Stable Matching Existence, Computation, Convergence Correlated Preferences. Stable Matching. Algorithmic Game Theory.

Size: px
Start display at page:

Download "Stable Matching Existence, Computation, Convergence Correlated Preferences. Stable Matching. Algorithmic Game Theory."

Transcription

1 Existence, Computation, Convergence Correlated Preferences

2 Existence, Computation, Convergence Correlated Preferences Stable Marriage Set of Women Y Set of Men X

3 Existence, Computation, Convergence Correlated Preferences Stable Marriage Set of Women Y Set of Men X Every person has a preference list (left/right is most/least preferred).

4 Existence, Computation, Convergence Correlated Preferences Stable Marriage Set of Women Y Set of Men X Every person has a preference list (left/right is most/least preferred). No polygamy - at most one match per person!

5 Existence, Computation, Convergence Correlated Preferences Stable Marriage Set of Women Y Set of Men X Every person has a preference list (left/right is most/least preferred).

6 Existence, Computation, Convergence Correlated Preferences Set X of m men, set Y of n women Each x X has a preference order x over all matches y Y. Each y Y has a preference order y over all matches x X. For each person being unmatched is the least preferred state, i.e., each person wants to be matched rather than unmatched. A matching S X Y is a set of pairs {x, y}, where each person appears in at most one pair. For a matching M we denote by M(x) Y the match of man x X in M. We denote M(x) = if x is unmatched in M. Similar definition of M(y).

7 Existence, Computation, Convergence Correlated Preferences When is a matching stable? What is a hazard to stability? In a matching M, a pair {x, y} is blocking pair if and only if x and y prefer each other to y = M(x) and x = M(y), respectively. x y M is a stable matching if and only if it admits no blocking pair. x y Applications Residents/Hospitals College Admission Job Market etc.

8 Existence, Computation, Convergence Correlated Preferences Matching Game Let us formulate the model as a matching game. One side is active, picks strategies and receives payoffs, whereas the passive side only reacts to the strategies. W.l.o.g. we assume the active side are the men: Player set is X, every player has strategy space Y If x X picks strategy y, he proposes to woman y. Woman y picks from all proposals the most preferred one. Payoff p x(y) for man x playing strategy y: Let x= (y 1,..., y n) be his preference list. { k m matched to w n k, k {0,..., n 1} p x(y) = 1 m unmatched Consider a state of the game and assume x deviates to y. This is a protitable deviation if and only if y is more preferred by x and accepts his proposal, i.e., {x, y } is a blocking pair. Hence, stable matchings are exactly the pure Nash equilibria of the matching game.

9 Existence, Computation, Convergence Correlated Preferences Existence and Computation Algorithm 1: Gale-Shapley Algorithm with Man-Proposal Initialize x= x for all x X while there is an unmatched man x X with x do Every man x X proposes to topmost woman in x Every woman y Y keeps most preferred proposal and rejects all others Every woman matches to man of kept proposal If his proposal is rejected, man x removes topmost entry from x Theorem (Gale, Shapley 1962) A stable matching always exists and can be computed in time O(nm). Proof: Consider Algorithm 1. Obviously, it can be implemented to run in time O(nm). It computes a matching M, as each man proposes to at most one woman at a time and each woman keeps at most one proposal.

10 Existence, Computation, Convergence Correlated Preferences Convergence It is straightforward to verify that over the run of the algorithm for a man, the preference of proposed women is strictly decreasing, and for a woman, the preference of matched partners is strictly increasing. Assume for contradiction M has a blocking pair {x, y} with y x M(x) and x y M(y). x must have proposed to y and got rejected, so y must keep a proposal of some better man x y x. Hence, her match in M can only be better than x. Thus, M(y) y x y x, a contradiction. With a reformulation of this idea we show convergence in the matching game. Theorem For every matching game and every initial matching M 0, there is a sequence of 2nm best-response improvement steps to a stable matching.

11 Existence, Computation, Convergence Correlated Preferences Convergence Proof: The sequence has two phases. In Phase 1, only matched men are allowed to play best responses. Denote by X the set of matched men in M. The following function keeps decreasing over phase 1: Φ(M) = x X(n p x(m(x))). (rank of x s partner in x) Suppose x X plays a best response. x remains matched, improves rank of partner by at least 1. Some x X can get unmatched, less players in X, Φ drops by at least 1. Thus, Φ drops by at least 1 in every iteration. As 1 Φ(M) nm, phase 1 terminates after at most nm iterations.

12 Existence, Computation, Convergence Correlated Preferences Convergence In Phase 2, only unmatched men are allowed to play best responses. Denote by Y the set of matched women in M. The following function keeps increasing over phase 2: Ψ(M) = p y (M(y)). y Y Suppose an unmatched man x plays a best response. x gets matched to y Y, p y increases by at least 1. x gets matched to y Y, y enters Y. Thus, Ψ grows by at least 1 in every iteration. As 1 Ψ(M) nm, phase 2 terminates after at most nm iterations. To show that the final matching is stable, observe that throughout phase 2 no matched man can improve. When unmatched x gets matched to y, this only increases her payoff. Assuming that there was no blocking pair with any of the matched men before, there is no blocking pair after x and y are matched, because x played a best response and y s payoff is even higher now. Finally, there are no blocking pairs with unmatched men as phase 2 is over.

