Growing competition in electricity industry and the power source structure

Size: px
Start display at page:

Download "Growing competition in electricity industry and the power source structure"

Transcription

1 Growing competition in electricity industry and the power source structure Hiroaki Ino Institute of Intellectual Property and Toshihiro Matsumura Institute of Social Science, University of Tokyo [Preliminary Not for Citation] Abstract We investigate how the strategic behaviors of electric-power producers work on their power source structure. We introduce the competitor who cannot use the technologies which requires an enormous set-up cost such as nuclear power into an electric-power market which is originally local monopoly. Does introducing such a competitor decrease the capacity of nuclear power in the market? We show that the capacity of nuclear power decreases if and only if nuclear plant is sufficiently efficient. 1 Introduction To generate electricity, we have various technologies such as nuclear, hydraulic, fossil and biomass power. Since 1990 s, the electric-power market has been reformed from local monopoly to competitive one by deregulation. Now we can observe that a variety of technologies compete in the electric-power market. Which technology is used to produce electric power (the power source structure) depends on the economic aspects as well as the technological, the environmental, and the policy aspects. Economically, the demand and cost structures are important. The demand of electricity frequently fluctuates between day and night or among seasons. Once the sunk cost of the power plant is paid, the technology such as nuclear or hydraulic power save little cost even if the quantity of power generation is reduced under its capacity, while the technologies such as fossil or biomass power requires the substantial cost due to the inputs for its additional supply. Thus, when a power company chooses to the technologies of their production, it is efficient for the 1

2 power company to use the technology like fossil power when they adjust their power supply to the volatile part of demand and the technology like nuclear power when they supply for the steady part of demand. This paper focus on this economic aspect to determine the power source structure. 1 The above explanation about choice of technologies only highlights the decision inside a firm and does not take the competition among firms into consideration. Although the explanation is appropriate if the markets is local monopoly of the power company, the power company now has the strategic interaction with new entrants. In particular, the entrants cannot usually use the technologies which requires an enormous set-up cost such as nuclear power. Does introducing such a competitor decrease the capacity of nuclear power in the market comparing to the monopoly case? We show that the capacity of nuclear power decreases if and only if the nuclear plants is sufficiently efficient. Furthermore, we investigate the case where the firm with nuclear plants specializes in generating the nuclear power and compete with the firm without nuclear plants. Such a market structure can be considered when the nuclear sector is separated from the the power company as a independent firm. We show that this specialization increases the capacity of nuclear power when the nuclear plant is not so efficient. However, the conclusion that the capacity of nuclear power decreases compared to the monopoly case if and only if it is sufficiently efficient is maintained. The paper is organized as follows. Section formulates the model. Section investigates the case of monopoly and shows that the model abstracts the feature explained in the second paragraph. In Section 4, we introduce the competitor who produces electricity without nuclear plants and investigates presents results. Section 5 examines the effect of specialization. Section 6 concludes the paper. 1 Holthausen (1976) investigates how the input of an ex ante control and that of an ex post control are chosen under uncertain demand in the monopoly market.

3 The model We consider an local market of electric-power whose structure is duopoly by firms 1 and or, as the benchmark case, monopoly by firm 1. The firms play the three-stage game where the power plants capacities are established under uncertain demand in the first stage, then the demand is identified in the second stage, and finally the quantities of power supplies are chosen in the third stage. There are two types of power plants to produce homogeneous electric power, that are referred as the nuclear plant and the natural-gas plant. The nuclear plant has the relatively high set-up cost of the power plant s capacity compared to the natural-gas plant; The natural-gas plant has the relatively high production cost of the power supply compared to the nuclear power. For simplicity, we adopt the following setups. In the first stage, firm i chooses the capacity of nuclear plant k i R + and the capacity of natural-gas plant l i R +. We suppose that the set-up cost of the nuclear plant s capacity is rk i where r > 0 while that of the natural-gas plant s capacity is 0. These costs are sunk in the following stages. The inverse demand of electric-power market is p = A Q where p is the market price and Q is the market demand. The scale of demand A is a random variable following the uniform distribution supported on the positive-valued interval [L, H] and this value is identified in the second stage. In the third stage, after observing A, firm i chooses the supply from nuclear plants x i (A) [0, k i ] and the supply from natural-gas plant y i (A) [0, l i ]. Denote firm i s aggregate supply q i (A) = x i (A) + y i (A). Note that since the demand becomes clear after the capacities are established and before the supplies are settled, firms decisions about the quantities of their supplies depend on A but capacities does not. We suppose that the production cost of the nuclear plant is 0 while that of the natural-gas plant is cy i (A) where c > 0. Note that in the final quantity-setting stage, these production costs are variable while the set-up costs of capacities become fixed costs. Since the set-up cost of natural-gas plant s capacity is 0, firm i always choose sufficiently large l i so that the y i (A) is not bounded upward by l i in the subgame perfect equilibrium. Thus, l i is not relevant to the other outcomes in the equilibrium. Furthermore, following assumptions are convenient to solve the problem algebraically. A.1. Var(A) > (L + c). A.. r < c. A.. c < L 48

4 A.1 restricts our attention to the case where the demand has relatively high volatility. More concretely, this is the condition to exclude the case where the firm which can establish both the nuclear plant and the natural-gas plant does not supply positive amount of natural-gas power for all the situation satisfying the following assumptions. A. states that nuclear power is more efficient than natural gas if nuclear plants have no excess capacity. A. states that, for all the scale of demand, a firm can not be the monopolist if there is a rival firm. Monopoly In this section, as the benchmark case, we consider firm 1 is the monopolist. 4 Firm 1 can establish both nuclear and natural-gas plants..1 Quantity-setting stage In the final quantity-setting stage, the equilibrium outcomes for given k 1 and A are as follows. Note that by A., we have interior solutions with respect to q 1 for all A [L, H]. ( k1, A c ) (x m 1 (k 1 ; A), y1 m k 1 if k 1 [0, A c ] A [k 1 + c, ) (k 1 ; A)) = (k 1, 0) if k 1 [ A c, A ] A [k 1, k 1 + c] ( A, 0) if k 1 [ A, ) A (0, k 1] (1) A c q1 m if k 1 [0, A c ] A+c (k 1 ; A) = k 1 if k 1 [ A c, A ] p m if k 1 [0, A c ] (k 1 ; A) = A k 1 if k 1 [ A if k 1 [ A, ) A c, A ] () A if k 1 [ A, ) As seen in (1), firm 1 s optimal production plan reveals three patterns. If the scale of demand is large relatively to nuclear plant s capacity, i.e., A > k 1 + c, natural-gas power is supplied to make up for the lack of nuclear plant s capacity. If the scale of demand is not so large, i.e., A k 1 +c, all the supply is nuclear power. On top of that, if the scale of demand is sufficiently small, i.e., A < k 1, the nuclear plant have an excess capacity, i.e., k 1 > x m 1 (k 1; A). A.1 is equivalent to H L c > 0. This condition is always satisfied, e.g., if H L together with A.. More precisely, this is the necessary and sufficient condition for all the firm to have the interior solution of natural-gas power for some r (0, c) in Section 4 and sufficient condition in Section. In Section 5, A.1 is not used to induce the equilibrium since the firm with the nuclear plant cannot establish the natural-gas plant. 4 The analysis is same as in the case where firm 1 and firm decide their aggregate capacity and supply to maximize their collusive profit. 4

5 The final stage s monopoly profit without the set-up cost of capacities is given by π1 m (k 1 ; A) = k 1 (A k 1 ) (A c) 4 + ck 1 if k 1 [0, A c ] A [k 1 + c, ) if k 1 [ A c, A ] A [k 1, k 1 + c] A 4 if k 1 [ A, ) A (0, k 1] Note we can check π m 1 (k 1; A) smoothly connects as seen in figure 1. π m 1 A 4 (A c)(a+c) 4 (A c) 4 O A c A k 1 Figure 1: Graph of π m 1 (k 1; A). Capacity-setting stage In the first capacity-setting stage, since the firm establishes the capacities under uncertain demand, it maximizes the expected profit, i.e., 1 H max π1 m (k 1 ; a)da rk 1. () k 1 H L L Let k m 1 be the solution of this problem, that is, the equilibrium capacity of nuclear plants in the monopoly market. 5

