Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

Size: px
Start display at page:

Download "Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology"

Transcription

1 th IEEE/NPSS Symposium on Fusion Engineering (SOFE) October 14-17, 3, San Diego, CA USA Plasma Production in a Small High Field Force-alanced Coil Tokamak ased on Virial Theorem H.Tsutsui, T.Ito, H.Ajikawa, T.Enokida, K.Hayakawa, S.Nomura, S.Tsuji-Iio, R.Shimada Research Laboratory for Nuclear Reactors, Tokyo Institute of Technology

2 Introduction We studied the tokamak with the Force-alanced Coils which are hybrid helical coils of OH and TF coils and reduced the electromagnetic force. The virial theorem, which is derived only form the equilibrium, shows that the tension is required to hold the magnetic energy. The virial theorem in magnet systems is derived by the replacement of plasma pressure to stress. In this work, we extend the FC by the virial theorem, and obtain the minimal stress condition. The new small tokamak based on the virial theorem is constructed and plasma production is started.

3 Principle of Force-alanced Coil Centering Force by Poloidal Current Force-alanced Coil Centering force is much reduced, but stress distribution is not investigated. Hoop Force by Toroidal Current

4 ackground TODOROKI-I Parameter Toroidal Field Plasma Current Time of Discharge Value 1T 1kA 4ms The error field by FC made the control of plasma difficult. The force of toroidal direction was reduced in FC. Is it held in stress? Reduction Error Field Estimation of Stress Application of Virial Theorem

5 Virial Theorem j + S = = j: current density : magnetic field S: stress = µ j tensor Equilibrium Eq. Tr 3 i= 1 T ( T + S) ( T + S) = µ T: Maxwell stress tensor dv σ : principal stress i = I σ idv = dv U M > µ ~ V σ U σ 3 Positive stress (tension) is required to hold the field. Uniform tension is favorable. ~ 1 σ ~ ~ Theoretical limit is determined. 1 = σ = σ 3 = 3 i= 1 Ω M ~ σ i σ σ dv V Ω = 1

6 Application to Helical Coil ~ σ θ ~ σ φ ~ σ θ N = = + I I θ φ N A N ~ σ = 1 : Pitch of Coil A: Aspect Ratio φ + N A A A log8a A log8a A + N log8a A ~ <σ> 1-1 N ~ σ θ A= A=5 ~ σ φ ~ σ ~ θ σ = = φ 1 A=1 is optimal in energy. Virial-Limit Condition

7 Shape of Coils Relations of pitch number and aspect ratio of Virial- Limit Coil (VLC) etc. 3 <σ φ >= N=9 FC N 1 σ φ = A σ θ = σ θ =σ φ <σ φ >= <σ θ > N=6 VLC <σ θ >= N=4 Aspect Ratio A =4

8 Comparison of Toroidal Field <σ> ^max 1 ˆ σ σ θ = σ φ = V Ω U TF σ TFC σ θ =σ φ φ TFC 1 φ TFC σ θ =σ φ σ φ = = ˆ σ σ θ = A In the case of low aspect ratio, 1.5 times stronger magnetic field is created compared with traditional TF coil. A

9 Toroidal Effect Distribution of stress in the toroidal shell with circular cross section is derived analytically by use of magnetic pressure. z r R a ρ θ φ o µ φ θ p r R r r p r a r u ' )d ' ( ' ) ( ) ( ) ( R r u R r arp T r R r u T = = φ θ Equilibrium of Magnetic Pressure and Stress

10 p^ p σ θ σ φ Distribution of Stress A=1 θ <σ φ >= (large aspect ratio) <σ φ >=<σ θ > TFC 1 3 pˆ 1-1 V U T M σ^ φ θ µ When A=1, distribution of stress is flat. There is no advantage of helical winding. p^ TFC <σ φ >= <σ φ >=<σ θ > σ φ p A=1 θ σ θ σ^

11 ^ p 4 TFC <σ φ >= σ φ (π)=σ θ (π) <σ φ >=<σ θ > σ θ p σ φ Distribution of Stress (low aspect ratio) A= θ 4 N=3 ^ - σ When A<1, distribution of stress is important. Assumption of large aspect ratio is not held. Optimal distribution is achieved to minimize the stress at θ=π.

12 Uniaxial Stress Model Equilibrium of Electromagnetic Force and Stress dt ds df ds u F R T + R u + = t u + f u = T: tension, F: sharing force R: curvatur radius, f : electromagnetic force s: coordinate by length of coil T(s+ds) F u (s+ds) s F u (s) T(s)

13 Tension and ending Moment 3 T (kn) 1 N= N=3 N=4 VLC M u [k Nm] 4 VLC N= N=3 N=4 - π/ θ (rad) π π/ θ [rad] π The tension of coil with pitch=3 is reduced and its distribution is flat. In the fat cable, the bending stress (proportional to bending moment) is important. The distribution of bending moment in the coil with pitch 3 is flat.