13 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

14 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

15 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

16 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

17 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

18 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

19 Existence, Computation, Convergence Correlated Preferences Potential Game Our previous proof involves two potential functions. So are matching games potential games? The following result shows a negative answer. Proposition Best-response dynamics in the matching game can cycle.

20 Existence, Computation, Convergence Correlated Preferences Random Dynamics Matching games belong to the class of weakly acyclic games, in which from every state we always have at least one improvement sequence to a pure NE. In contrast, in potential games from every state all improvement sequences reach a pure NE. An interesting consequence of weak acyclicity is that if we pick improvement moves at random, we execute a random walk over the states of the game. It is guaranteed to reach an absorbing state (i.e., a pure NE) in the limit with probability 1, because ultimately by chance for some state we will correctly execute the one improvement sequence that leads us to the pure NE.

21 Existence, Computation, Convergence Correlated Preferences Random Dynamics How long are such random improvement sequences? How long does it take if we choose in each step an improvement move uniformly at random? What if, in addition, we restrict to best-response improvement moves instead of arbitrary better-response moves? Theorem (Ackermann, Goldberg, Mirrokni, Röglin, Vöcking 2011) There is a matching game with n men and n women and an initial matching M 0 such that, with probability 1 2 Ω(n), random dynamics starting from M 0 need 2 Ω(n) steps to reach a stable matching. This result holds for both random better- and best-response dynamics. Devastatingly, with high probability the convergence time will be exponential...

22 Existence, Computation, Convergence Correlated Preferences Correlated Preferences An intuitive case of matching is when both players receive the same payoff from a match. Then each match has a positive edge-weight, and this weight is given to both players if they match along this edge. This is referred to as correlated or weighted matching. In a correlated matching game, we have p x(y) = p y (x) = p xy > 0 for all x X and y Y, and p x( ) = p y ( ) = 0. Definition (Ordinal Potential Game) We call a strategic game Γ = (N, (Σ i ) i N, (c i ) i N ) ordinal potential game if there exists a function Φ: Σ R such that for every i N, for every S i Σ i, and every S i, S i Σ i : c i (S i, S i ) > c i (S i, S i ) Φ(S i, S i ) > Φ(S i, S i ).

23 Existence, Computation, Convergence Correlated Preferences Ordinal Potential Games The improvement in Φ does not necessarily mirror the exact amount by which player i reduces his cost (also it might behave arbitrarily if i increases his cost). It only decreases strictly whenever player i strictly decreases his cost. Obviously, the existence of an ordinal potential Φ suffices to guarantee existence of a pure NE and convergence of every improvement sequence in a finite game. Theorem Every correlated matching game is an ordinal potential game. Proof: For a matching M, define the following function Φ(M) = (p x1,y 1,..., p xk,y k ), where (x i, y i ) M are all matched pairs sorted in non-increasing order of payoffs, i.e., for i j it holds p xi,y i p xj,y j.

24 Existence, Computation, Convergence Correlated Preferences Correlated Matching is Potential Game We let Φ(M) > Φ(M ) if the vector of match payoffs in M is lexicographically larger than in M. Intuitively, M has more higher payoff edges than M. Assume in state M, man x executes an improvement move and creates pair {x, y}. Thus, p xy > p x,m(x) and p xy > p M(y),y. All pairs that get removed have payoff < p xy. Hence, lexicographically the sorted vector of pair payoffs increases we add a higher payoff pair and delete pairs with strictly smaller payoff. This proves that correlated matching is an ordinal potential game. Above we showed that even in general matching games from every initial matching there exists a short sequence of best-response steps to a stable matching. Our last theorem shows that for correlated matching random dynamics converge in expected polynomial time.

25 Existence, Computation, Convergence Correlated Preferences Random Dynamics in Correlated Matching Theorem For every correlated matching game and initial matching M 0, random better-response dynamics converge to a stable matching in expected polynomial time. Proof: Suppose we resolve a blocking pair {x, y} with maximum payoff p xy. There cannot exist a new blocking pair with payoff > p xy. Such a blocking pair is not altered by {x, y} and must have been present before. However, p xy was the one with largest benefit. Hence, we have the invariant that if we resolve a blocking pair {x, y} of maximum payoff x and y never become part of a blocking pair again.

26 Existence, Computation, Convergence Correlated Preferences Random Dynamics in Correlated Matching If we choose improvement moves uniformly at random, then with probability at least 1/nm we pick a move that corresponds to a blocking pair with maximum payoff. If this pair is resolved, the players remain matched to each other until the end because of the above argument. Such a move occurs every O(nm) rounds in expectation, and after O(min{n, m}) such moves, we have reached a stable matching. Note that the last argument works similarly if we take random best-response moves, as a blocking pair of maximum payoff obviously represents a best response for the man.