6 Firm 1 s marginal expected revenue in the first stage is as follows. Note L < H c by A.1. c ] if k 1 [0, L c ] if k 1 [ L c, L ] d 1 H π1 m (k 1 ; a)da = dk 1 H L L [ 1 ch L c H L [ 1 ch c H L (L c)k 1 k1 ] ck 1 if k 1 [ L, H c [ ] ] 1 H H L Hk 1 + k1 if k 1 [ H c, H ] 0 if k 1 [ H, ] The line ABCD in the figure 6 depicts the shape of this expected marginal revenue. As we can see in this figure, firm 1 s expected marginal revenue is strictly decreasing when it is in the interval (0, c). Therefore, by A., the first order condition, MR m (k 1 ) d 1 H π1 m (k 1 ; a)da = r dk 1 H L L (4) is the necessary and sufficient condition for the problem (). Solving it yields the following result. Lemma 1 Suppose A.1-A.. Then, ( 1 L c + ) (c r)(h L) k1 m c(h c) r(h L) = ( 4c 1 H ) r(h L) [ ) if r c c [ (H L), c c if r ( (H L), c ] c if r 0, (H L). c (H L) ] (5) The first line of (5) corresponds to the region where k m 1 and the third line k m 1 ( L c, L ], the second line km 1 [ L, H c ] [ H c, H c ). From this result and (1), r > (H L) guarantees ym 1 (H) > 0 while y1 m (L) is always zero. In other words, unless the nuclear plant is drastically efficient, the natural-gas power is supplied when the demand happens to be high while the nuclear power always meets the steady demand. When firm 1 establishes nuclear plants, it faces a trade-off between cost and risk. If the demand is not volatile, since nuclear plants is less costly than natural-gas plants by A., the firms prefers nuclear plants. However, under the uncertain demand, establishing a large capacity of nuclear plants is risky since the part of its capacity can be an excess capacity when the demand happens to be small. The cost of this excess capacity can not be compensated since it becomes fixed sunk cost after the demand is identified. The firm balances this trade-off and, as a result, 6

7 the natural gas cope with the high demand unless r is so small that the effect of cost always dominate the effect of risk in the trade-off. Observe that the threshold which guarantees y m 1 (H) > 0 can be rearranged as c (H L) = c Var(A) Thus, if Var(A) increases, natural-gas power is supplied for lower r. 5 As well as high set-up cost of nuclear plants reduce the cost advantage of nuclear power, high volatility of demand enhance the risk to establish nuclear plants. In other words, r and Var(A) affect the trade-off in the same direction and similarly reduce the incentive to establish nuclear plants.. Example We provide a numerical example with H =, L = 1 and c = 0.4 and simulate how the expected ( x m market share of nuclear power E 1 (k1 m;a) A and the expected operating rate of nuclear plants ( ) x m E 1 (k1 m;a) A k1 m changes in r. See the Table 1. 6 The intuition of this result essentially follows the q m 1 (km 1 ;A) ) explanation of Lemma 1. As r gets low, the expected market share of nuclear power increases since the natural-gas power is less supplied because of the nuclear plant s cost advantage. Instead of that, the expected operating rate of nuclear plant decreases since the firm less care the risk of excess capacity. r market share operating rate Table 1: Equilibrium management of nuclear plant (monopoly case) 5 Note that since y m 1 (A) is non-increasing in A by (1), y m 1 (A) = 0 for all A [L, H] if y m 1 (H) = 0. 6 From Lemma 1 and (1), the market share of nuclear power is below 1 if r > c /(H L) = 0.04 and the operating rate of nuclear plant is below 1 if r < c c /(H L) =

8 4 Effect of the competition In this section, firm enters the market as the competitor of firm 1. We suppose that firm 1 can establish both nuclear and natural-gas plants and that firm can establish natural-gas plants but cannot use nuclear power Quantity-setting stage If all firm i s supply is produced by nuclear power, its reaction function in third stage is Ri N (q j ; A) = max[ A q j, 0]. If all firm i s supply is produced by natural gas, its reaction function in third stage is Ri G (q j ; A) = max[ A c q j, 0]. Thus, in the final quantity-setting stage, firm 1 s reaction function given k 1 is R1 G(q ; A) if q R G 1 1 (k1 : A) R 1 (q ; A) = k 1 if R1 G 1 (k1 ; A) q R1 N 1 (k1 ; A) R1 N(q ; A) if R1 N 1 (k1 ; A) q As seen in the figure, firm 1 s reaction function kinks at its nuclear capacity k 1. Firm s A q A-c R N 1 R G 1 k 1 A c A q 1 Figure : Reaction function of firm 1 given k 1 reaction function is always R G. The equilibrium outcome for given k 1 and A are obtained as the intersection of these reaction functions. Note that by A., we have interior solutions with respect to q 1 and q for all A [L, H]. 7 Dixit (1979) demonstrated that the incumbent yields an outcome in which the new entrant is inactive if there exists sufficiently large fixed cost to enter. 8

9 If k 1 [0, A c ] A [k 1 + c, ], [ x 1 (k 1 ; A) y1 (k ] 1; A) y (k 1; A) = [ ] A c k1 k 1 A c, [ ] q 1 (k 1 ; A) q (k = 1; A) [ A c ] A c, p (k 1 ; A) = A + c. (6) If k 1 [ A c, A+c ] A [k 1 c, k 1 + c], [ x 1 (k 1 ; A) y1 (k ] 1; A) y (k 1; A) [ k1 0 = A c k 1 ], [ ] [ q 1 (k 1 ; A) q (k = 1; A) k 1 A c k 1 ], p (k 1 ; A) = A c k 1. (7) If k 1 [ A+c, ) A (0, k 1 c], [ x 1 (k 1 ; A) y1 (k ] 1; A) y (k 1; A) = [ A+c ] 0 A c, [ ] [ q 1 (k 1 ; A) A+c ] q (k = A c, p (k 1; A) 1 ; A) = A + c. (8) Similarly to the monopoly case, firm 1 s optimal production plan reveals three patterns: when A > k 1 + c (high-demand case), natural-gas power is supplied; when A < k 1 c (low-demand case), the nuclear plant have an excess capacity; and otherwise (intermediate case), all the power supply is produced by nuclear plants without excess capacity. From these, we obtain firm 1 s profit in final stage without the capacity cost as (A c) π1(k 9 + k 1 c if k 1 [0, A c ] A [k 1 + c, ] k 1 ; A) = 1 (A+c k 1 ) if k 1 [ A c, A+c ] A [k 1 c, k 1 + c] (A+c) 9 if k 1 [ A+c, ) A (0, k 1 c] for given k 1 and A. The shape of π 1 is depicted in the figure. Note π 1 is not differentiable but we can check it is continuous in k Capacity-setting stage Firm 1 s profit maximization problem in the first capacity-setting stage is given by 1 H max π k 1 H L 1(k 1 ; a)da rk 1. (9) L Let k 1 be the solution of this problem, that is, the equilibrium capacity of nuclear plants under the duopoly with a new entrant. 9

10 π 1 (a+c) 9 (a+c)(a c) 9 (a c) 9 O a c a+c k 1 Figure : Graph of π 1 (k 1; A) Firm 1 s marginal expected revenue in the first stage is as follows. Note, by A.1, H c c [ ] if k 1 [0, L c ] 1 4cH (L+c) 1 H H L 4 + (L c)k 1 4 k 1 if k 1 [ L c, L+c ] π k 1 H L 1(k 1 ; a)da = 1 H L [ch [ ck 1] ] if k 1 [ L+c, H c ] L (H+c) > L+c. 1 H L 4 (H + c)k k 1 if k 1 [ H c, H+c ] 0 if k 1 [ H+c, ] The line ABEF CG in the figure 6 depicts the shape of this expected marginal revenue. As we can see in the figure 6, though this expected marginal revenue goes up over c at first, it is strictly decreasing when in the interval (0, c). Therefore, by A., the first order condition, MR (k 1 ) d 1 dk 1 H L H is the necessary and sufficient condition for the problem (9). result. L (10) π 1(k 1 ; a)da = r, (11) Solving it yields the following Lemma Suppose A.1-A.. Then, ch r(h L) k1 = ( c 1 H + c ) (c + H) + 1r(H L) 10 [ if r c c(h L c) ( (H L) if r 0, c c(h L c) (H L) ), c ]. (1)