14 Stress Analysis of VLC Why FEM analysis? 3D analysis is required because the virial-limit condition is obtained from the D shell model. Conditions in FEM Analysis Current layer coincide with magnetic surface. VLC with N=3 FC with N=4 HC with N=3 Models in Analysis HC with N=4

15 Stress Analysis of VLC Distributions of von Mises Stress Max Max Max Max VLC(N=3) has no stress concentration and minimum stress compared with those of other coils. VLC realize both nearly uniform distribution of

16 Outline of Tokamak utline of Design asy winding of coil integer winding pitch arge Plasma Volume low aspect ratio Coil Support Vacuum Vessel oil orbit between their supports is nearly straight. Parameters of Tokamak VLC (N=3) Todoroki-II Materials

17 Vertical Field ow to design Vertical Field Coil (VFC) Controllability minimization of mutual inductances to VLC. Positional Instability n-index: n (stable condition: <n<1.5) -index Positions of VFC on the cross sectio

18 Effects of Plasma Current Electromagnetic force ( N/m ) VLC VLC & PLASMA VLC & PFC VLC & PFC & PLASMA Normal stress in tangent direction ( MPa ) Poloidal angle ( deg. ) FEM analysis VLC VLC & PLASMA VLC & PFC VLC & PFC & PLASMA Poloidal angle ( deg. ) In an actual system, electromagnetic force is modified by magnetic field produced by plasma and PF coil currents. Their influences are small enough to keep the advantage of VLC.

19 Stress with Supporting oard Cables are supported by boards, but freely movable to the tangential direction t. Max: 14MPa<144MPa Normal stress in tangent direction ( MPa ) nearly flat distribution of tension allowable tension is about 6 MPa VLC VLC & PLASMA VLC & PFC VLC & PFC & PLASMA Poloidal angle ( deg. ) Maximum stress in coils and boards is much smaller than their allowable stress. Sharing Stress in a oard

20 Power Supply and Its Operation ower Supply Discharge period: about 1 msec peration In the initial stage, there is no toroidal field because VLC is a hybrid coil of CS and TF coil φ Ignitron VLC current I pole (ka) (T) Fist Ignitron Capacitors Todoroki-II 1 5 V loop (V) First: Toroidal Field Second: Loop Voltage Plasma current(ka)

21 reakdown Condition ormalized Poloidal Field P T = R + Z T P/T Experiment Case 1 Case Case 1: Ideal VLC Case : Designed VLC Case 3: Designed VLC+VFC Case 1: Ideal Coil Orbit Case : Designed Coil Orbit equired Loop Voltage in reakdown Next equation is obtained from Townsend Avalanche Model. V min.1 ea = πr log( Ne N) A R major radius A 1, A constants of gas species X p limiter radius n e /n multiplication factor of electron p T R (mm) ( ) Additional vertical field is required for breakdown. X P Loop voltage in case 1

22 Plasma reakdown Maximum Electric Field in Todoroki-II Eφ ( V/m) p/t =.1.1 Large Tokamak P (torr).1 reakdown region with pre-ionization H Expected breakdown region Next equation is obtained from Townsend Avalanche Model. α 1 ( E) α = Apexp p = L =. 5a eff A, : constants of gas species p : gas pressure E : toroidal electric field a eff : limiter radius T P Error fields by eddy current require pre-ionization.

23 Eddy current analysis A = µ 4 π J ds ρ J= V V: current vector potential s : distance between source and observed points. Vacuum vessel in FEM 1 Vacuum vessel material sus34 width.81-3 m resistivity m major radius.3m minor radius.8 m A vacuum vessel is constructed by 3 insulated blocks, and has a periodicity of 1 degree. Ports

24 Eddy current and error field A result by FEM (EDDYCAL) Normalized poloidal field P T = R + Z T.9 Vacuum vessel Without eddy current With eddy current Error fields by eddy current prevent plasma breakdown.

25 Plamsma position control Vertical field for equilibrium z (gauss) z µ I p 8R lin 3 () r = ln + + β p 4πR a - -4 I p plasma current l in plasma internal inductance p poloidal beta Required field Applied field Time (ms) Plasma current (A) Plasma position δr (mm) W/O VF V.5 3 (ms) W/O VF V.5 3 Time(ms) Limiters Maximum current is enhanced to about 1.6 times.

26 Peak plasma current q a =3 Plasma current and safety factor 1 Peak plasma current (ka) With VF Without VF Parallel connection Series connection Same toroidal field Limited by toroidal field Limited by loop voltage V φ ( toroidal field) (V) 5 3 q Safety factor on plasma surface a = at R P R Major radius Plasma Current ka 4 q a Time πa µ R (msec) I T P 3

27 Cauchy Condition Surface (CCS) method CCS method is based on an exact integral equation. σ φ( x) + [ G( x, y) gradφ φ( y) gradg] ds/ r = µ j Ω P y Ω P c( y) G( x, y) dv( y) / r y Magnetic field by plasma current is replaced by surface integrals of and φ on CCS. and φ on CCS are determined from sensor signals. Accuracy of calculation increases with the number of sensor signals. Axisymmetry is assumed. Plasma current is also evaluated from magnetic data.