Dynamic Matching under Preferences

Dynamic Matching under Preferences Dynamic Matching under Preferences Martin Hoefer Max-Planck-Institut für Informatik mhoefer@mpi-inf.mpg.de Kolkata, 11 March 2015 How to find a stable relationship? Stable Marriage Set of Women Set of

More information

Consider a complete bipartite graph with sets A and B, each with n vertices.

Consider a complete bipartite graph with sets A and B, each with n vertices. When DFS discovers a non-tree edge, check if its two vertices have the same color (red or black). If all non-tree edges join vertices of different color then the graph is bipartite. (Note that all tree

More information

Analysis of Algorithms Fall Some Representative Problems Stable Matching

Analysis of Algorithms Fall Some Representative Problems Stable Matching Analysis of Algorithms Fall 2017 Some Representative Problems Stable Matching Mohammad Ashiqur Rahman Department of Computer Science College of Engineering Tennessee Tech University Matching Med-school

More information

Uncoordinated Two-Sided Matching Markets

Uncoordinated Two-Sided Matching Markets Uncoordinated Two-Sided Matching Markets Heiner Ackermann Fraunhofer Institute for Industrial Mathematics Kaiserslautern, Germany heiner.ackermann@itwm.fraunhofer.de Paul W. Goldberg Dept. of Computer

More information

What do you do when you can t use money to solve your problems?

What do you do when you can t use money to solve your problems? Markets without money What do you do when you can t use money to solve your problems? Matching: heterosexual men and women marrying in a small town, students matching to universities, workers to jobs where

More information

Problem Set 6 Solutions

Problem Set 6 Solutions Problem Set 6 Solutions Exercise. Prom Example : (Alex Alice, Bob Betty), College Admission Example: (A (β,γ), B α); (A (α,β), B γ), Prom Example 2: (Alex Alice, Bob Betty); (Alex Betty, Bob Alice). Exercise

More information

Matching. Terence Johnson. April 17, University of Notre Dame. Terence Johnson (ND) Matching April 17, / 41

Matching. Terence Johnson. April 17, University of Notre Dame. Terence Johnson (ND) Matching April 17, / 41 Matching Terence Johnson University of Notre Dame April 17, 2018 Terence Johnson (ND) Matching April 17, 2018 1 / 41 Markets without money What do you do when you can t use money to solve your problems?

More information

Stable Marriage with Ties and Bounded Length Preference Lists

Stable Marriage with Ties and Bounded Length Preference Lists Stable Marriage with Ties and Bounded Length Preference Lists Robert W. Irving, David F. Manlove, and Gregg O Malley Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK. Email:

More information

1. REPRESENTATIVE PROBLEMS

1. REPRESENTATIVE PROBLEMS 1. REPRESENTATIVE PROBLEMS stable matching five representative problems Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley Copyright 2013 Kevin Wayne http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

STABLE MARRIAGE PROBLEM WITH TIES AND INCOMPLETE BOUNDED LENGTH PREFERENCE LIST UNDER SOCIAL STABILITY

STABLE MARRIAGE PROBLEM WITH TIES AND INCOMPLETE BOUNDED LENGTH PREFERENCE LIST UNDER SOCIAL STABILITY STABLE MARRIAGE PROBLEM WITH TIES AND INCOMPLETE BOUNDED LENGTH PREFERENCE LIST UNDER SOCIAL STABILITY Ashish Shrivastava and C. Pandu Rangan Department of Computer Science and Engineering, Indian Institute

More information

CS 6901 (Applied Algorithms) Lecture 2

CS 6901 (Applied Algorithms) Lecture 2 CS 6901 (Applied Algorithms) Lecture 2 Antonina Kolokolova September 15, 2016 1 Stable Matching Recall the Stable Matching problem from the last class: there are two groups of equal size (e.g. men and

More information

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions

CS 598RM: Algorithmic Game Theory, Spring Practice Exam Solutions CS 598RM: Algorithmic Game Theory, Spring 2017 1. Answer the following. Practice Exam Solutions Agents 1 and 2 are bargaining over how to split a dollar. Each agent simultaneously demands share he would

More information

Two-Sided Matching. Terence Johnson. September 1, University of Notre Dame. Terence Johnson (ND) Two-Sided Matching September 1, / 37

Two-Sided Matching. Terence Johnson. September 1, University of Notre Dame. Terence Johnson (ND) Two-Sided Matching September 1, / 37 Two-Sided Matching Terence Johnson University of Notre Dame September 1, 2011 Terence Johnson (ND) Two-Sided Matching September 1, 2011 1 / 37 One-to-One Matching: Gale-Shapley (1962) There are two finite

More information

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds

Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Randomized Algorithms Lecture 5: The Principle of Deferred Decisions. Chernoff Bounds Sotiris Nikoletseas Associate Professor CEID - ETY Course 2013-2014 Sotiris Nikoletseas, Associate Professor Randomized