11 Proof See the Appendix. Q.E.D. k 1 [ L+c, H c ] if we are in the case of the first line of (1), and k 1 [ H c second line. Therefore, by (6), y 1, H+c ] if in the c(h L c) (H) > 0 if and only if r > c (H L). In other words, the natural-gas power is supplied for the high demand when the nuclear plant is not quite efficient. Again, the threshold can be rearranged as c c(h L c) (H L) = c(e(a) + c) Var(A) + c Thus, if Var(A) increases preserving the mean, natural-gas power is supplied for lower r. 8 These are because to establish nuclear plants yields the trade-off between cost and risk similarly to the monopoly case. 4. Comparison Does the capacity of nuclear power in the market decrease when a new entrant who produces without nuclear power is introduced? Proposition 1 Suppose A.1-A.. Then, there exists ˆr (0, c) such that k 1 k m 1 r ˆr. Proof See the Appendix. Q.E.D. This proposition indicates that the capacity of nuclear power decreases if and only if nuclear plant is sufficiently efficient relatively to the risk (volatility of demand). 9 The rationale behind this result is as follows. Due to the cost structure of nuclear and natural-gas plants, establishing 8 Note that since y 1(A) is non-increasing in A by (1), y 1(A) = 0 for all A [L, H] if y 1(H) = 0. 9 If A.1. is violated, i.e., Var(A) (L + c) /48, it is possible k 1 < k m 1 for all r (0, c). However, even in such a case, if we consider the case where c > r, we have k 1 > k m 1 if r > c unless r is so high that k 1 = k m 1 = 0. This is because when r > c, unless r is extremely high, nuclear plants are established under the duopoly to deter firm s production (see we have the region where MR > c), while no nuclear plants are established under the monopoly since they have no cost advantage but have risk of excess capacities. 11

12 nuclear plants, which yields the trade-off between cost and risk, yields another strategic effect if a competitor is introduced. Since nuclear plants have the relatively low production cost in the quantity-setting stage, larger capacity of nuclear plants commits larger production and deter the competitor s production, which promote the incentive to establish nuclear plants. This strategic effect is same as production deterrence of cost-reducing investment discussed in Dixit (1980): the investment cost and the reduced cost by the investment theoretically corresponds to the relatively high set-up cost and the relatively low production cost of nuclear plants in our context, respectively. On the other hand, by introducing the competitor, some production of firm 1 substitutes to the new competitor. Since firm supplies only natural-gas power even for the fundamental demand, this effect reduce the capacity of nuclear plants. When r is small, a lot of firm 1 s supply have already produced by nuclear even under monopoly. Therefore, the former effect of production deterrence (the latter effect of production substitution) is small (large) since it is effective when natural-gas (nuclear) plants is substituted for nuclear (natural-gas) plants. That is why the more the nuclear plant is efficient, the more likely the capacity of nuclear power decreases by introducing the competitor. When the policymaker introduces the competitor who produce without nuclear power in order to reduce the dependence on nuclear power for electricity, our result is pessimistic because it is an efficient technology that successfully decreases. Indeed, the following corollary of Proposition 1 further support this pessimism. Corollary 1 Suppose A.1-A.. Then, y 1 (A) = 0 for all A [L, H] if k 1 < km 1. Proof From the explanation just after Lemma, y1 (A) = 0 for all A [L, H] if we are in the case of the second line of (1). Obviously from the proof of Proposition 1, MR m and MR never intersect when k 1 [ L+c, H c ] (the first-line case of (1)). Therefore, ˆr < MR ( H c ). Q.E.D. Thus, the capacity of nuclear power decreases only when nuclear plant is so efficient that firm 1 no more supplies natural-gas power under the duopoly. 4.4 Market share of nuclear power We discuss how the competition influences the expected market share of nuclear power. 1

13 Proposition Suppose A.1-A.. Then, ( x 1 E (k 1 ; A) ) A q1 (k 1 ; A) + q (k 1 ; A) ( x m < E 1 (k1 m; A) ) A q1 m(km 1 ; A) if k 1 < k m 1. Proof See the Appendix. Q.E.D. This result is essentially follows the previous subsection. As in ordinary oligopoly model, even when the nuclear capacity decreases, we can show that the expected total output increases by the competition. Thus, if the capacity of nuclear plant is less under the competition than under monopoly, the market share is all the more less. This implies that the market share decreases when the nuclear plants are sufficiently efficient. As in Subsection., we also provide numerical examples of our two duopoly models with H =, L = 1 and c = 0.4. See the Table for the results. Figure 7 depicts the expected market share of nuclear power in this examples by the line labeled new entrant and the example in Subsection. by the line labeled monopoly. We can see that the expected market share is less under duopoly than under monopoly when the nuclear plants are sufficiently efficient. r market share operating rate Table : Equilibrium management of nuclear plant (new-entrant case) 5 Effect of the specialization In this section, we investigate the case where the firm with nuclear plants specializes in the nuclear power supply. We suppose firm 1 generates its power production only by nuclear plants and firm only by natural-gas plants. 1

14 5.1 Quantity-setting stage In final quantity-setting stage, firm 1 s reaction function given k 1 is { k 1 if q R N 1 1 (k1 ; A) R 1 (q ; A) = R1 N(q ; A) if R1 N 1 (k1 ; A) q As seen in the figure, firm 1 s reaction function kinks at its nuclear capacity k 1. Firm s A q A-c R N 1 R G 1 k 1 A c A q 1 Figure 4: Reaction function of firm 1 given k 1 reaction function is always R G. The equilibrium outcome for given k 1 and A are as follows. Note, by A., we have interior solution with respect to q 1 and q for all A [L, H]. { q 1 (k 1 ; A) = x 1 (k 1 ; A) = q (k 1 ; A) = y (k 1 ; A) = p (k 1 ; A) = k 1 A+c { A c k1 if k 1 [0, A+c ] A [k 1 c, ) if k 1 [ A+c, ) A [0, k 1 c] if k 1 [0, A+c ] A [k 1 c, ) if k 1 [ A+c, ) A [0, k 1 c] A c { A+c k1 if k 1 [0, A+c ] A [k 1 c, ) A+c if k 1 [ A+c, ) A [0, k 1 c] From these, we obtain firm 1 s profit in final stage without the capacity cost as { k1 (A+c k 1 ) π1 if k 1 [0, A+c (k 1 ; A) = ] A [k 1 c, ) (A+c) 9 if k 1 [ A+c, ) A [0, k 1 c] for given k 1 and A. The shape of π1 is depicted in the figure 5. Note π1 is not differentiable but we can check it is continuous in k Capacity-setting stage Firm 1 s profit maximization problem in the first capacity-setting stage is given by max k 1 1 H L H L π 1 (k 1 ; a)da rk 1. (1) 14

15 π 1 (a+c) 9 (a+c)(a c) 9 O a c a+c k 1 Let k 1 Figure 5: Graph of π 1 (k 1; A) be the solution of this problem, that is, the equilibrium capacity of nuclear plants under the duopoly of divided sectors. Firm 1 s marginal expected revenue in the first stage is as follows. H+L+c 1 H 4 [ k 1 ] if k 1 [0, L+c ] π1 1 (k 1 ; a)da = (H+c) k 1 H L H L 4 (H + c)k L k 1 if k 1 [ L+c, H+c ] 0 if k 1 [ H+c, ] The line IF CG in the figure 6 depicts the shape of this expected marginal revenue. (14) As we can see in the figure 6, this expected marginal revenue is strictrly decreasing. Therefore, by A., the first order condition, MR (k 1 ) d 1 H π1 (k 1 ; a)da = r, (15) dk 1 H L L is the necessary and sufficient condition for the probrem (1). Solving it yields the following result. Note A.1 is not needed to derive this proposition. Lemma Suppose A.-A.. Then, k1 = 1 ( H + c ) (c + H) + 1r(H L). 15

16 Since firm 1 cannot use the natural-gas power, the solution which corresponds to the case where y 1 (k ; H) > 0 in Lemma disappears in this proposition. 5. Comparison Does the same principle occur when the competition is introduced by setting the nuclear sector up in independent business? Proposition Suppose A.1-A.. Then, there exists r (ˆr, c) such that k 1 > k 1 k 1 = k 1 if r r. if r > r and Proof See the Appendix. Q.E.D. When the firm 1 cannot use natural-gas power, it must cope with fluctuation of demand only by nuclear power. Thus, the firm establish nuclear plants for high demand even if that impose the risk of excess capacity. Therefore, as seen in the case r > r of Proposition, the nuclear capacity increases compared to the case where firm 1 can use both the technologies. However, this mechanism does not work when r r. This is because if the nuclear plant is efficient relatively to the risk (volatility of demand), firm 1 does not supply natural-gas power even when it can use both the technologies. In particular, since we can show that r > ˆr, we always have k 1 = k 1 in the case where the nuclear plant is so efficient that we have k 1 < km 1. Therefore, Proposition 1 is warrantable if k 1 is replaced by k 1. In other words, as for the conclusion that the capacity of nuclear power decreases by the competition if and only if nuclear plant is sufficiently efficient, we can apply the same principle as explained in Proposition 1. As for the market share of nuclear power, we also have the similar relation to Proposition. Proposition 4 Suppose A.1-A.. Then, E A ( q1 (k 1 x 1 (k 1 ; A) ; A) + q (k 1 ; A) ) ( x m < E 1 (k1 m; A) ) A q1 m(km 1 ; A) if k1 < k1 m. Proof As seen in Proposition, we always have k 1 = k 1 in the case where k 1 < km 1. Therefore, the similar proof to that of proposition is applicable if we replace the superscript * with the 16

