! ( sin(0)) + x 7 7! + x9 9! 5! + 0 +

More information

Solving Deterministic Models

Solving Deterministic Models Solving Deterministic Models Shanghai Dynare Workshop Sébastien Villemot CEPREMAP October 27, 2013 Sébastien Villemot (CEPREMAP) Solving Deterministic Models October 27, 2013 1 / 42 Introduction Deterministic

More information

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework

Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework Solving a Dynamic (Stochastic) General Equilibrium Model under the Discrete Time Framework Dongpeng Liu Nanjing University Sept 2016 D. Liu (NJU) Solving D(S)GE 09/16 1 / 63 Introduction Targets of the

More information

Incomplete Markets, Heterogeneity and Macroeconomic Dynamics

Incomplete Markets, Heterogeneity and Macroeconomic Dynamics Incomplete Markets, Heterogeneity and Macroeconomic Dynamics Bruce Preston and Mauro Roca Presented by Yuki Ikeda February 2009 Preston and Roca (presenter: Yuki Ikeda) 02/03 1 / 20 Introduction Stochastic

More information

ECON2285: Mathematical Economics

ECON2285: Mathematical Economics ECON2285: Mathematical Economics Yulei Luo Economics, HKU September 17, 2018 Luo, Y. (Economics, HKU) ME September 17, 2018 1 / 46 Static Optimization and Extreme Values In this topic, we will study goal

More information

Solutions Preliminary Examination in Numerical Analysis January, 2017

Solutions Preliminary Examination in Numerical Analysis January, 2017 Solutions Preliminary Examination in Numerical Analysis January, 07 Root Finding The roots are -,0, a) First consider x 0 > Let x n+ = + ε and x n = + δ with δ > 0 The iteration gives 0 < ε δ < 3, which

More information

Projection Methods. Felix Kubler 1. October 10, DBF, University of Zurich and Swiss Finance Institute

Projection Methods. Felix Kubler 1. October 10, DBF, University of Zurich and Swiss Finance Institute Projection Methods Felix Kubler 1 1 DBF, University of Zurich and Swiss Finance Institute October 10, 2017 Felix Kubler Comp.Econ. Gerzensee, Ch5 October 10, 2017 1 / 55 Motivation In many dynamic economic

More information

Definable Extension Theorems in O-minimal Structures. Matthias Aschenbrenner University of California, Los Angeles

Definable Extension Theorems in O-minimal Structures. Matthias Aschenbrenner University of California, Los Angeles Definable Extension Theorems in O-minimal Structures Matthias Aschenbrenner University of California, Los Angeles 1 O-minimality Basic definitions and examples Geometry of definable sets Why o-minimal

More information

Advanced Econometrics III, Lecture 5, Dynamic General Equilibrium Models Example 1: A simple RBC model... 2

Advanced Econometrics III, Lecture 5, Dynamic General Equilibrium Models Example 1: A simple RBC model... 2 Advanced Econometrics III, Lecture 5, 2017 1 Contents 1 Dynamic General Equilibrium Models 2 1.1 Example 1: A simple RBC model.................... 2 1.2 Approximation Method Based on Linearization.............

More information

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS

APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS LECTURE 10 APPLICATIONS OF FD APPROXIMATIONS FOR SOLVING ORDINARY DIFFERENTIAL EQUATIONS Ordinary Differential Equations Initial Value Problems For Initial Value problems (IVP s), conditions are specified

More information

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS

Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS Chapter 5 HIGH ACCURACY CUBIC SPLINE APPROXIMATION FOR TWO DIMENSIONAL QUASI-LINEAR ELLIPTIC BOUNDARY VALUE PROBLEMS 5.1 Introduction When a physical system depends on more than one variable a general

More information

Chemistry 532 Problem Set 7 Spring 2012 Solutions

Chemistry 532 Problem Set 7 Spring 2012 Solutions Chemistry 53 Problem Set 7 Spring 01 Solutions 1. The study of the time-independent Schrödinger equation for a one-dimensional particle subject to the potential function leads to the differential equation