More information

Ma/CS 6b Class 3: Stable Matchings

Ma/CS 6b Class 3: Stable Matchings Ma/CS 6b Class 3: Stable Matchings α p 5 p 12 p 15 q 1 q 7 q 12 By Adam Sheffer Reminder: Alternating Paths Let G = V 1 V 2, E be a bipartite graph, and let M be a matching of G. A path is alternating

More information

Two-Sided Matching. Terence Johnson. December 1, University of Notre Dame. Terence Johnson (ND) Two-Sided Matching December 1, / 47

Two-Sided Matching. Terence Johnson. December 1, University of Notre Dame. Terence Johnson (ND) Two-Sided Matching December 1, / 47 Two-Sided Matching Terence Johnson University of Notre Dame December 1, 2017 Terence Johnson (ND) Two-Sided Matching December 1, 2017 1 / 47 Markets without money What do you do when you can t use money

More information

Bipartite Matchings and Stable Marriage

Bipartite Matchings and Stable Marriage Bipartite Matchings and Stable Marriage Meghana Nasre Department of Computer Science and Engineering Indian Institute of Technology, Madras Faculty Development Program SSN College of Engineering, Chennai

More information

Omega notation. Transitivity etc.

Omega notation. Transitivity etc. Omega notation Big-Omega: Lecture 2, Sept. 25, 2014 f () n (()) g n const cn, s.t. n n : cg() n f () n Small-omega: 0 0 0 f () n (()) g n const c, n s.t. n n : cg() n f () n 0 0 0 Intuition (works most

More information

Matching Theory. Mihai Manea. Based on slides by Fuhito Kojima. MIT

Matching Theory. Mihai Manea. Based on slides by Fuhito Kojima. MIT Matching Theory Mihai Manea MIT Based on slides by Fuhito Kojima. Market Design Traditional economics focuses mostly on decentralized markets. Recently, economists are helping to design economic institutions

More information

The key is that there are two disjoint populations, and everyone in the market is on either one side or the other

The key is that there are two disjoint populations, and everyone in the market is on either one side or the other Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 17 So... two-sided matching markets. First off, sources. I ve updated the syllabus for the next few lectures. As always, most of the papers

More information

Ma/CS 6b Class 3: Stable Matchings

Ma/CS 6b Class 3: Stable Matchings Ma/CS 6b Class 3: Stable Matchings α p 5 p 12 p 15 q 1 q 7 q 12 β By Adam Sheffer Neighbor Sets Let G = V 1 V 2, E be a bipartite graph. For any vertex a V 1, we define the neighbor set of a as N a = u

More information

Subramanian s stable matching algorithm

Subramanian s stable matching algorithm Subramanian s stable matching algorithm Yuval Filmus November 2011 Abstract Gale and Shapley introduced the well-known stable matching problem in 1962, giving an algorithm for the problem. Subramanian

More information

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games

6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Potential Games 6.254 : Game Theory with Engineering Applications Lecture 8: Supermodular and Asu Ozdaglar MIT March 2, 2010 1 Introduction Outline Review of Supermodular Games Reading: Fudenberg and Tirole, Section 12.3.

More information

Cheating to Get Better Roommates in a Random Stable Matching

Cheating to Get Better Roommates in a Random Stable Matching Cheating to Get Better Roommates in a Random Stable Matching Chien-Chung Huang Technical Report 2006-582 Dartmouth College Sudikoff Lab 6211 for Computer Science Hanover, NH 03755, USA villars@cs.dartmouth.edu

More information

CSC2556. Lecture 5. Matching - Stable Matching - Kidney Exchange [Slides : Ariel D. Procaccia]

CSC2556. Lecture 5. Matching - Stable Matching - Kidney Exchange [Slides : Ariel D. Procaccia] CSC2556 Lecture 5 Matching - Stable Matching - Kidney Exchange [Slides : Ariel D. Procaccia] CSC2556 - Nisarg Shah 1 Announcements The assignment is up! It is complete, and no more questions will be added.

More information

Weak Dominance and Never Best Responses

Weak Dominance and Never Best Responses Chapter 4 Weak Dominance and Never Best Responses Let us return now to our analysis of an arbitrary strategic game G := (S 1,...,S n, p 1,...,p n ). Let s i, s i be strategies of player i. We say that

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 2 Analysis of Algorithms Stable matching problem Asymptotic growth Adam Smith Stable Matching Problem Unstable pair: man m and woman w are unstable if m prefers w

More information

An improved approximation algorithm for the stable marriage problem with one-sided ties

An improved approximation algorithm for the stable marriage problem with one-sided ties Noname manuscript No. (will be inserted by the editor) An improved approximation algorithm for the stable marriage problem with one-sided ties Chien-Chung Huang Telikepalli Kavitha Received: date / Accepted:

More information

1 Definitions and Things You Know

1 Definitions and Things You Know We will discuss an algorithm for finding stable matchings (not the one you re probably familiar with). The Instability Chaining Algorithm is the most similar algorithm in the literature to the one actually

More information

Optimal Truncation in Matching Markets

Optimal Truncation in Matching Markets Optimal Truncation in Matching Markets Peter Coles Harvard Business School July 2009 Abstract Since no stable matching mechanism can induce truth-telling as a dominant strategy for all participants, there

More information

Matchings in Graphs. Definition 3 A matching N in G is said to be stable if it does not contain a blocking pair.