17 superscript **. Q.E.D. As in Subsection., we also provide numerical examples of our two duopoly models with H =, L = 1 and c = 0.4. See the Table. Figure 7 depicts the expected market share of nuclear power in this example by the line labeled specialization. We can see that the expected market share is less than the previous section unless the nuclear plants are sufficiently efficient. r market share operating rate Table : Equilibrium management of nuclear plant (devided-sector case) 6 Conclusion We have investigated how the growing competition in an electric-power market affects the power source structure. We consider the volatile demand and two types of technologies: the nuclear power and the natural-gas power. The nuclear power is supposed to have the relatively high set-up cost compared to the natural-gas power and the natural-gas power is supposed to have the relatively high production cost compared to the nuclear power. We have shown that that introducing a competitor with the natural-gas plant into the monopoly market decreases the capacity of nuclear power of the original monopolist if and only if the nuclear plant is sufficiently efficient. References Dixit, A. (1979). A Model of Duopoly Suggesting a Theory of Entry Barriers. The Bell Journal of Economics, 10,

18 Dixit, A. (1980). The Role of Investment in Entry-Deterrence. The Economic Journal, 90, Holthausen, D.M. (1976). Input Choices and Uncertain Demand. The American Economic Review, 66(1), APPENDIX Proof of Lemma. First, note that MR (k 1 ) c when k 1 L+c and that MR (k 1 ) = 0 when k 1 H+c. The former fact is because MR (k 1 ) is quadratic in k 1 when k 1 [ L c, L+c ] and ( ) ( ) L c L + c MR = c, MR c(l c) = c + (H L) > c. Therefore, we must have k1 ( L+c H+c ) by A. and (11). Next, observe that MR is strictly decreasing when k 1 [ L+c, H+c L+c ]. Decreasing in [, H c ] is obvious from (10). Decreasing in [ H c, H+c ] is implied by the facts MR (k 1 ) is quadratic in k 1 when k 1 [ H c, H+c ] and MR ( H c ) > 0 and MR ( H+c ) = 0. Note that MR ( H c ) > 0 is implied from the second equality of following expression: MR ( H c ) = c(h + c) (H L) c(h L c) = c. (16) (H L) Therefore, the second order condition is globally satisfied in ( L+c, H+c ). From the third term of the expression (16), MR ( H c ) < c by A.1, which is equivalent to H L c > 0 since Var(A) = (H L) 1. Hence, when r [MR ( H c ), c), we have k1 ( L+c, H c ] and when r (0, MR ( H c )], k 1 [ H c, H+c ). Notice this is because MR is strictly decreasing on [ L+c ]. Therefore, solving the first order condition (11) yields the result., H+c Q.E.D. Proof of Proposition 1. Lemmas 1 and imply lim k1 = H + c < lim k1 m = H r 0 r 0. where the inequality holds by A.. In other words, k1 < km 1 when r is sufficiently close to 0. Furthermore, when A.1 is satisfied, i.e., V ar(a) > (L+c) 48, Lemmas 1 and imply lim k1 = L r c > lim r c km 1 = L c. In other words, k 1 > km 1 when r is sufficiently close to c. 18

19 Therefore, the proof is complete if MR m and MR cross exactly at a single point on (0, c) (See the figure 6). In absolute value, the slope of MR m is smaller than or equal to c H L for all k 1 by (4) and that of MR is lager than or equal to c H L when k 1 > L+c by (10). Observe that the former fact comes since the slope of MR m equals c H L when k 1 ( L, H c ) and we have the relations MR m (k 1 ) = (L c) + 4k ( ) 1 > MRm L = c (17) k 1 H L k 1 H L MR m (k 1 ) = H 4k ( ) 1 k 1 H L > MRm H c = c (18) k 1 H L when k 1 ( L c, L ) in (17) and when k 1 ( H c, H ) in (18). Notice that the inequalities of (17) and (18) hold because MR m is quadratic and decreasing in each area. Observe that the latter fact comes since the slope of MR equals c H L when k 1 ( L+c MR (k 1 ) = (H + c) k 1 k 1 (H L) < MR k 1 ( ) H + c, H c ) and we have the relation = H + c (H L) < c H L when k 1 ( H c, H+c ). Notice that the first inequality holds because MR is quadratic and decreasing when k 1 ( H c ) and that the final inequality makes use of A.1. Moreover, if, H+c both the slopes of MR and MR m are equal to c H L for some k 1, (19) MR (k 1 ) = ch ck 1 > MR m (k 1 ) = ch c ck 1 by (10) and (4). Hence, MR and MR m never cross at multiple points. Q.E.D. Proof of Proposition. First, we will show that E A (q 1 (k ; A) + q (k ; A)) > E A (q m 1 (km ; A)) when k < k m. If k < k m, y (H) = 0 by Corollary 1, and thus we must have H c < k < H+c from the explanation just after Lemma. Combined with L+c < k (See the first paragraph of Lemma s proof), we find the relation L < k c < H < k + c. Thus, by (6)(7)(8), we obtain the expected total output under duopoly with the new entrant: E A (q 1(k ; A) + q (k ; A)) = k c L a c H da + k c = 4 (k ) + H + c a c + k da k + H 4L c 6cH + 4cL. 1 Since this is increasing in k when H c < k < H+c, we have the relation ( ) ( )) H c H c E A (q1(k ; A) + q(k ; A)) > E A (q1 ; A + q ; A = H ch L + cl c. (0) 19

20 Meanwhile, the expected total output under monopoly E A (q m 1 (k 1; A)) is non-decreasing in k 1 since q m 1 (k 1; A) is non-decreasing in k 1 for all A [L, H] by (). Thus, using k m 1 < H from Lemma 1, we obtain ( )) H H E A (q1 m (k 1 ; A)) E A (q1 m ; A a = L da = H L. (1) 4 By (0) and (1), we are done that E A (q 1 (k ; A) + q (k ; A)) > E A (q m 1 (km ; A)) if 0 < H ch L + cl c H L 4 = H 4cH L + 4cL 4c. 1 The numerator of right hand side is increasing in H since differentiating it with respect to H yields (H c) > 0 by A.1 and A.. Thus, using H > L + c from A.1, we obtain H 4cH L + 4cL 4c > (L + c) 4c(L + c) L + 4cL 4c = 4c(L c). Finally, we find that 4c(L c) > 0 by A.. Next, we will show that E A (x 1 (k ; A)) < E A (x m 1 (km ; A)) if k < k m. For that, it is sufficient to show that x 1 (k ; A) < x m 1 (km ; A) for all A [L, H]. When k < k m, we must have H c < k as above. Thus, L+c < H c < k by A.1 and this implies that x 1 (k ; L) = L+c < k1 by (8). In the mean time, x m 1 (km ; L) = min[ L, km 1 ] by (1). Therefore, x 1 (k ; L) < x m 1 (km ; L) since we have the facts that L+c < L by A. and thatk < k m. Moreover, x 1 (k 1 ; A)/ A = 1 when x 1 (k 1 ; A) < k 1 xm 1 (km 1 ; A)/ A = 1 and xm 1 (km 1 ; A) < km 1. Therefore, x 1 (k ; A) < x m 1 (km ; A) for all A [L, H]. Q.E.D. Proof of Proposition. Let r = c(h + c) (H L) c(h L c) = c. (H L) Then, r (ˆr, c) since H L c > 0 by A.1, and ˆr < MR ( H c ) = r as seen in the proof of Corollary 1. Then, from Lemma and Lemma, k1 = k 1 for r (0, r]. As for the case where r ( r, c), k1 and k1 L+c must be in (, H c ) by MR ( H c ) = MR ( H c ) = r and MR ( L + c ) = c + H + (H L) 10c 1 Note the last inequality holds since H > 8c by A.1 and A. and H L > c by A.1. Since when k 1 ( L+c, H c ), the slope of MR equals c H L and that of MR is smaller than c H L similarly to the relation (19), MR (k 1 ) < MR (k 1 ) on ( L+c, H c ). Therefore, k 1 > k1 if r > r. Q.E.D. > c. 0

21 MR I c + c(l c) (H L) c A c c (H L) B E c c(h L c) (H L) F ˆr C c (H L) O L c L c L+cL H c ˆk G H+c H c D H k 1 Figure 6: Expected marginal revenues of nuclear plant s capacity 1