More information

AP Calculus Testbank (Chapter 9) (Mr. Surowski)

AP Calculus Testbank (Chapter 9) (Mr. Surowski) AP Calculus Testbank (Chapter 9) (Mr. Surowski) Part I. Multiple-Choice Questions n 1 1. The series will converge, provided that n 1+p + n + 1 (A) p > 1 (B) p > 2 (C) p >.5 (D) p 0 2. The series

More information

Graduate Macro Theory II: Notes on Solving Linearized Rational Expectations Models

Graduate Macro Theory II: Notes on Solving Linearized Rational Expectations Models Graduate Macro Theory II: Notes on Solving Linearized Rational Expectations Models Eric Sims University of Notre Dame Spring 2017 1 Introduction The solution of many discrete time dynamic economic models

More information

Section 11.1: Sequences

Section 11.1: Sequences Section 11.1: Sequences In this section, we shall study something of which is conceptually simple mathematically, but has far reaching results in so many different areas of mathematics - sequences. 1.

More information

8.5 Taylor Polynomials and Taylor Series

8.5 Taylor Polynomials and Taylor Series 8.5. TAYLOR POLYNOMIALS AND TAYLOR SERIES 50 8.5 Taylor Polynomials and Taylor Series Motivating Questions In this section, we strive to understand the ideas generated by the following important questions:

More information

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability

Chapter 6. Convergence. Probability Theory. Four different convergence concepts. Four different convergence concepts. Convergence in probability Probability Theory Chapter 6 Convergence Four different convergence concepts Let X 1, X 2, be a sequence of (usually dependent) random variables Definition 1.1. X n converges almost surely (a.s.), or with

More information

Taylor and Maclaurin Series

Taylor and Maclaurin Series Taylor and Maclaurin Series MATH 211, Calculus II J. Robert Buchanan Department of Mathematics Spring 2018 Background We have seen that some power series converge. When they do, we can think of them as

More information

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall.

Copyright 2010 Pearson Education, Inc. Publishing as Prentice Hall. .1 Limits of Sequences. CHAPTER.1.0. a) True. If converges, then there is an M > 0 such that M. Choose by Archimedes an N N such that N > M/ε. Then n N implies /n M/n M/N < ε. b) False. = n does not converge,

More information

2.5 The Fundamental Theorem of Algebra.

2.5 The Fundamental Theorem of Algebra. 2.5. THE FUNDAMENTAL THEOREM OF ALGEBRA. 79 2.5 The Fundamental Theorem of Algebra. We ve seen formulas for the (complex) roots of quadratic, cubic and quartic polynomials. It is then reasonable to ask:

More information

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments

TMA 4195 Mathematical Modelling December 12, 2007 Solution with additional comments Problem TMA 495 Mathematical Modelling December, 007 Solution with additional comments The air resistance, F, of a car depends on its length, L, cross sectional area, A, its speed relative to the air,

More information

n=1 ( 2 3 )n (a n ) converges by direct comparison to

n=1 ( 2 3 )n (a n ) converges by direct comparison to . (a) n = a n converges, so we know that a n =. Therefore, for n large enough we know that a n

More information

Log-linearisation Tutorial

Log-linearisation Tutorial Log-linearisation Tutorial Weijie Chen Department of Political and Economic Studies University of Helsinki Updated on 5 May 2012 Abstract To solve DSGE models, first we have to collect all expectational

More information

Math 113 (Calculus 2) Exam 4

Math 113 (Calculus 2) Exam 4 Math 3 (Calculus ) Exam 4 November 0 November, 009 Sections 0, 3 7 Name Student ID Section Instructor In some cases a series may be seen to converge or diverge for more than one reason. For such problems

More information

A nonlinear equation is any equation of the form. f(x) = 0. A nonlinear equation can have any number of solutions (finite, countable, uncountable)