Matchings in Graphs. Definition 3 A matching N in G is said to be stable if it does not contain a blocking pair. Matchings in Graphs Lecturer: Scribe: Prajakta Jose Mathew Meeting: 6 11th February 2010 We will be considering finite bipartite graphs. Think of one part of the vertex partition as representing men M,

More information

1. REPRESENTATIVE PROBLEMS

1. REPRESENTATIVE PROBLEMS 1. REPRESENTATIVE PROBLEMS stable matching five representative problems Special thanks to Kevin Wayne for sharing the slides Copyright 2005 Pearson-Addison Wesley Last updated on 15/9/12 下午 10:33 1. REPRESENTATIVE

More information

Algorithm Design and Analysis

Algorithm Design and Analysis Algorithm Design and Analysis LECTURE 2 Analysis of Stable Matching Asymptotic Notation Adam Smith Stable Matching Problem Goal: Given n men and n women, find a "suitable" matching. Participants rate members

More information

Maintaining Near-Popular Matchings

Maintaining Near-Popular Matchings Maintaining Near-Popular Matchings Sayan Bhattacharya 1, Martin Hoefer 2, Chien-Chung Huang 3, Telikepalli Kavitha 4, and Lisa Wagner 5 1 Institute of Mathematical Sciences, Chennai, India bsayan@imsc.res.in

More information

Assignment 3 Logic and Reasoning KEY

Assignment 3 Logic and Reasoning KEY Assignment 3 Logic and Reasoning KEY Print this sheet and fill in your answers. Please staple the sheets together. Turn in at the beginning of class on Friday, September 8. Recall this about logic: Suppose

More information

Matching Theory and the Allocation of Kidney Transplantations

Matching Theory and the Allocation of Kidney Transplantations University of Utrecht Bachelor Thesis Matching Theory and the Allocation of Kidney Transplantations Kim de Bakker Supervised by Dr. M. Ruijgrok 14 June 2016 Introduction Matching Theory has been around

More information

We set up the basic model of two-sided, one-to-one matching

We set up the basic model of two-sided, one-to-one matching Econ 805 Advanced Micro Theory I Dan Quint Fall 2009 Lecture 18 To recap Tuesday: We set up the basic model of two-sided, one-to-one matching Two finite populations, call them Men and Women, who want to

More information

Part II: Integral Splittable Congestion Games. Existence and Computation of Equilibria Integral Polymatroids

Part II: Integral Splittable Congestion Games. Existence and Computation of Equilibria Integral Polymatroids Kombinatorische Matroids and Polymatroids Optimierung in der inlogistik Congestion undgames im Verkehr Tobias Harks Augsburg University WINE Tutorial, 8.12.2015 Outline Part I: Congestion Games Existence

More information

Game Theory: Lecture #5

Game Theory: Lecture #5 Game Theory: Lecture #5 Outline: Stable Matchings The Gale-Shapley Algorithm Optimality Uniqueness Stable Matchings Example: The Roommate Problem Potential Roommates: {A, B, C, D} Goal: Divide into two

More information

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and

This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and This article appeared in a journal published by Elsevier. The attached copy is furnished to the author for internal non-commercial research and education use, including for instruction at the authors institution

More information

Approximation and Randomized Algorithms (ARA) Lecture 1, September 3, 2012

Approximation and Randomized Algorithms (ARA) Lecture 1, September 3, 2012 Approximation and Randomized Algorithms (ARA) Lecture 1, September 3, 2012 Practicalities Code: 456314.0 intermediate and optional course Previous knowledge 456305.0 Datastrukturer II (Algoritmer) Period

More information

Online Appendix for Incentives in Landing Slot Problems

Online Appendix for Incentives in Landing Slot Problems Online Appendix for Incentives in Landing Slot Problems James Schummer Azar Abizada April 14, 2017 This document contains supplementary results and proofs for Incentives in Landing Slot Problems, published

More information

Convergence Rate of Best Response Dynamics in Scheduling Games with Conflicting Congestion Effects

Convergence Rate of Best Response Dynamics in Scheduling Games with Conflicting Congestion Effects Convergence Rate of est Response Dynamics in Scheduling Games with Conflicting Congestion Effects Michal Feldman Tami Tamir Abstract We study resource allocation games with conflicting congestion effects.