22 Figure 7: Market share of nuclear power

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1

Bertrand Model of Price Competition. Advanced Microeconomic Theory 1 Bertrand Model of Price Competition Advanced Microeconomic Theory 1 ҧ Bertrand Model of Price Competition Consider: An industry with two firms, 1 and 2, selling a homogeneous product Firms face market

More information

Entry under an Information-Gathering Monopoly Alex Barrachina* June Abstract

Entry under an Information-Gathering Monopoly Alex Barrachina* June Abstract Entry under an Information-Gathering onopoly Alex Barrachina* June 2016 Abstract The effects of information-gathering activities on a basic entry model with asymmetric information are analyzed. In the

More information

Oligopoly. Oligopoly. Xiang Sun. Wuhan University. March 23 April 6, /149

Oligopoly. Oligopoly. Xiang Sun. Wuhan University. March 23 April 6, /149 Oligopoly Xiang Sun Wuhan University March 23 April 6, 2016 1/149 Outline 1 Introduction 2 Game theory 3 Oligopoly models 4 Cournot competition Two symmetric firms Two asymmetric firms Many symmetric firms

More information

Advanced Microeconomics

Advanced Microeconomics Advanced Microeconomics Leonardo Felli EC441: Room D.106, Z.332, D.109 Lecture 8 bis: 24 November 2004 Monopoly Consider now the pricing behavior of a profit maximizing monopolist: a firm that is the only

More information

Bertrand-Edgeworth Equilibrium in Oligopoly

Bertrand-Edgeworth Equilibrium in Oligopoly Bertrand-Edgeworth Equilibrium in Oligopoly Daisuke Hirata Graduate School of Economics, University of Tokyo March 2008 Abstract This paper investigates a simultaneous move capacity constrained price competition

More information

Answer Key: Problem Set 3

Answer Key: Problem Set 3 Answer Key: Problem Set Econ 409 018 Fall Question 1 a This is a standard monopoly problem; using MR = a 4Q, let MR = MC and solve: Q M = a c 4, P M = a + c, πm = (a c) 8 The Lerner index is then L M P

More information

Heterogenous Competition in a Differentiated Duopoly with Behavioral Uncertainty

Heterogenous Competition in a Differentiated Duopoly with Behavioral Uncertainty Heterogenous Competition in a Differentiated Duopoly with Behavioral Uncertainty Akio Matsumoto Department of Systems Industrial Engineering Univesity of Arizona, USA Department of Economics Chuo University,

More information

Monopoly Regulation in the Presence of Consumer Demand-Reduction

Monopoly Regulation in the Presence of Consumer Demand-Reduction Monopoly Regulation in the Presence of Consumer Demand-Reduction Susumu Sato July 9, 2018 I study a monopoly regulation in the setting where consumers can engage in demand-reducing investments. I first

More information

Partial Privatization under Multimarket Price Competition

Partial Privatization under Multimarket Price Competition MPRA Munich Personal RePEc Archive Partial Privatization under Multimarket Price Competition Taku Masuda and Susumu Sato Graduate School of Economics, The University of Tokyo, Graduate School of Economics,

More information

Oligopoly Notes. Simona Montagnana

Oligopoly Notes. Simona Montagnana Oligopoly Notes Simona Montagnana Question 1. Write down a homogeneous good duopoly model of quantity competition. Using your model, explain the following: (a) the reaction function of the Stackelberg

More information

Welfare consequence of asymmetric regulation in a mixed Bertrand duopoly

Welfare consequence of asymmetric regulation in a mixed Bertrand duopoly Welfare consequence of asymmetric regulation in a mixed Bertrand duopoly Toshihiro Matsumura Institute of Social Science, University of Tokyo June 8, 2010 Abstract I investigate an asymmetric duopoly where

More information

Market Power. Economics II: Microeconomics. December Aslanyan (VŠE) Oligopoly 12/09 1 / 39

Market Power. Economics II: Microeconomics. December Aslanyan (VŠE) Oligopoly 12/09 1 / 39 Market Power Economics II: Microeconomics VŠE Praha December 2009 Aslanyan (VŠE) Oligopoly 12/09 1 / 39 Microeconomics Consumers: Firms: People. Households. Monopoly. Oligopoly Now Perfect Competition.

More information

Limit pricing models and PBE 1

Limit pricing models and PBE 1 EconS 503 - Advanced Microeconomics II Limit pricing models and PBE 1 1 Model Consider an entry game with an incumbent monopolist (Firm 1) and an entrant (Firm ) who analyzes whether or not to join the

More information

Cournot and Bertrand Competition in a Differentiated Duopoly with Endogenous Technology Adoption *

Cournot and Bertrand Competition in a Differentiated Duopoly with Endogenous Technology Adoption * ANNALS OF ECONOMICS AND FINANCE 16-1, 231 253 (2015) Cournot and Bertrand Competition in a Differentiated Duopoly with Endogenous Technology Adoption * Hongkun Ma School of Economics, Shandong University,

More information

Design Patent Damages under Sequential Innovation

Design Patent Damages under Sequential Innovation Design Patent Damages under Sequential Innovation Yongmin Chen and David Sappington University of Colorado and University of Florida February 2016 1 / 32 1. Introduction Patent policy: patent protection

More information

Volume 29, Issue 3. Strategic delegation and market competitiveness

Volume 29, Issue 3. Strategic delegation and market competitiveness Volume 29, Issue Strategic delegation and market competitiveness Caterina Colombo Università di Ferrara Alessandra Chirco Università del Salento Marcella Scrimitore Università del Salento Abstract Within

More information

arxiv: v1 [math.oc] 28 Jun 2016

arxiv: v1 [math.oc] 28 Jun 2016 On the Inefficiency of Forward Markets in Leader-Follower Competition Desmond Cai, Anish Agarwal, Adam Wierman arxiv:66.864v [math.oc] 8 Jun 6 June 9, 6 Abstract Motivated by electricity markets, this

More information

4. Partial Equilibrium under Imperfect Competition

4. Partial Equilibrium under Imperfect Competition 4. Partial Equilibrium under Imperfect Competition Partial equilibrium studies the existence of equilibrium in the market of a given commodity and analyzes its properties. Prices in other markets as well

More information

On revealed preferences in oligopoly games

On revealed preferences in oligopoly games University of Manchester, UK November 25, 2010 Introduction Suppose we make a finite set of observations T = {1,..., m}, m 1, of a perfectly homogeneous-good oligopoly market. There is a finite number

More information

The ambiguous impact of contracts on competition in the electricity market Yves Smeers

The ambiguous impact of contracts on competition in the electricity market Yves Smeers The ambiguous impact of contracts on competition in the electricity market Yves Smeers joint work with Frederic Murphy Climate Policy and Long Term Decisions-Investment and R&D, Bocconi University, Milan,

More information

Free Entry and Social Inefficiency under Vertical Oligopoly: Revisited

Free Entry and Social Inefficiency under Vertical Oligopoly: Revisited Free Entry and Social Inefficiency under Vertical Oligopoly: Revisited Hiroshi Kurata a, Takao Ohkawa b, Makoto Okamura c a Department of Economics, Tohoku Gakuin University, Japan b Department of Economics,

More information

Revisiting Rate of Return Regulation under Uncertainty

Revisiting Rate of Return Regulation under Uncertainty Revisiting Rate of Return Regulation under Uncertainty By Jingang Zhao * December 2001 Department of Economics Iowa State University 260 Heady Hall Ames, Iowa 50011-1070 jingang@iastate.edu Fax: (515)

More information

Modeling Technological Change

Modeling Technological Change Modeling Technological Change Yin-Chi Wang The Chinese University of Hong Kong November, 202 References: Acemoglu (2009) ch2 Concepts of Innovation Innovation by type. Process innovation: reduce cost,

More information

Data Abundance and Asset Price Informativeness. On-Line Appendix

Data Abundance and Asset Price Informativeness. On-Line Appendix Data Abundance and Asset Price Informativeness On-Line Appendix Jérôme Dugast Thierry Foucault August 30, 07 This note is the on-line appendix for Data Abundance and Asset Price Informativeness. It contains

More information

Firms and returns to scale -1- Firms and returns to scale

Firms and returns to scale -1- Firms and returns to scale Firms and returns to scale -1- Firms and returns to scale. Increasing returns to scale and monopoly pricing 2. Constant returns to scale 19 C. The CRS economy 25 D. pplication to trade 47 E. Decreasing