A nonlinear equation is any equation of the form. f(x) = 0. A nonlinear equation can have any number of solutions (finite, countable, uncountable) Nonlinear equations Definition A nonlinear equation is any equation of the form where f is a nonlinear function. Nonlinear equations x 2 + x + 1 = 0 (f : R R) f(x) = 0 (x cos y, 2y sin x) = (0, 0) (f :

More information

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N

d(x n, x) d(x n, x nk ) + d(x nk, x) where we chose any fixed k > N Problem 1. Let f : A R R have the property that for every x A, there exists ɛ > 0 such that f(t) > ɛ if t (x ɛ, x + ɛ) A. If the set A is compact, prove there exists c > 0 such that f(x) > c for all x

More information

ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM

ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM ON SPACE-FILLING CURVES AND THE HAHN-MAZURKIEWICZ THEOREM ALEXANDER KUPERS Abstract. These are notes on space-filling curves, looking at a few examples and proving the Hahn-Mazurkiewicz theorem. This theorem

More information

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS

Math 473: Practice Problems for Test 1, Fall 2011, SOLUTIONS Math 473: Practice Problems for Test 1, Fall 011, SOLUTIONS Show your work: 1. (a) Compute the Taylor polynomials P n (x) for f(x) = sin x and x 0 = 0. Solution: Compute f(x) = sin x, f (x) = cos x, f

More information

Numerical Methods I: Numerical Integration/Quadrature

Numerical Methods I: Numerical Integration/Quadrature 1/20 Numerical Methods I: Numerical Integration/Quadrature Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 30, 2017 umerical integration 2/20 We want to approximate the definite integral

More information

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function

Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Problem 3. Give an example of a sequence of continuous functions on a compact domain converging pointwise but not uniformly to a continuous function Solution. If we does not need the pointwise limit of

More information

Discussion of Juillard and Maih Estimating DSGE Models with Observed Real-Time Expectation Data

Discussion of Juillard and Maih Estimating DSGE Models with Observed Real-Time Expectation Data Estimating DSGE Models with Observed Real-Time Expectation Data Jesper Lindé Federal Reserve Board Workshop on Central Bank Forecasting Kansas City Fed October 14-15, 2010 Summary of paper This interesting

More information

c 2007 Je rey A. Miron

c 2007 Je rey A. Miron Review of Calculus Tools. c 007 Je rey A. Miron Outline 1. Derivatives. Optimization 3. Partial Derivatives. Optimization again 5. Optimization subject to constraints 1 Derivatives The basic tool we need

More information

Lecture V. Numerical Optimization

Lecture V. Numerical Optimization Lecture V Numerical Optimization Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Numerical Optimization p. 1 /19 Isomorphism I We describe minimization problems: to maximize

More information

Gibbs Sampling in Linear Models #2

Gibbs Sampling in Linear Models #2 Gibbs Sampling in Linear Models #2 Econ 690 Purdue University Outline 1 Linear Regression Model with a Changepoint Example with Temperature Data 2 The Seemingly Unrelated Regressions Model 3 Gibbs sampling

More information

Perturbation techniques

Perturbation techniques 3 Perturbation techniques This is page i Printer: Opaque this Wouter J. den Haan University of Amsterdam wdenhaan@uva.nl 3.1 Introduction In this set of notes we show how perturbation techniques can be

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 7 Interpolation Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign Copyright c 2002. Reproduction permitted

More information

Solving Models with Heterogeneous Agents Macro-Finance Lecture

Solving Models with Heterogeneous Agents Macro-Finance Lecture Solving Models with Heterogeneous Agents 2018 Macro-Finance Lecture Wouter J. Den Haan London School of Economics c by Wouter J. Den Haan Overview lecture Model Pure global Krusell-Smith Parameterized

More information

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13

MATH3283W LECTURE NOTES: WEEK 6 = 5 13, = 2 5, 1 13 MATH383W LECTURE NOTES: WEEK 6 //00 Recursive sequences (cont.) Examples: () a =, a n+ = 3 a n. The first few terms are,,, 5 = 5, 3 5 = 5 3, Since 5