28 Visualization by CCS Without vertical field With vertical field [ka] Ip Hoop direction Rogowski Coil CCS y vertical field [ka] Ip Rogowski Coil CCS

29 Summary I The relation of toroidal field and stress is obtained by virial theorem, which shows that the optimal stress configuration is uniform tensile stress. When A=, VLC makes 1.4 times stronger magnetic field than TF coil. VLC winding generates small error fields, and makes room for blanket and other parts in conventional tokamak reactors. Nearly uniform stress distribution with VLC configuration is obtained from both uniaxial model and FEM analysis. A small VLC tokamak Todoroki-II was constructed and its experiments started.

30 Summary II Peak plasma current with an additional vertical field was increased to 1.6 times larger than that of nonvertical field discharge. Error field is estimated from eddy current by FEM. It was shown that plasma current was limited by loop voltage or toroidal field strength. Plasma current and surface were evaluated by CCS method, and validity of CCS method for a small pulsed tokamak was verified. In order to increase discharge time, current control with arbitrary wave form is required.

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid

Plasma Breakdown Analysis in JFT-2M without the Use of Center Solenoid 3st EPS Conference on Plasma Physics 28th June 2nd July, 24, Imperial College, London Plasma Breakdown Analysis in without the Use of Center Solenoid H. Tsutsui, S. Tsuji-Iio, R. Shimada, M. Sato, K. Tsuzuki,

More information

Role of the Electron Temperature in the Current Decay during Disruption in JT-60U )

Role of the Electron Temperature in the Current Decay during Disruption in JT-60U ) Role of the Electron Temperature in the Current Decay during Disruption in JT-60U ) Yoshihide SHIBATA, Akihiko ISAYAMA, Go MATSUNAGA, Yasunori KAWANO, Seiji MIYAMOTO 1), Victor LUKASH 2), Rustam KHAYRUTDINOV

More information

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan (Received

More information

Design of structural components and radial-build for FFHR-d1

Design of structural components and radial-build for FFHR-d1 Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies with participations from China and Korea February 26-28, 2013 at Kyoto University in Uji, JAPAN 1 Design of structural components

More information

JT-60 SA Toroidal Field coil structural analysis

JT-60 SA Toroidal Field coil structural analysis JT-60 SA Toroidal Field coil structural analysis Christophe Portafaix Introduction TF coil description TF coil design and electromagnetic loads Material and Criteria 2D structural analysis 3D structural

More information

(Inductive tokamak plasma initial start-up)

(Inductive tokamak plasma initial start-up) (Inductive tokamak plasma initial start-up) 24. 6. 7. (tapl1.kaist.ac.kr) Outline Conventional inductive tokamak plasma start-up Inductive outer PF coil-only plasma start-up Inductive plasma start-up in

More information

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses

Massachusetts Institute of Technology 22.68J/2.64J Superconducting Magnets. February 27, Lecture #4 Magnetic Forces and Stresses Massachusetts Institute of Technology.68J/.64J Superconducting Magnets February 7, 003 Lecture #4 Magnetic Forces and Stresses 1 Forces For a solenoid, energy stored in the magnetic field acts equivalent

More information

Current Drive Experiments in the HIT-II Spherical Tokamak

Current Drive Experiments in the HIT-II Spherical Tokamak Current Drive Experiments in the HIT-II Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics

More information

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na Introduction to Nuclear Fusion Prof. Dr. Yong-Su Na What is a stellarator? M. Otthe, Stellarator: Experiments, IPP Summer School (2008) 2 Closed Magnetic System ion +++ ExB drift Electric field, E - -

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

Study on supporting structures of magnets and blankets for a heliotron-type type fusion reactors

Study on supporting structures of magnets and blankets for a heliotron-type type fusion reactors JA-US Workshop on Fusion Power Plants and Related Advanced Technologies with participation of EU, Jan. 11-13, 2005, Tokyo, Japan. Study on supporting structures of magnets and blankets for a heliotron-type

More information

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak

Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak 1 EXS/P2-19 Double Null Merging Start-up Experiments in the University of Tokyo Spherical Tokamak T. Yamada 1), R. Imazawa 2), S. Kamio 1), R. Hihara 1), K. Abe 1), M. Sakumura 1), Q. H. Cao 1), H. Sakakita

More information

Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface )

Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface ) Reduced-Size LHD-Type Fusion Reactor with D-Shaped Magnetic Surface ) Tsuguhiro WATANABE National Institute for Fusion Science, Toki 509-59, Japan (Received 6 December 011 / Accepted 1 June 01) A new winding

More information

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor 1 FIP/3-4Ra Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor N. Asakura 1, K. Hoshino 1, H. Utoh 1, K. Shinya 2, K. Shimizu 3, S. Tokunaga 1, Y.Someya 1, K. Tobita 1, N. Ohno

More information

0 Magnetically Confined Plasma

0 Magnetically Confined Plasma 0 Magnetically Confined Plasma 0.1 Particle Motion in Prescribed Fields The equation of motion for species s (= e, i) is written as d v ( s m s dt = q s E + vs B). The motion in a constant magnetic field