More information

Basics of Game Theory

Basics of Game Theory Basics of Game Theory Giacomo Bacci and Luca Sanguinetti Department of Information Engineering University of Pisa, Pisa, Italy {giacomo.bacci,luca.sanguinetti}@iet.unipi.it April - May, 2010 G. Bacci and

More information

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October

Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October Industrial Organization, Fall 2011: Midterm Exam Solutions and Comments Date: Wednesday October 23 2011 1 Scores The exam was long. I know this. Final grades will definitely be curved. Here is a rough

More information

Oligopoly. Molly W. Dahl Georgetown University Econ 101 Spring 2009

Oligopoly. Molly W. Dahl Georgetown University Econ 101 Spring 2009 Oligopoly Molly W. Dahl Georgetown University Econ 101 Spring 2009 1 Oligopoly A monopoly is an industry consisting a single firm. A duopoly is an industry consisting of two firms. An oligopoly is an industry

More information

Hotelling's Location Model with Quality Choice in Mixed Duopoly. Abstract

Hotelling's Location Model with Quality Choice in Mixed Duopoly. Abstract Hotelling's Location Model with Quality Choice in Mixed Duopoly Yasuo Sanjo Graduate School of Economics, Nagoya University Abstract We investigate a mixed duopoly market by introducing quality choice

More information

Deceptive Advertising with Rational Buyers

Deceptive Advertising with Rational Buyers Deceptive Advertising with Rational Buyers September 6, 016 ONLINE APPENDIX In this Appendix we present in full additional results and extensions which are only mentioned in the paper. In the exposition

More information

October 16, 2018 Notes on Cournot. 1. Teaching Cournot Equilibrium

October 16, 2018 Notes on Cournot. 1. Teaching Cournot Equilibrium October 1, 2018 Notes on Cournot 1. Teaching Cournot Equilibrium Typically Cournot equilibrium is taught with identical zero or constant-mc cost functions for the two firms, because that is simpler. I

More information

EconS Oligopoly - Part 2

EconS Oligopoly - Part 2 EconS 305 - Oligopoly - Part 2 Eric Dunaway Washington State University eric.dunaway@wsu.edu November 29, 2015 Eric Dunaway (WSU) EconS 305 - Lecture 32 November 29, 2015 1 / 28 Introduction Last time,

More information

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016

UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 UC Berkeley Haas School of Business Game Theory (EMBA 296 & EWMBA 211) Summer 2016 More on strategic games and extensive games with perfect information Block 2 Jun 12, 2016 Food for thought LUPI Many players

More information

Free entry and social efficiency in an open economy. Arghya Ghosh, Jonathan Lim, and Hodaka Morita

Free entry and social efficiency in an open economy. Arghya Ghosh, Jonathan Lim, and Hodaka Morita Free entry and social efficiency in an open economy Arghya Ghosh, Jonathan Lim, and Hodaka Morita Abstract Is free entry desirable for social efficiency? We examine this question in an open economy context

More information

Industrial Organization Lecture 7: Product Differentiation

Industrial Organization Lecture 7: Product Differentiation Industrial Organization Lecture 7: Product Differentiation Nicolas Schutz Nicolas Schutz Product Differentiation 1 / 57 Introduction We now finally drop the assumption that firms offer homogeneous products.

More information

Firms and returns to scale -1- John Riley

Firms and returns to scale -1- John Riley Firms and returns to scale -1- John Riley Firms and returns to scale. Increasing returns to scale and monopoly pricing 2. Natural monopoly 1 C. Constant returns to scale 21 D. The CRS economy 26 E. pplication

More information

Emission Quota versus Emission Tax in a Mixed Duopoly with Foreign Ownership

Emission Quota versus Emission Tax in a Mixed Duopoly with Foreign Ownership Emission Quota versus Emission Tax in a Mixed Duopoly with Foreign Ownership Kazuhiko Kato and Leonard F.S. Wang December 29, 2012 Abstract The paper compares an emission tax and an emission quota in a

More information

Durable goods monopolist

Durable goods monopolist Durable goods monopolist Coase conjecture: A monopolist selling durable good has no monopoly power. Reason: A P 1 P 2 B MC MC D MR Q 1 Q 2 C Q Although Q 1 is optimal output of the monopolist, it faces

More information

Price vs. Quantity in Oligopoly Games

Price vs. Quantity in Oligopoly Games Price vs. Quantity in Oligopoly Games Attila Tasnádi Department of Mathematics, Corvinus University of Budapest, H-1093 Budapest, Fővám tér 8, Hungary July 29, 2005. Appeared in the International Journal

More information

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7

Mathematical Foundations -1- Constrained Optimization. Constrained Optimization. An intuitive approach 2. First Order Conditions (FOC) 7 Mathematical Foundations -- Constrained Optimization Constrained Optimization An intuitive approach First Order Conditions (FOC) 7 Constraint qualifications 9 Formal statement of the FOC for a maximum

More information

DISCUSSION PAPER SERIES

DISCUSSION PAPER SERIES DISCUSSION PAPER SERIES IN ECONOMICS AND MANAGEMENT Strategic Incentives for Managers in Contests Matthias Kräkel Discussion Paper No. 01-08 GERMAN ECONOMIC ASSOCIATION OF BUSINESS ADMINISTRATION - GEABA

More information

9 A Class of Dynamic Games of Incomplete Information:

9 A Class of Dynamic Games of Incomplete Information: A Class of Dynamic Games of Incomplete Information: Signalling Games In general, a dynamic game of incomplete information is any extensive form game in which at least one player is uninformed about some

More information

Oligopoly Theory. This might be revision in parts, but (if so) it is good stu to be reminded of...

Oligopoly Theory. This might be revision in parts, but (if so) it is good stu to be reminded of... This might be revision in parts, but (if so) it is good stu to be reminded of... John Asker Econ 170 Industrial Organization January 23, 2017 1 / 1 We will cover the following topics: with Sequential Moves

More information

Mixed duopolies with advance production

Mixed duopolies with advance production Mixed duopolies with advance production Tamás László Balogh Department of Economic Analysis and Business Informatics, University of Debrecen and Attila Tasnádi MTA-BCE Lendület Strategic Interactions Research

More information

Classic Oligopoly Models: Bertrand and Cournot

Classic Oligopoly Models: Bertrand and Cournot Classic Oligopoly Models: Bertrand and Cournot Class Note: There are supplemental readings, including Werden (008) Unilateral Competitive Effects of Horizontal Mergers I: Basic Concepts and Models, that

More information

SELECTION OF MARKOV EQUILIBRIUM IN A DYNAMIC OLIGOPOLY WITH PRODUCTION TO ORDER. Milan Horniaček 1

SELECTION OF MARKOV EQUILIBRIUM IN A DYNAMIC OLIGOPOLY WITH PRODUCTION TO ORDER. Milan Horniaček 1 SELECTION OF MARKOV EQUILIBRIUM IN A DYNAMIC OLIGOPOLY WITH PRODUCTION TO ORDER Milan Horniaček 1 CERGE-EI, Charles University and Academy of Sciences of Czech Republic, Prague We use the requirement of

More information

Endogenous information acquisition

Endogenous information acquisition Endogenous information acquisition ECON 101 Benhabib, Liu, Wang (2008) Endogenous information acquisition Benhabib, Liu, Wang 1 / 55 The Baseline Mode l The economy is populated by a large representative

More information

The Economics of E-commerce and Technology

The Economics of E-commerce and Technology The Economics of E-commerce and Technology Industry Analysis 1 9/25/16 Industry Profits } In Econ 11, Economic Profits = 0 } In reality, many industries have much higher profits: 2 9/25/16 Industry Analysis

More information

Oligopoly Theory 2 Bertrand Market Games

Oligopoly Theory 2 Bertrand Market Games 1/10 Oligopoly Theory 2 Bertrand Market Games May 4, 2014 2/10 Outline 1 Bertrand Market Game 2 Bertrand Paradox 3 Asymmetric Firms 3/10 Bertrand Duopoly Market Game Discontinuous Payoff Functions (1 p

More information

R&D Collaboration in Collusive Networks

R&D Collaboration in Collusive Networks R&D Collaboration in Collusive Networks Gizem Korkmaz European University Institute December, 2011 Market Sharing Agreements In recent years, the scope for explicit or implicit market sharing agreements

More information

Price and Capacity Competition

Price and Capacity Competition Price and Capacity Competition Daron Acemoglu, Kostas Bimpikis, and Asuman Ozdaglar October 9, 2007 Abstract We study the efficiency of oligopoly equilibria in a model where firms compete over capacities