More information

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications

Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Advanced Economic Growth: Lecture 21: Stochastic Dynamic Programming and Applications Daron Acemoglu MIT November 19, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 21 November 19, 2007 1 / 79 Stochastic

More information

PROJECTION METHODS FOR DYNAMIC MODELS

PROJECTION METHODS FOR DYNAMIC MODELS PROJECTION METHODS FOR DYNAMIC MODELS Kenneth L. Judd Hoover Institution and NBER June 28, 2006 Functional Problems Many problems involve solving for some unknown function Dynamic programming Consumption

More information

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero

We are going to discuss what it means for a sequence to converge in three stages: First, we define what it means for a sequence to converge to zero Chapter Limits of Sequences Calculus Student: lim s n = 0 means the s n are getting closer and closer to zero but never gets there. Instructor: ARGHHHHH! Exercise. Think of a better response for the instructor.

More information

Using approximate functional equations to build L functions

Using approximate functional equations to build L functions Using approximate functional equations to build L functions Pascal Molin Université Paris 7 Clermont-Ferrand 20 juin 2017 Example : elliptic curves Consider an elliptic curve E /Q of conductor N and root

More information

Homework and Computer Problems for Math*2130 (W17).

Homework and Computer Problems for Math*2130 (W17). Homework and Computer Problems for Math*2130 (W17). MARCUS R. GARVIE 1 December 21, 2016 1 Department of Mathematics & Statistics, University of Guelph NOTES: These questions are a bare minimum. You should

More information

Numerical Methods I: Interpolation (cont ed)

Numerical Methods I: Interpolation (cont ed) 1/20 Numerical Methods I: Interpolation (cont ed) Georg Stadler Courant Institute, NYU stadler@cims.nyu.edu November 30, 2017 Interpolation Things you should know 2/20 I Lagrange vs. Hermite interpolation

More information

1. Pace yourself. Make sure you write something on every problem to get partial credit. 2. If you need more space, use the back of the previous page.

1. Pace yourself. Make sure you write something on every problem to get partial credit. 2. If you need more space, use the back of the previous page. ***THIS TIME I DECIDED TO WRITE A LOT OF EXTRA PROBLEMS TO GIVE MORE PRACTICE. The actual midterm will have about 6 problems. If you want to practice something with approximately the same length as the

More information

Economics 620, Lecture 18: Nonlinear Models

Economics 620, Lecture 18: Nonlinear Models Economics 620, Lecture 18: Nonlinear Models Nicholas M. Kiefer Cornell University Professor N. M. Kiefer (Cornell University) Lecture 18: Nonlinear Models 1 / 18 The basic point is that smooth nonlinear

More information

Power, Taylor, & Maclaurin Series Page 1

Power, Taylor, & Maclaurin Series Page 1 Power, Taylor, & Maclaurin Series Page 1 Directions: Solve the following problems using the available space for scratchwork. Indicate your answers on the front page. Do not spend too much time on any one

More information

Scientific Computing

Scientific Computing 2301678 Scientific Computing Chapter 2 Interpolation and Approximation Paisan Nakmahachalasint Paisan.N@chula.ac.th Chapter 2 Interpolation and Approximation p. 1/66 Contents 1. Polynomial interpolation

More information

Adaptive Piecewise Polynomial Estimation via Trend Filtering

Adaptive Piecewise Polynomial Estimation via Trend Filtering Adaptive Piecewise Polynomial Estimation via Trend Filtering Liubo Li, ShanShan Tu The Ohio State University li.2201@osu.edu, tu.162@osu.edu October 1, 2015 Liubo Li, ShanShan Tu (OSU) Trend Filtering

More information

1. Using the model and notations covered in class, the expected returns are:

1. Using the model and notations covered in class, the expected returns are: Econ 510a second half Yale University Fall 2006 Prof. Tony Smith HOMEWORK #5 This homework assignment is due at 5PM on Friday, December 8 in Marnix Amand s mailbox. Solution 1. a In the Mehra-Prescott

More information

13 Endogeneity and Nonparametric IV

13 Endogeneity and Nonparametric IV 13 Endogeneity and Nonparametric IV 13.1 Nonparametric Endogeneity A nonparametric IV equation is Y i = g (X i ) + e i (1) E (e i j i ) = 0 In this model, some elements of X i are potentially endogenous,

More information

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.