More information

Physics of fusion power. Lecture 14: Anomalous transport / ITER

Physics of fusion power. Lecture 14: Anomalous transport / ITER Physics of fusion power Lecture 14: Anomalous transport / ITER Thursday.. Guest lecturer and international celebrity Dr. D. Gericke will give an overview of inertial confinement fusion.. Instabilities

More information

The Effects of Noise and Time Delay on RWM Feedback System Performance

The Effects of Noise and Time Delay on RWM Feedback System Performance The Effects of Noise and Time Delay on RWM Feedback System Performance O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York,

More information

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak

Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Model based optimization and estimation of the field map during the breakdown phase in the ITER tokamak Roberto Ambrosino 1 Gianmaria De Tommasi 2 Massimiliano Mattei 3 Alfredo Pironti 2 1 CREATE, Università

More information

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils

1 EX/P7-35. Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils 1 EX/P7-35 Spectroscopic Studies on GLAST-III Varying the Inductance and Charging Voltage of Vertical Field Coils Farah Deeba, A.Qayyum, Zahoor Ahmad, S. Ahmad, R. Khan and S. Hussain National Tokamak

More information

Comparison of plasma breakdown with a carbon and ITER-like wall

Comparison of plasma breakdown with a carbon and ITER-like wall Comparison of plasma breakdown with a carbon and ITER-like wall P.C. de Vries, A.C.C. Sips, H.T. Kim, P.J. Lomas, F. Maviglia, R. Albanese, I. Coffey, E. Joffrin, M. Lehnen, A. Manzanares, M. O Mulane,

More information

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.

More information

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff

A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current. John Sarff A Hybrid Inductive Scenario for a Pulsed- Burn RFP Reactor with Quasi-Steady Current John Sarff 12th IEA RFP Workshop Kyoto Institute of Technology, Kyoto, Japan Mar 26-28, 2007 The RFP fusion development

More information

Capability Assessment of the Equilibrium Field System in KTX

Capability Assessment of the Equilibrium Field System in KTX Plasma Science and Technology, Vol.18, No.1, Jan. 216 Capability Assessment of the Equilibrium Field System in KTX LUO Bing ( ) 1, LUO Zhengping ( ) 2, XIAO Bingjia ( ) 2,3, YOU Wei ( ) 1, TAN Mingsheng

More information

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations

Ch. 3. Pulsed and Water Cooled Magnets. T. J. Dolan. Magnetic field calculations Ch. 3. Pulsed and Water Cooled Magnets T. J. Dolan Magnetic field calculations Coil forces RLC circuit equations Distribution of J and B Energy storage Switching and transmission Magnetic flux compression

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U EX1-4 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase, a S. Ide, b Y. Kamada, b H. Kubo, b O. Mitarai, c H. Nuga, a Y. Sakamoto, b T. Suzuki, b H. Takenaga, b and the JT-60 Team a University

More information

RWM Control in FIRE and ITER

RWM Control in FIRE and ITER RWM Control in FIRE and ITER Gerald A. Navratil with Jim Bialek, Allen Boozer & Oksana Katsuro-Hopkins MHD Mode Control Workshop University of Texas-Austin 3-5 November, 2003 OUTLINE REVIEW OF VALEN MODEL

More information

Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 )

Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 ) Experimental Study of Hall Effect on a Formation Process of an FRC by Counter-Helicity Spheromak Merging in TS-4 ) Yasuhiro KAMINOU, Michiaki INOMOTO and Yasushi ONO Graduate School of Engineering, The

More information

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR

A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A SUPERCONDUCTING TOKAMAK FUSION TRANSMUTATION OF WASTE REACTOR A.N. Mauer, W.M. Stacey, J. Mandrekas and E.A. Hoffman Fusion Research Center Georgia Institute of Technology Atlanta, GA 30332 1. INTRODUCTION

More information

Current Drive Experiments in the Helicity Injected Torus (HIT II)

Current Drive Experiments in the Helicity Injected Torus (HIT II) Current Drive Experiments in the Helicity Injected Torus (HIT II) A. J. Redd, T. R. Jarboe, P. Gu, W. T. Hamp, V. A. Izzo, B. A. Nelson, R. G. O Neill, R. Raman, J. A. Rogers, P. E. Sieck and R. J. Smith

More information

KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta

KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta 1 THS/P2-05 KSTAR Equilibrium Operating Space and Projected Stabilization at High Normalized Beta Y.S. Park 1), S.A. Sabbagh 1), J.W. Berkery 1), J.M. Bialek 1), Y.M. Jeon 2), S.H. Hahn 2), N. Eidietis

More information

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS

RESISTIVE WALL MODE STABILIZATION RESEARCH ON DIII D STATUS AND RECENT RESULTS RESISTIVE WALL MODE STABILIZATION RESEARCH ON STATUS AND RECENT RESULTS by A.M. Garofalo1 in collaboration with J. Bialek,1 M.S. Chance,2 M.S. Chu,3 T.H. Jensen,3 L.C. Johnson,2 R.J. La Haye,3 G.A. Navratil,1