More information

CS320 Algorithms: Theory and Practice. Course Introduction

CS320 Algorithms: Theory and Practice. Course Introduction Course Objectives CS320 Algorithms: Theory and Practice Algorithms: Design strategies for algorithmic problem solving Course Introduction "For me, great algorithms are the poetry of computation. Just like

More information

The Shortest Vector Problem (Lattice Reduction Algorithms)

The Shortest Vector Problem (Lattice Reduction Algorithms) The Shortest Vector Problem (Lattice Reduction Algorithms) Approximation Algorithms by V. Vazirani, Chapter 27 - Problem statement, general discussion - Lattices: brief introduction - The Gauss algorithm

More information

arxiv: v2 [cs.gt] 25 Jul 2014

arxiv: v2 [cs.gt] 25 Jul 2014 Stable marriage with general preferences Linda Farczadi, Konstantinos Georgiou, Jochen Könemann Dept. of Combinatorics and Optimization, University of Waterloo, Waterloo, Canada {lfarczadi,k2georgi,jochen}@uwaterloo.ca

More information

Competition and Resource Sensitivity in Marriage and Roommate Markets

Competition and Resource Sensitivity in Marriage and Roommate Markets Competition and Resource Sensitivity in Marriage and Roommate Markets Bettina Klaus This Version: April 2010 Previous Versions: November 2007 and December 2008 Abstract We consider one-to-one matching

More information

Hannu Salonen and Mikko A.A. Salonen Mutually Best Matches. Aboa Centre for Economics

Hannu Salonen and Mikko A.A. Salonen Mutually Best Matches. Aboa Centre for Economics Hannu Salonen and Mikko A.A. Salonen Mutually Best Matches Aboa Centre for Economics Discussion paper No. 109 Turku 2016 The Aboa Centre for Economics is a joint initiative of the economics departments

More information

Incentives in Large Random Two-Sided Markets

Incentives in Large Random Two-Sided Markets Incentives in Large Random Two-Sided Markets Nicole Immorlica Mohammad Mahdian November 17, 2008 Abstract Many centralized two-sided markets form a matching between participants by running a stable matching

More information

COOPERATIVE GAME THEORY: CORE AND SHAPLEY VALUE

COOPERATIVE GAME THEORY: CORE AND SHAPLEY VALUE 1 / 54 COOPERATIVE GAME THEORY: CORE AND SHAPLEY VALUE Heinrich H. Nax hnax@ethz.ch & Bary S. R. Pradelski bpradelski@ethz.ch February 26, 2018: Lecture 2 2 / 54 What you did last week... There appear

More information

Competition and Resource Sensitivity in Marriage and Roommate Markets

Competition and Resource Sensitivity in Marriage and Roommate Markets Competition and Resource Sensitivity in Marriage and Roommate Markets Bettina Klaus Working Paper 09-072 Copyright 2007, 2008 by Bettina Klaus Working papers are in draft form. This working paper is distributed

More information

1 Basic Game Modelling

1 Basic Game Modelling Max-Planck-Institut für Informatik, Winter 2017 Advanced Topic Course Algorithmic Game Theory, Mechanism Design & Computational Economics Lecturer: CHEUNG, Yun Kuen (Marco) Lecture 1: Basic Game Modelling,

More information

Matching Problems. Roberto Lucchetti. Politecnico di Milano

Matching Problems. Roberto Lucchetti. Politecnico di Milano Politecnico di Milano Background setting Problems introduced in 1962 by Gale and Shapley for the study of two sided markets: 1) workers & employers 2) interns & hospitals 3) students & universities 4)

More information

Evolution & Learning in Games

Evolution & Learning in Games 1 / 27 Evolution & Learning in Games Econ 243B Jean-Paul Carvalho Lecture 2. Foundations of Evolution & Learning in Games II 2 / 27 Outline In this lecture, we shall: Take a first look at local stability.

More information

Computing Minmax; Dominance

Computing Minmax; Dominance Computing Minmax; Dominance CPSC 532A Lecture 5 Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 1 Lecture Overview 1 Recap 2 Linear Programming 3 Computational Problems Involving Maxmin 4 Domination

More information

Greedy Homework Problems

Greedy Homework Problems CS 1510 Greedy Homework Problems 1. Consider the following problem: INPUT: A set S = {(x i, y i ) 1 i n} of intervals over the real line. OUTPUT: A maximum cardinality subset S of S such that no pair of

More information

PROBLEMS OF MARRIAGE Eugene Mukhin

PROBLEMS OF MARRIAGE Eugene Mukhin PROBLEMS OF MARRIAGE Eugene Mukhin 1. The best strategy to find the best spouse. A person A is looking for a spouse, so A starts dating. After A dates the person B, A decides whether s/he wants to marry

More information

Algorithms. [Knuth, TAOCP] An algorithm is a finite, definite, effective procedure, with some input and some output.

Algorithms. [Knuth, TAOCP] An algorithm is a finite, definite, effective procedure, with some input and some output. Algorithms Algorithm. [webster.com] A procedure for solving a mathematical problem (as of finding the greatest common divisor) in a finite number of steps that frequently involves repetition of an operation.