HOMEWORK #1 This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox. Econ 50a (second half) Yale University Fall 2006 Prof. Tony Smith HOMEWORK # This homework assignment is due at 5PM on Friday, November 3 in Marnix Amand s mailbox.. Consider a growth model with capital

More information

Chapter 3 Numerical Methods

Chapter 3 Numerical Methods Chapter 3 Numerical Methods Part 2 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization 1 Outline 3.2 Systems of Equations 3.3 Nonlinear and Constrained Optimization Summary 2 Outline 3.2

More information

Numerical Methods of Approximation

Numerical Methods of Approximation Contents 31 Numerical Methods of Approximation 31.1 Polynomial Approximations 2 31.2 Numerical Integration 28 31.3 Numerical Differentiation 58 31.4 Nonlinear Equations 67 Learning outcomes In this Workbook

More information

Qualifying Exams I, 2014 Spring

Qualifying Exams I, 2014 Spring Qualifying Exams I, 2014 Spring 1. (Algebra) Let k = F q be a finite field with q elements. Count the number of monic irreducible polynomials of degree 12 over k. 2. (Algebraic Geometry) (a) Show that

More information

1 Bewley Economies with Aggregate Uncertainty

1 Bewley Economies with Aggregate Uncertainty 1 Bewley Economies with Aggregate Uncertainty Sofarwehaveassumedawayaggregatefluctuations (i.e., business cycles) in our description of the incomplete-markets economies with uninsurable idiosyncratic risk

More information

Numerical Analysis: Solving Nonlinear Equations

Numerical Analysis: Solving Nonlinear Equations Numerical Analysis: Solving Nonlinear Equations Mirko Navara http://cmp.felk.cvut.cz/ navara/ Center for Machine Perception, Department of Cybernetics, FEE, CTU Karlovo náměstí, building G, office 104a

More information

Inflation Expectations and Monetary Policy Design: Evidence from the Laboratory

Inflation Expectations and Monetary Policy Design: Evidence from the Laboratory Inflation Expectations and Monetary Policy Design: Evidence from the Laboratory Damjan Pfajfar (CentER, University of Tilburg) and Blaž Žakelj (European University Institute) FRBNY Conference on Consumer

More information

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad

Fundamentals of Dynamical Systems / Discrete-Time Models. Dr. Dylan McNamara people.uncw.edu/ mcnamarad Fundamentals of Dynamical Systems / Discrete-Time Models Dr. Dylan McNamara people.uncw.edu/ mcnamarad Dynamical systems theory Considers how systems autonomously change along time Ranges from Newtonian

More information

Combining Macroeconomic Models for Prediction

Combining Macroeconomic Models for Prediction Combining Macroeconomic Models for Prediction John Geweke University of Technology Sydney 15th Australasian Macro Workshop April 8, 2010 Outline 1 Optimal prediction pools 2 Models and data 3 Optimal pools

More information

Y t = log (employment t )

Y t = log (employment t ) Advanced Macroeconomics, Christiano Econ 416 Homework #7 Due: November 21 1. Consider the linearized equilibrium conditions of the New Keynesian model, on the slide, The Equilibrium Conditions in the handout,

More information

Chapter 11 - Sequences and Series

Chapter 11 - Sequences and Series Calculus and Analytic Geometry II Chapter - Sequences and Series. Sequences Definition. A sequence is a list of numbers written in a definite order, We call a n the general term of the sequence. {a, a