More information

INVESTMENT EFFICIENCY AND PRODUCT MARKET COMPETITION

INVESTMENT EFFICIENCY AND PRODUCT MARKET COMPETITION INVESTMENT EFFICIENCY AND PRODUCT MARKET COMPETITION Neal M. Stoughton WU-Vienna University of Economics and Business Kit Pong Wong University of Hong Kong Long Yi Hong Kong Baptist University QUESTION

More information

ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION

ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION ECO 2901 EMPIRICAL INDUSTRIAL ORGANIZATION Lecture 7 & 8: Models of Competition in Prices & Quantities Victor Aguirregabiria (University of Toronto) Toronto. Winter 2018 Victor Aguirregabiria () Empirical

More information

DEMB Working Paper Series N. 39. Limit pricing and secret barriers to entry. Luigi Brighi * Marcello D Amato ** December 2014

DEMB Working Paper Series N. 39. Limit pricing and secret barriers to entry. Luigi Brighi * Marcello D Amato ** December 2014 DEMB Working Paper Series N. 39 Limit pricing and secret barriers to entry Luigi Brighi * Marcello D Amato ** December 2014 * University of Modena and Reggio Emilia RECent (Center for Economic Research)

More information

Static Models of Oligopoly

Static Models of Oligopoly Static Models of Oligopoly Cournot and Bertrand Models Mateusz Szetela 1 1 Collegium of Economic Analysis Warsaw School of Economics 3 March 2016 Outline 1 Introduction Game Theory and Oligopolies 2 The

More information

Volume 35, Issue 2. Subsidy or tax policy for new technology adoption in duopoly with quadratic and linear cost functions

Volume 35, Issue 2. Subsidy or tax policy for new technology adoption in duopoly with quadratic and linear cost functions Volume 35, Issue 2 Subsidy or tax policy for new technology adoption in duopoly with quadratic and linear cost functions Masahiko Hattori Faculty of Economics, oshisha University Yasuhito Tanaka Faculty

More information

Are innocuous Minimum Quality Standards really innocuous?

Are innocuous Minimum Quality Standards really innocuous? Are innocuous Minimum Quality Standards really innocuous? Paolo G. Garella University of Bologna 14 July 004 Abstract The present note shows that innocuous Minimum Quality Standards, namely standards that

More information

OPTIMAL TWO-PART TARIFF LICENSING CONTRACTS WITH DIFFERENTIATED GOODS AND ENDOGENOUS R&D* Ramón Faulí-Oller and Joel Sandonís**

OPTIMAL TWO-PART TARIFF LICENSING CONTRACTS WITH DIFFERENTIATED GOODS AND ENDOGENOUS R&D* Ramón Faulí-Oller and Joel Sandonís** OPTIMAL TWO-PART TARIFF LICENSING CONTRACTS WITH DIFFERENTIATED GOODS AND ENDOGENOUS R&D* Ramón Faulí-Oller and Joel Sandonís** WP-AD 2008-12 Corresponding author: R. Fauli-Oller Universidad de Alicante,

More information

Competition Policy - Spring 2005 Monopolization practices I

Competition Policy - Spring 2005 Monopolization practices I Prepared with SEVI S LIDES Competition Policy - Spring 2005 Monopolization practices I Antonio Cabrales & Massimo Motta May 25, 2005 Summary Some definitions Efficiency reasons for tying Tying as a price

More information

Research and Development

Research and Development Chapter 9. March 7, 2011 Firms spend substantial amounts on. For instance ( expenditure to output sales): aerospace (23%), o ce machines and computers (18%), electronics (10%) and drugs (9%). is classi

More information

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012

Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 Ph.D. Preliminary Examination MICROECONOMIC THEORY Applied Economics Graduate Program May 2012 The time limit for this exam is 4 hours. It has four sections. Each section includes two questions. You are

More information

EconS 501 Final Exam - December 10th, 2018

EconS 501 Final Exam - December 10th, 2018 EconS 501 Final Exam - December 10th, 018 Show all your work clearly and make sure you justify all your answers. NAME 1. Consider the market for smart pencil in which only one firm (Superapiz) enjoys a

More information

Markov Perfect Equilibria in the Ramsey Model

Markov Perfect Equilibria in the Ramsey Model Markov Perfect Equilibria in the Ramsey Model Paul Pichler and Gerhard Sorger This Version: February 2006 Abstract We study the Ramsey (1928) model under the assumption that households act strategically.

More information

Managerial delegation in multimarket oligopoly

Managerial delegation in multimarket oligopoly Managerial delegation in multimarket oligopoly Arup Bose Barnali Gupta Statistics and Mathematics Unit Department of Economics Indian Statistical Institute Miami University, Ohio INDIA USA bosearu@gmail.com

More information

CSR as a bribe to a government

CSR as a bribe to a government CSR as a bribe to a government Taku Masuda 1 Kosuke Hirose 2 PRELIMINARY. ANY COMMENTS APPRECIATED. 1 Introduction The rationale behind partial privatization of public enterprises or social responsibility

More information

3. Partial Equilibrium under Imperfect Competition Competitive Equilibrium

3. Partial Equilibrium under Imperfect Competition Competitive Equilibrium 3. Imperfect Competition 3. Partial Equilirium under Imperfect Competition Competitive Equilirium Partial equilirium studies the existence of equilirium in the market of a given commodity and analyzes

More information

ONLINE APPENDIX. Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools

ONLINE APPENDIX. Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools ONLINE APPENDIX Upping the Ante: The Equilibrium Effects of Unconditional Grants to Private Schools T. Andrabi, J. Das, A.I. Khwaja, S. Ozyurt, and N. Singh Contents A Theory A.1 Homogeneous Demand.................................

More information

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar

NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION. Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar NBER WORKING PAPER SERIES PRICE AND CAPACITY COMPETITION Daron Acemoglu Kostas Bimpikis Asuman Ozdaglar Working Paper 12804 http://www.nber.org/papers/w12804 NATIONAL BUREAU OF ECONOMIC RESEARCH 1050 Massachusetts

More information

Welfare Reducing Mergers in Differentiated Oligopolies with Free Entry

Welfare Reducing Mergers in Differentiated Oligopolies with Free Entry Department of Economics Working Paper Series Welfare Reducing Mergers in Differentiated Oligopolies with Free Entry Nisvan Erkal & Daniel Piccinin August 2009 Research Paper Number 1081 ISSN: 0819 2642

More information

Endogenous Timing in a Quantity Setting Duopoly

Endogenous Timing in a Quantity Setting Duopoly Endogenous Timing in a Quantity Setting Duopoly Fernando Branco Universidade Católica Portuguesa October 008 Abstract I provide an equilibrium analysis of the role of private information on timing decisions

More information

FORWARD INDUCTION AND SUNK COSTS GIVE AVERAGE COST PRICING. Jean-Pierre Ponssard. Abstract

FORWARD INDUCTION AND SUNK COSTS GIVE AVERAGE COST PRICING. Jean-Pierre Ponssard. Abstract FORWARD INDUCTION AND SUNK COSTS GIVE AVERAGE COST PRICING Jean-Pierre Ponssard Abstract This paper applies the idea of forward induction to a classical economic problem: the existence of an efficient

More information

The Value of Sharing Intermittent Spectrum

The Value of Sharing Intermittent Spectrum The Value of Sharing Intermittent Spectrum R. erry, M. Honig, T. Nguyen, V. Subramanian & R. V. Vohra Abstract We consider a model of Cournot competition with congestion motivated by recent initiatives

More information

Worst Welfare under Supply Function Competition with Sequential Contracting in a Vertical Relationship

Worst Welfare under Supply Function Competition with Sequential Contracting in a Vertical Relationship Journal of Game Theory 2017 6(2): 38-42 DOI: 10.5923/j.jgt.20170602.02 Worst Welfare under Supply Function Competition with Sequential Contracting in a Vertical Relationship Aika Monden Graduate School

More information

Schumpeterian Growth Models

Schumpeterian Growth Models Schumpeterian Growth Models Yin-Chi Wang The Chinese University of Hong Kong November, 2012 References: Acemoglu (2009) ch14 Introduction Most process innovations either increase the quality of an existing

More information

Modeling of Chaotic Behavior in the Economic Model

Modeling of Chaotic Behavior in the Economic Model Chaotic Modeling and Simulation (CMSIM) 3: 9-98, 06 Modeling of Chaotic Behavior in the Economic Model Volodymyr Rusyn, Oleksandr Savko Department of Radiotechnics and Information Security, Yuriy Fedkovych

More information

Advanced Microeconomic Analysis, Lecture 6

Advanced Microeconomic Analysis, Lecture 6 Advanced Microeconomic Analysis, Lecture 6 Prof. Ronaldo CARPIO April 10, 017 Administrative Stuff Homework # is due at the end of class. I will post the solutions on the website later today. The midterm

More information

Mixed oligopoly in a two-dimensional city y

Mixed oligopoly in a two-dimensional city y Mixed oligopoly in a two-dimensional city y Takanori Ago z November 6, 2009 Abstract This paper analyzes a mixed oligopoly model with one public rm and two private rms in a two-dimensional square city.