More information

A PARALLEL ALGORITHM TO SOLVE THE STABLE MARRIAGE PROBLEM. S. S. TSENG and R. C. T. LEE

A PARALLEL ALGORITHM TO SOLVE THE STABLE MARRIAGE PROBLEM. S. S. TSENG and R. C. T. LEE BIT 24 (1984), 308 316 A PARALLEL ALGORITHM TO SOLVE THE STABLE MARRIAGE PROBLEM S. S. TSENG and R. C. T. LEE Institute of Computer Engineering, Institute of Computer and Decision Sciences, College of

More information

Housing Markets with Indifferences: a Tale of Two Mechanisms

Housing Markets with Indifferences: a Tale of Two Mechanisms Housing Markets with Indifferences: a Tale of Two Mechanisms Haris Aziz, Bart de Keijzer Institut für Informatik, Technische Universität München, 80538 München, Germany CWI Amsterdam, 1098 XG Amsterdam,

More information

Assortative Matching in Two-sided Continuum Economies

Assortative Matching in Two-sided Continuum Economies Assortative Matching in Two-sided Continuum Economies Patrick Legros and Andrew Newman February 2006 (revised March 2007) Abstract We consider two-sided markets with a continuum of agents and a finite

More information

Implementation of Stable Solutions to Marriage Problems

Implementation of Stable Solutions to Marriage Problems journal of economic theory 69, 240254 (1996) article no. 0050 Implementation of Stable Solutions to Marriage Problems Jose Alcalde* Departament de Fonaments de l'ana lisi Econo mica, Universitat d'alacant,

More information

Exact and Approximate Equilibria for Optimal Group Network Formation

Exact and Approximate Equilibria for Optimal Group Network Formation Exact and Approximate Equilibria for Optimal Group Network Formation Elliot Anshelevich and Bugra Caskurlu Computer Science Department, RPI, 110 8th Street, Troy, NY 12180 {eanshel,caskub}@cs.rpi.edu Abstract.

More information

SF2972 Game Theory Exam with Solutions March 15, 2013

SF2972 Game Theory Exam with Solutions March 15, 2013 SF2972 Game Theory Exam with s March 5, 203 Part A Classical Game Theory Jörgen Weibull and Mark Voorneveld. (a) What are N, S and u in the definition of a finite normal-form (or, equivalently, strategic-form)

More information

Equilibria in Games with Weak Payoff Externalities

Equilibria in Games with Weak Payoff Externalities NUPRI Working Paper 2016-03 Equilibria in Games with Weak Payoff Externalities Takuya Iimura, Toshimasa Maruta, and Takahiro Watanabe October, 2016 Nihon University Population Research Institute http://www.nihon-u.ac.jp/research/institute/population/nupri/en/publications.html

More information

1. STABLE MATCHING. stable matching problem Gale Shapley algorithm hospital optimality context

1. STABLE MATCHING. stable matching problem Gale Shapley algorithm hospital optimality context 1. STABLE MATCHING stable matching problem Gale Shapley algorithm hospital optimality context Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos

More information

arxiv: v1 [cs.gt] 11 Jul 2016

arxiv: v1 [cs.gt] 11 Jul 2016 Stable Matching with Uncertain Linear Preferences Haris Aziz 12, Péter Biró 3, Serge Gaspers 21, Ronald de Haan 4, Nicholas Mattei 12, and Baharak Rastegari 5 arxiv:1607.02917v1 [cs.gt] 11 Jul 2016 1 Data61

More information

1. REPRESENTATIVE PROBLEMS

1. REPRESENTATIVE PROBLEMS 1. REPRESENTATIVE PROBLEMS stable matching five representative problems Lecture slides by Kevin Wayne Copyright 2005 Pearson-Addison Wesley http://www.cs.princeton.edu/~wayne/kleinberg-tardos Last updated

More information

A (ln 4)-Approximation Algorithm for Maximum Stable Matching with One-Sided Ties and Incomplete Lists

A (ln 4)-Approximation Algorithm for Maximum Stable Matching with One-Sided Ties and Incomplete Lists A ln 4)-Approximation Algorithm for Maximum Stable Matching with One-Sided Ties and Incomplete Lists Chi-Kit Lam C. Gregory Plaxton April 2018 Abstract We study the problem of finding large weakly stable

More information

Matching Problems. Roberto Lucchetti. Politecnico di Milano

Matching Problems. Roberto Lucchetti. Politecnico di Milano Politecnico di Milano Background setting Problems introduced in 1962 by Gale and Shapley for the study of two sided markets: 1) workers & employers; 2) interns & hospitals; 3) students & universities;

More information

Lecture December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about

Lecture December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about 0368.4170: Cryptography and Game Theory Ran Canetti and Alon Rosen Lecture 7 02 December 2009 Fall 2009 Scribe: R. Ring In this lecture we will talk about Two-Player zero-sum games (min-max theorem) Mixed

More information

Efficiency and Stability of Probabilistic Assignments in Marriage Problems

Efficiency and Stability of Probabilistic Assignments in Marriage Problems Efficiency and Stability of Probabilistic Assignments in Marriage Problems Battal Doğan Kemal Yıldız March 23, 205 Abstract We study marriage problems where two groups of agents, men and women, match each