More information

Status of the Concept Design of CFETR Tokamak Machine

Status of the Concept Design of CFETR Tokamak Machine Status of the Concept Design of CFETR Tokamak Machine Tokamak Machine Design Team Presented by Songtao WU Slide 1 Outline Guideline of the Tokamak Design Magnet Configuration and Preliminary Analysis VV

More information

Ch 30 - Sources of Magnetic Field

Ch 30 - Sources of Magnetic Field Ch 30 - Sources of Magnetic Field Currents produce Magnetism? 1820, Hans Christian Oersted: moving charges produce a magnetic field. The direction of the field is determined using a RHR. Oersted (1820)

More information

Innovative fabrication method of superconducting magnets using high T c superconductors with joints

Innovative fabrication method of superconducting magnets using high T c superconductors with joints Innovative fabrication method of superconducting magnets using high T c superconductors with joints (for huge and/or complicated coils) Nagato YANAGI LHD & FFHR Group National Institute for Fusion Science,

More information

Plasma Shape Feedback Control on EAST

Plasma Shape Feedback Control on EAST 1 EXC/P2-09 Plasma Shape Feedback Control on EAST Q.P. Yuan 1), B.J. Xiao 1), Z.P. Luo 1), M.L. Walker 2), A.S. Welander 2), A. Hyatt 2), J.P. Qian 1), D.A. Humphreys 2), J.A. Leuer 2), R.D. Johnson 2),

More information

The Virial Theorem, MHD Equilibria, and Force-Free Fields

The Virial Theorem, MHD Equilibria, and Force-Free Fields The Virial Theorem, MHD Equilibria, and Force-Free Fields Nick Murphy Harvard-Smithsonian Center for Astrophysics Astronomy 253: Plasma Astrophysics February 10 12, 2014 These lecture notes are largely

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Model based estimation of the Eddy currents for the ITER tokamak *

Model based estimation of the Eddy currents for the ITER tokamak * Model based estimation of the Eddy currents for the ITER tokamak * Alfredo Pironti 1 Consorzio CREATE - University of Naples Federico II Via Claudio 21, 80125 Napoli, Italy E-mail: pironti@unina.it Roberto

More information

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics

Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Modelling, Simulation and Temperature Effect Analysis of Mutual Induction based High Temperature Level Sensor using COMSOL Multiphysics Rajalakshmi R. Subhasis Dutta Bhabha Atomic Research Center, Mumbai

More information

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N

Abstract. The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N Abstract The Pegasus Toroidal Experiment is an ultra-low aspect ratio (A < 1.2) spherical tokamak (ST) capable of operating in the high I N regime (I N > 12). Access to this regime requires a small centerpost

More information

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 240 Fall 2005: Exam #3 Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above 2. This will be

More information

Flow and dynamo measurements in the HIST double pulsing CHI experiment

Flow and dynamo measurements in the HIST double pulsing CHI experiment Innovative Confinement Concepts (ICC) & US-Japan Compact Torus (CT) Plasma Workshop August 16-19, 211, Seattle, Washington HIST Flow and dynamo measurements in the HIST double pulsing CHI experiment M.

More information

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA

Experimental Investigations of Magnetic Reconnection. J Egedal. MIT, PSFC, Cambridge, MA Experimental Investigations of Magnetic Reconnection J Egedal MIT, PSFC, Cambridge, MA Coronal Mass Ejections Movie from NASA s Solar Dynamics Observatory (SDO) Space Weather The Solar Wind affects the

More information

PHYS General Physics for Engineering II FIRST MIDTERM

PHYS General Physics for Engineering II FIRST MIDTERM Çankaya University Department of Mathematics and Computer Sciences 2010-2011 Spring Semester PHYS 112 - General Physics for Engineering II FIRST MIDTERM 1) Two fixed particles of charges q 1 = 1.0µC and

More information

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting

Material, Design, and Cost Modeling for High Performance Coils. L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Material, Design, and Cost Modeling for High Performance Coils L. Bromberg, P. Titus MIT Plasma Science and Fusion Center ARIES meeting Tokamak Concept Improvement Cost minimization Decrease cost of final

More information

Real Plasma with n, T ~ p Equilibrium: p = j B

Real Plasma with n, T ~ p Equilibrium: p = j B Real Plasma with n, T ~ p Equilibrium: p = j B B lines must lie in isobaric surfaces. Since B = 0, only possible if isobaric surfaces are topological tori. Magnetic field lines must form nested tori. Equilibrium

More information

Reading Assignments Please see the handouts for each lesson for the reading assignments.