More information

On the Robustness of Private Leadership in Mixed Duopoly

On the Robustness of Private Leadership in Mixed Duopoly On the Robustness of Private Leadership in Mixed Duopoly Toshihiro Matsumura Institute of Social Science, University of Tokyo and Akira Ogawa College of Liberal Arts, International Christian University

More information

Relative Profit Maximization and Bertrand Equilibrium with Convex Cost Functions

Relative Profit Maximization and Bertrand Equilibrium with Convex Cost Functions Vol. 8, 2014-34 October 27, 2014 http://dx.doi.org/10.5018/economics-ejournal.ja.2014-34 Relative Profit Maximization and Bertrand Equilibrium with Convex Cost Functions Atsuhiro Satoh and Yasuhito Tanaka

More information

Pollution Tax and Social Welfare in Oligopoly. Asymmetric Taxation on Identical Polluters

Pollution Tax and Social Welfare in Oligopoly. Asymmetric Taxation on Identical Polluters Pollution Tax and Social Welfare in Oligopoly Asymmetric Taxation on Identical Polluters Satoshi HONMA Abstract We study asymmetric pollution taxation on identical polluting oligopolists engaged in Cournot

More information

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry!

Econ 101A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sorry! Econ 0A Problem Set 6 Solutions Due on Monday Dec. 9. No late Problem Sets accepted, sry! This Problem set tests the knowledge that you accumulated mainly in lectures 2 to 26. The problem set is focused

More information

Sequential mergers with differing differentiation levels

Sequential mergers with differing differentiation levels Sequential mergers with differing differentiation levels March 31, 2008 Discussion Paper No.08-03 Takeshi Ebina and Daisuke Shimizu Sequential mergers with differing differentiation levels Takeshi Ebina

More information

Endogenous timing in a mixed duopoly

Endogenous timing in a mixed duopoly Endogenous timing in a mixed duopoly Rabah Amir Department of Economics, University of Arizona Giuseppe De Feo y CORE, Université Catholique de Louvain February 2007 Abstract This paper addresses the issue

More information

Profitability of R&D main explanatory factor of neo-schumpeterian growth

Profitability of R&D main explanatory factor of neo-schumpeterian growth Profitability of R&D main explanatory factor of neo-schumpeterian growth Profitability of R&D related to: Market power of producers of innovation goods Distinguish between: Pre-innovation market power

More information

Optimal Insurance of Search Risk

Optimal Insurance of Search Risk Optimal Insurance of Search Risk Mikhail Golosov Yale University and NBER Pricila Maziero University of Pennsylvania Guido Menzio University of Pennsylvania and NBER November 2011 Introduction Search and

More information

Inducing Efficiency in Oligopolistic Markets with. Increasing Returns to Scale

Inducing Efficiency in Oligopolistic Markets with. Increasing Returns to Scale Inducing Efficiency in Oligopolistic Markets with Increasing Returns to Scale Abhijit Sengupta and Yair Tauman February 6, 24 Abstract We consider a Cournot Oligopoly market of firms possessing increasing

More information

Farsighted stability of collusive price leadership. Yoshio Kamijo and Shigeo Muto Discussion Paper No

Farsighted stability of collusive price leadership. Yoshio Kamijo and Shigeo Muto Discussion Paper No Farsighted stability of collusive price leadership Yoshio Kamijo and Shigeo Muto Discussion Paper No. 07-09 August 2007 Farsighted stability of collusive price leadership Yoshio Kamijo and Shigeo Muto

More information

Profitability of price and quantity strategies in a duopoly with vertical product differentiation

Profitability of price and quantity strategies in a duopoly with vertical product differentiation Economic Theory 7, 693 700 (200) Profitability of price quantity strategies in a duopoly with vertical product differentiation Yasuhito Tanaka Faculty of Law, Chuo University, 742-, Higashinakano, Hachioji,

More information

Conjectural Variations in Aggregative Games: An Evolutionary Perspective

Conjectural Variations in Aggregative Games: An Evolutionary Perspective Conjectural Variations in Aggregative Games: An Evolutionary Perspective Alex Possajennikov University of Nottingham January 2012 Abstract Suppose that in aggregative games, in which a player s payoff

More information

8. MARKET POWER: STATIC MODELS

8. MARKET POWER: STATIC MODELS 8. MARKET POWER: STATIC MODELS We have studied competitive markets where there are a large number of rms and each rm takes market prices as given. When a market contain only a few relevant rms, rms may

More information

Competition in Markets with Network Externalities

Competition in Markets with Network Externalities Competition in Markets with Network Externalities Fatma Busra Gunay Bendas Washington and Lee University gunayf@wlu.edu December 2, 2013 Abstract This paper analyzes the effects of network externalities

More information

Collaborative Network Formation in Spatial Oligopolies

Collaborative Network Formation in Spatial Oligopolies Collaborative Network Formation in Spatial Oligopolies 1 Shaun Lichter, Terry Friesz, and Christopher Griffin arxiv:1108.4114v1 [math.oc] 20 Aug 2011 Abstract Recently, it has been shown that networks

More information

The Impact of Organizer Market Structure on Participant Entry Behavior in a Multi-Tournament Environment

The Impact of Organizer Market Structure on Participant Entry Behavior in a Multi-Tournament Environment The Impact of Organizer Market Structure on Participant Entry Behavior in a Multi-Tournament Environment Timothy Mathews and Soiliou Daw Namoro Abstract. A model of two tournaments, each with a field of

More information

A Note on Profitable Mergers. in a Hierarchical Stackelberg Model

A Note on Profitable Mergers. in a Hierarchical Stackelberg Model Working Paper Series No.80, Faculty of Economics, Niigata University A Note on Profitable Mergers in a Hierarchical Stackelberg Model Kojun Hamada Series No.80 Address: 8050 Ikarashi 2-no-cho, Niigata

More information

Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis

Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis Are Targets for Renewable Portfolio Standards Too Low? A Complementarity-Based Policy Analysis Afzal S Siddiqui a Yihsu Chen b Makoto Tanaka c a Department of Statistical Science, University College London

More information

Technical Appendix to "Sequential Exporting"

Technical Appendix to Sequential Exporting Not for publication Technical ppendix to "Sequential Exporting" acundo lbornoz University of irmingham Héctor. Calvo Pardo University of Southampton Gregory Corcos NHH Emanuel Ornelas London School of

More information

STRATEGIC TRADE POLICY AND MANAGERIAL DELEGATION IN A MIXED DUOPOLY FANG WEI (UNIVERSITY OF KITAKYUSHU)

STRATEGIC TRADE POLICY AND MANAGERIAL DELEGATION IN A MIXED DUOPOLY FANG WEI (UNIVERSITY OF KITAKYUSHU) STRATEGIC TRADE POLICY AND MANAGERIAL DELEGATION IN A MIXED DUOPOLY FANG WEI (UNIVERSITY OF KITAKYUSHU) fwei@kitakyu-u.ac.jp 1 Tariff Protection Policy under Duopoly cf. Brander-Spencer (1984) ---- Rent-Shifting

More information

LAST-IN FIRST-OUT OLIGOPOLY DYNAMICS: CORRIGENDUM

LAST-IN FIRST-OUT OLIGOPOLY DYNAMICS: CORRIGENDUM May 5, 2015 LAST-IN FIRST-OUT OLIGOPOLY DYNAMICS: CORRIGENDUM By Jaap H. Abbring and Jeffrey R. Campbell 1 In Abbring and Campbell (2010), we presented a model of dynamic oligopoly with ongoing demand

More information

When Should a Firm Expand Its Business? The Signaling Implications of Business Expansion

When Should a Firm Expand Its Business? The Signaling Implications of Business Expansion When Should a Firm Expand Its Business? The Signaling Implications of Business Expansion Ana Espínola-Arredondo y Esther Gal-Or z Félix Muñoz-García x June 2, 2009 Abstract We examine an incumbent s trade-o

More information

Repeated bargaining. Shiran Rachmilevitch. February 16, Abstract

Repeated bargaining. Shiran Rachmilevitch. February 16, Abstract Repeated bargaining Shiran Rachmilevitch February 16, 2017 Abstract Two symmetric players bargain over an infinite stream of pies. There is one exogenously given pie in every period, whose size is stochastic,

More information