More information

Perturbation Methods II: General Case

Perturbation Methods II: General Case Perturbation Methods II: General Case (Lectures on Solution Methods for Economists VI) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 February 21, 2018 1 University of Pennsylvania 2 Boston College The

More information

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology

Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology Advanced Economic Growth: Lecture 8, Technology Di usion, Trade and Interdependencies: Di usion of Technology Daron Acemoglu MIT October 3, 2007 Daron Acemoglu (MIT) Advanced Growth Lecture 8 October 3,

More information

GMM, HAC estimators, & Standard Errors for Business Cycle Statistics

GMM, HAC estimators, & Standard Errors for Business Cycle Statistics GMM, HAC estimators, & Standard Errors for Business Cycle Statistics Wouter J. Den Haan London School of Economics c Wouter J. Den Haan Overview Generic GMM problem Estimation Heteroskedastic and Autocorrelation

More information

Introduction: Solution Methods for State-Dependent and Time-Dependent Models

Introduction: Solution Methods for State-Dependent and Time-Dependent Models Introduction: Solution Methods for State-Dependent and Time-Dependent Models Lilia Maliar and Serguei Maliar Washington DC, August 23-25, 2017 FRB Mini-Course Maliar and Maliar (2017) State- and Time-Dependent

More information

Cheng Soon Ong & Christian Walder. Canberra February June 2018

Cheng Soon Ong & Christian Walder. Canberra February June 2018 Cheng Soon Ong & Christian Walder Research Group and College of Engineering and Computer Science Canberra February June 2018 (Many figures from C. M. Bishop, "Pattern Recognition and ") 1of 254 Part V

More information

Notes on uniform convergence

Notes on uniform convergence Notes on uniform convergence Erik Wahlén erik.wahlen@math.lu.se January 17, 2012 1 Numerical sequences We begin by recalling some properties of numerical sequences. By a numerical sequence we simply mean

More information

Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions

Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions Dynare Working Papers Series http://www.dynare.org/wp/ Taking Perturbation to the Accuracy Frontier: A Hybrid of Local and Global Solutions Lilia Maliar Serguei Maliar Sébastien Villemot Working Paper

More information

Families of Functions, Taylor Polynomials, l Hopital s

Families of Functions, Taylor Polynomials, l Hopital s Unit #6 : Rule Families of Functions, Taylor Polynomials, l Hopital s Goals: To use first and second derivative information to describe functions. To be able to find general properties of families of functions.

More information

Lecture XII. Solving for the Equilibrium in Models with Idiosyncratic and Aggregate Risk

Lecture XII. Solving for the Equilibrium in Models with Idiosyncratic and Aggregate Risk Lecture XII Solving for the Equilibrium in Models with Idiosyncratic and Aggregate Risk Gianluca Violante New York University Quantitative Macroeconomics G. Violante, Idiosyncratic and Aggregate Risk p.

More information

MATH 1A, Complete Lecture Notes. Fedor Duzhin

MATH 1A, Complete Lecture Notes. Fedor Duzhin MATH 1A, Complete Lecture Notes Fedor Duzhin 2007 Contents I Limit 6 1 Sets and Functions 7 1.1 Sets................................. 7 1.2 Functions.............................. 8 1.3 How to define a

More information

A simple macro dynamic model with endogenous saving rate: the representative agent model

A simple macro dynamic model with endogenous saving rate: the representative agent model A simple macro dynamic model with endogenous saving rate: the representative agent model Virginia Sánchez-Marcos Macroeconomics, MIE-UNICAN Macroeconomics (MIE-UNICAN) A simple macro dynamic model with

More information

Perturbation Methods I: Basic Results

Perturbation Methods I: Basic Results Perturbation Methods I: Basic Results (Lectures on Solution Methods for Economists V) Jesús Fernández-Villaverde 1 and Pablo Guerrón 2 March 19, 2018 1 University of Pennsylvania 2 Boston College Introduction

More information