Reading Assignments Please see the handouts for each lesson for the reading assignments. Preparation Assignments for Homework #5 Due at the start of class. These assignments will only be accepted from students attending class. Reading Assignments Please see the handouts for each lesson for

More information

Motion of Charged Particles in Fields

Motion of Charged Particles in Fields Chapter Motion of Charged Particles in Fields Plasmas are complicated because motions of electrons and ions are determined by the electric and magnetic fields but also change the fields by the currents

More information

Jacob s Ladder Controlling Lightning

Jacob s Ladder Controlling Lightning Host: Fusion specialist: Jacob s Ladder Controlling Lightning PART 1 Jacob s ladder demonstration Video Teacher resources Phil Dooley European Fusion Development Agreement Peter de Vries European Fusion

More information

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation

Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation Lower Hybrid Current Drive Experiments on Alcator C-Mod: Comparison with Theory and Simulation P.T. Bonoli, A. E. Hubbard, J. Ko, R. Parker, A.E. Schmidt, G. Wallace, J. C. Wright, and the Alcator C-Mod

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Neoclassical transport

Neoclassical transport Neoclassical transport Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 28 th January 2013 Dr Ben Dudson Magnetic Confinement Fusion (1 of 19) Last time Toroidal devices

More information

Resistive Wall Mode Control in DIII-D

Resistive Wall Mode Control in DIII-D Resistive Wall Mode Control in DIII-D by Andrea M. Garofalo 1 for G.L. Jackson 2, R.J. La Haye 2, M. Okabayashi 3, H. Reimerdes 1, E.J. Strait 2, R.J. Groebner 2, Y. In 4, M.J. Lanctot 1, G.A. Navratil

More information

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges

Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges Predictive Power-Balance Modeling of PEGASUS and NSTX-U Local Helicity Injection Discharges J.L. Barr, M.W. Bongard, M.G. Burke, R.J. Fonck, E.T. Hinson, J.M. Perry, A.J. Redd, D.J. Schlossberg, K.E. Thome

More information

Effects of Noise in Time Dependent RWM Feedback Simulations

Effects of Noise in Time Dependent RWM Feedback Simulations Effects of Noise in Time Dependent RWM Feedback Simulations O. Katsuro-Hopkins, J. Bialek, G. Navratil (Department of Applied Physics and Applied Mathematics, Columbia University, New York, NY USA) Building

More information

First Experiments in SST-1

First Experiments in SST-1 First Experiments in SST-1 Subrata Pradhan & SST-1 Team Institute for Plasma Research India OV 5-5 Steady State Superconducting Tokamak (SST-1) at IPR Outline SST-1 Parameters Results in SST-1 from Engineering

More information

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor

DEMO Concept Development and Assessment of Relevant Technologies. Physics and Engineering Studies of the Advanced Divertor for a Fusion Reactor FIP/3-4Rb FIP/3-4Ra DEMO Concept Development and Assessment of Relevant Technologies Y. Sakamoto, K. Tobita, Y. Someya, H. Utoh, N. Asakura, K. Hoshino, M. Nakamura, S. Tokunaga and the DEMO Design Team

More information

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2

Exam 4 Solutions. a. 1,2,and 3 b. 1 and 2, not 3 c. 1 and 3, not 2 d. 2 and 3, not 1 e. only 2 Prof. Darin Acosta Prof. Greg Stewart April 8, 007 1. Which of the following statements is true? 1. In equilibrium all of any excess charge stored on a conductor is on the outer surface.. In equilibrium

More information

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source

Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source Adaptation of Pb-Bi Cooled, Metal Fuel Subcritical Reactor for Use with a Tokamak Fusion Neutron Source E. Hoffman, W. Stacey, G. Kessler, D. Ulevich, J. Mandrekas, A. Mauer, C. Kirby, D. Stopp, J. Noble

More information

1 2 U CV. K dq I dt J nqv d J V IR P VI

1 2 U CV. K dq I dt J nqv d J V IR P VI o 5 o T C T F 3 9 T K T o C 73.5 L L T V VT Q mct nct Q F V ml F V dq A H k TH TC L pv nrt 3 Ktr nrt 3 CV R ideal monatomic gas 5 CV R ideal diatomic gas w/o vibration V W pdv V U Q W W Q e Q Q e Carnot

More information

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION

Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION 1 P a g e Physics Notes for Class 12 chapter 6 ELECTROMAGNETIC I NDUCTION Whenever the magnetic flux linked with an electric circuit changes, an emf is induced in the circuit. This phenomenon is called

More information

Operational Phase Space of the Edge Plasma in Alcator C-Mod

Operational Phase Space of the Edge Plasma in Alcator C-Mod Operational Phase Space of the Edge Plasma in B. LaBombard, T. Biewer, M. Greenwald, J.W. Hughes B. Lipschultz, N. Smick, J.L. Terry, Team Contributed talk RO.00008 Presented at the 47th Annual Meeting

More information

Physics of the Current Injection Process in Localized Helicity Injection

Physics of the Current Injection Process in Localized Helicity Injection Physics of the Current Injection Process in Localized Helicity Injection Edward Thomas Hinson Pegasus Toroidal Experiment University of Wisconsin Madison 57 th American Physical Society Division of Plasma

More information

Plasmoid Motion in Helical Plasmas

Plasmoid Motion in Helical Plasmas Plasmoid Motion in Helical Plasmas Ryuichi ISHIZAKI and Noriyoshi NAKAJIMA National Institute for Fusion Science, Toki 509-5292, Japan (Received 12 December 2009 / Accepted 18 May 2010) In order to explain

More information

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift )

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Shoichi OKAMURA 1,2) 1) National Institute for Fusion Science, Toki 509-5292, Japan 2) Department of Fusion Science,

More information

3D Reconstruction of Plasma Equilibria using Magnetic Diagnostics on the Compact Toroidal Hybrid. Benjamin Adam Stevenson

3D Reconstruction of Plasma Equilibria using Magnetic Diagnostics on the Compact Toroidal Hybrid. Benjamin Adam Stevenson 3D Reconstruction of Plasma Equilibria using Magnetic Diagnostics on the Compact Toroidal Hybrid by Benjamin Adam Stevenson A dissertation submitted to the Graduate Faculty of Auburn University in partial

More information

Fundamental Constants

Fundamental Constants Fundamental Constants Atomic Mass Unit u 1.660 540 2 10 10 27 kg 931.434 32 28 MeV c 2 Avogadro s number N A 6.022 136 7 36 10 23 (g mol) 1 Bohr magneton μ B 9.274 015 4(31) 10-24 J/T Bohr radius a 0 0.529

More information

MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA

MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA University of Ljubljana Faculty of Mathematics and Physics Seminar 1 b -1st year, II. cycle MAGNETOHYDRODYNAMIC EQUILIBRIUM AND STABILITY OF PLASMA Author: Lino alamon Advisor: prof. dr. Tomaº Gyergyek

More information

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system

Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system Design of next step tokamak: Consistent analysis of plasma flux consumption and poloidal field system J.M. Ané 1, V. Grandgirard, F. Albajar 1, J.Johner 1 1Euratom-CEA Association, Cadarache, France Euratom-EPFL

More information

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers.

Physics 420 Fall 2004 Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. Quiz 1 Wednesday This quiz is worth 6 points. Be sure to show your work and label your final answers. 1. A charge q 1 = +5.0 nc is located on the y-axis, 15 µm above the origin, while another charge q

More information

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009.

Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. PRINT Your Name: Instructor: Louisiana State University Physics 2102, Exam 3 April 2nd, 2009. Please be sure to PRINT your name and class instructor above. The test consists of 4 questions (multiple choice),

More information

Is the Troyon limit a beta limit?

Is the Troyon limit a beta limit? Is the Troyon limit a beta limit? Pierre-Alexandre Gourdain 1 1 Extreme State Physics Laboratory, Department of Physics and Astronomy, University of Rochester, Rochester, NY 14627, USA The plasma beta,

More information

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor

Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Microwave Spherical Torus Experiment and Prospect for Compact Fusion Reactor Takashi Maekawa 1,*, Hitoshi Tanaka 1, Masaki Uchida 1, Tomokazu Yoshinaga 1, Satoshi Nishio 2 and Masayasu Sato 2 1 Graduate

More information

General Physics Contest 2012

General Physics Contest 2012 General Physics Contest May 6, (9:am-:5am), Total of 5 pages. Some useful constants: Gas constant R = 8.34 J/mol K Electron mass m e = 9.9-3 kg Electron charge e =.6-9 C Electric constant (permittivity)

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule

HT-7U* Superconducting Tokamak: Physics design, engineering progress and. schedule 1 FT/P2-03 HT-7U* Superconducting Tokamak: Physics design, engineering progress and schedule Y.X. Wan 1), P.D. Weng 1), J.G. Li 1), Q.Q. Yu 1), D.M. Gao 1), HT-7U Team 1) Institute of Plasma Physics, Chinese

More information

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod*

Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* Observation of Co- and Counter Rotation Produced by Lower Hybrid Waves in Alcator C-Mod* R. R. Parker, Y. Podpaly, J. Lee, M. L. Reinke, J. E. Rice, P.T. Bonoli, O. Meneghini, S. Shiraiwa, G. M. Wallace,

More information

SCS 139 Applied Physic II Semester 2/2011

SCS 139 Applied Physic II Semester 2/2011 SCS 139 Applied Physic II Semester 2/2011 Practice Questions for Magnetic Forces and Fields (I) 1. (a) What is the minimum magnetic field needed to exert a 5.4 10-15 N force on an electron moving at 2.1

More information

Physics 11b Lecture #10

Physics 11b Lecture #10 Physics 11b Lecture #10 Magnetic Fields S&J Chapter 29 What We Did Last Time Electromotive forces (emfs) atteries are made of an emf and an internal resistance Resistor arithmetic R = R + R + R + + R series

More information

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s

Phys102 Final-163 Zero Version Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1. = m/s Coordinator: Saleem Rao Tuesday, August 22, 2017 Page: 1 Q1. A 125 cm long string has a mass of 2.00 g and a tension of 7.00 N. Find the lowest resonant frequency of the string. A) 2.5 Hz B) 53.0 Hz C)

More information

Preliminary experiment of plasma current startup by ECR wave on SUNIST spherical tokamak

Preliminary experiment of plasma current startup by ECR wave on SUNIST spherical tokamak The 3 rd IAEA TCM on Spherical Torus and the 11 th STW, St. Petersburg Preliminary experiment of plasma current startup by ECR wave on spherical tokamak HE Yexi, ZHANG Liang, *FENG Chunhua, FU Hongjun,

More information

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment

Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment Advancing Toward Reactor Relevant Startup via Localized Helicity Injection at the Pegasus Toroidal Experiment E. T. Hinson J. L. Barr, M. W. Bongard, M. G. Burke, R. J. Fonck, J. M. Perry, A. J. Redd,

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 Before Starting All of your grades should now be posted

More information

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor:

Physics 240 Fall 2005: Exam #3 Solutions. Please print your name: Please list your discussion section number: Please list your discussion instructor: Physics 4 Fall 5: Exam #3 Solutions Please print your name: Please list your discussion section number: Please list your discussion instructor: Form #1 Instructions 1. Fill in your name above. This will

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U 1 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT-60 Team 1)

More information

The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak

The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak The measurement of plasma equilibrium and fluctuations near the plasma edge using a Rogowski probe in the TST-2 spherical tokamak H. Furui, Y. Nagashima 2, A. Ejiri, Y. Takase, N. Tsujii, C. Z. Cheng,

More information

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II

Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II Physics 1302W.400 Lecture 33 Introductory Physics for Scientists and Engineering II In today s lecture, we will discuss generators and motors. Slide 30-1 Announcement Quiz 4 will be next week. The Final

More information

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment Derivation of dynamo current drive and stable current sustainment in the HIT SI experiment 1 Derivation of dynamo current drive in a closed current volume and stable current sustainment in the HIT SI experiment

More information

Yell if you have any questions

Yell if you have any questions Class 36: Outline Hour 1: Concept Review / Overview PRS Questions Possible Exam Questions Hour : Sample Exam Yell if you have any questions P36-1 efore Starting All of your grades should now be posted

More information

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO

GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO GA A23168 TOKAMAK REACTOR DESIGNS AS A FUNCTION OF ASPECT RATIO by C.P.C. WONG and R.D. STAMBAUGH JULY 1999 DISCLAIMER This report was prepared as an account of work sponsored by an agency of the United

More information

Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak

Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak P6-29 Soft X-ray emission profile and mode structure during MHD events in the TST-2 spherical tokamak H.Tojo, A.Ejiri, Y.Takase, Y.Torii, T.Osako, M.Sasaki (1), T.Masuda, Y.Shimada N.Sumitomo (1), J.Tsujimura,

More information

Conceptual Design of CFETR Tokamak Machine

Conceptual Design of CFETR Tokamak Machine Japan-US Workshop on Fusion Power Plants and Related Advanced Technologies February 26-28, 2013 at Kyoto University in Uji, JAPAN Conceptual Design of CFETR Tokamak Machine Yuntao Song for CFETR Design

More information

Where k = 1. The electric field produced by a point charge is given by

Where k = 1. The electric field produced by a point charge is given by Ch 21 review: 1. Electric charge: Electric charge is a property of a matter. There are two kinds of charges, positive and negative. Charges of the same sign repel each other. Charges of opposite sign attract.

More information

Electromagnetic Induction! March 11, 2014 Chapter 29 1

Electromagnetic Induction! March 11, 2014 Chapter 29 1 Electromagnetic Induction! March 11, 2014 Chapter 29 1 Notes! Exam 4 next Tuesday Covers Chapters 27, 28, 29 in the book Magnetism, Magnetic Fields, Electromagnetic Induction Material from the week before

More information

Can current flow in electric shock?

Can current flow in electric shock? Can current flow in electric shock? Yes. Transient current can flow in insulating medium in the form of time varying displacement current. This was an important discovery made by Maxwell who could predict

More information

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE

Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE Recent results on non-inductive startup of highly overdense ST plasma by electron Bernstein wave on LATE M. Uchida, Y. Nozawa, H. Tanaka, T. Maekawa Graduate School of Energy Science, Kyoto University

More information

Disruption dynamics in NSTX. long-pulse discharges. Presented by J.E. Menard, PPPL. for the NSTX Research Team

Disruption dynamics in NSTX. long-pulse discharges. Presented by J.E. Menard, PPPL. for the NSTX Research Team Disruption dynamics in NSTX long-pulse discharges Presented by J.E. Menard, PPPL for the NSTX Research Team Workshop on Active Control of MHD Stability: Extension of Performance Monday, November 18, 2002

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute

Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Conceptual design of liquid metal cooled power core components for a fusion power reactor Yuntao, SONG ( ) and Satoshi NISHIO ( Japan Atomic Energy Research Institute Japan-US workshop on Fusion Power

More information

Bunno, M.; Nakamura, Y.; Suzuki, Y. Matsunaga, G.; Tani, K. Citation Plasma Science and Technology (

Bunno, M.; Nakamura, Y.; Suzuki, Y. Matsunaga, G.; Tani, K. Citation Plasma Science and Technology ( Title The Finite Beta Effects on the Toro Tokamak Plasma Author(s) Bunno, M.; Nakamura, Y.; Suzuki, Y. Matsunaga, G.; Tani, K. Citation Plasma Science and Technology (2013 Issue Date 2013-02 URL http://hdl.handle.net/2433/173038

More information