More information

AN IMPOSSIBILITY THEOREM IN MATCHING PROBLEMS

AN IMPOSSIBILITY THEOREM IN MATCHING PROBLEMS Discussion aper No 677 AN IMOSSIBILITY THEOREM IN MATCHING ROBLEMS Shohei Takagi and Shigehiro Serizawa December 006 The Institute of Social and Economic Research Osaka University 6-1 Mihogaoka, Ibaraki,

More information

Discrete Mathematics

Discrete Mathematics Discrete Mathematics 309 (2009) 4456 4468 Contents lists available at ScienceDirect Discrete Mathematics journal homepage: www.elsevier.com/locate/disc Minimal and locally minimal games and game forms

More information

Stable matching. Carlos Hurtado. July 5th, Department of Economics University of Illinois at Urbana-Champaign

Stable matching. Carlos Hurtado. July 5th, Department of Economics University of Illinois at Urbana-Champaign Stable matching Carlos Hurtado Department of Economics University of Illinois at Urbana-Champaign hrtdmrt2@illinois.edu July 5th, 2017 C. Hurtado (UIUC - Economics) Game Theory On the Agenda 1 Introduction

More information

Computing Minmax; Dominance

Computing Minmax; Dominance Computing Minmax; Dominance CPSC 532A Lecture 5 Computing Minmax; Dominance CPSC 532A Lecture 5, Slide 1 Lecture Overview 1 Recap 2 Linear Programming 3 Computational Problems Involving Maxmin 4 Domination

More information

Algorithmic Game Theory and Applications. Lecture 15: a brief taster of Markov Decision Processes and Stochastic Games

Algorithmic Game Theory and Applications. Lecture 15: a brief taster of Markov Decision Processes and Stochastic Games Algorithmic Game Theory and Applications Lecture 15: a brief taster of Markov Decision Processes and Stochastic Games Kousha Etessami warning 1 The subjects we will touch on today are so interesting and

More information

Matching with Myopic and Farsighted Players

Matching with Myopic and Farsighted Players Matching with Myopic and Farsighted Players P. Jean-Jacques Herings Ana Mauleon Vincent Vannetelbosch June 14, 2017 Abstract We study stable sets for marriage problems under the assumption that players

More information

Interval values for strategic games in which players cooperate

Interval values for strategic games in which players cooperate Interval values for strategic games in which players cooperate Luisa Carpente 1 Balbina Casas-Méndez 2 Ignacio García-Jurado 2 Anne van den Nouweland 3 September 22, 2005 Abstract In this paper we propose

More information

Online Appendices for Large Matching Markets: Risk, Unraveling, and Conflation

Online Appendices for Large Matching Markets: Risk, Unraveling, and Conflation Online Appendices for Large Matching Markets: Risk, Unraveling, and Conflation Aaron L. Bodoh-Creed - Cornell University A Online Appendix: Strategic Convergence In section 4 we described the matching

More information

Two-Player Kidney Exchange Game

Two-Player Kidney Exchange Game Two-Player Kidney Exchange Game Margarida Carvalho INESC TEC and Faculdade de Ciências da Universidade do Porto, Portugal margarida.carvalho@dcc.fc.up.pt Andrea Lodi DEI, University of Bologna, Italy andrea.lodi@unibo.it

More information

PREFERENCE REVELATION GAMES AND STRONG CORES OF ALLOCATION PROBLEMS WITH INDIVISIBILITIES

PREFERENCE REVELATION GAMES AND STRONG CORES OF ALLOCATION PROBLEMS WITH INDIVISIBILITIES Discussion Paper No. 651 PREFERENCE REVELATION GAMES AND STRONG CORES OF ALLOCATION PROBLEMS WITH INDIVISIBILITIES Koji Takamiya March 2006 The Institute of Social and Economic Research Osaka University

More information

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Homework 3. This homework is due September 22, 2014, at 12:00 noon.

Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Homework 3. This homework is due September 22, 2014, at 12:00 noon. EECS 70 Discrete Mathematics and Probability Theory Fall 2014 Anant Sahai Homework 3 This homework is due September 22, 2014, at 12:00 noon. 1. Propose-and-Reject Lab In this week s Virtual Lab, we will

More information

Exact and Approximate Equilibria for Optimal Group Network Formation

Exact and Approximate Equilibria for Optimal Group Network Formation Noname manuscript No. will be inserted by the editor) Exact and Approximate Equilibria for Optimal Group Network Formation Elliot Anshelevich Bugra Caskurlu Received: December 2009 / Accepted: Abstract

More information

Algorithms: COMP3121/3821/9101/9801

Algorithms: COMP3121/3821/9101/9801 Algorithms: COMP311/381/9101/9801 Aleks Ignjatović, ignjat@cse.unsw.edu.au office: 504 (CSE building); phone: 5-6659 Course Admin: Amin Malekpour, a.malekpour@unsw.edu.au School of Computer Science and

More information

An Efficient Algorithm for Batch Stability Testing

An Efficient Algorithm for Batch Stability Testing n fficient lgorithm for atch Stability Testing John abney School of omputing lemson University jdabney@cs.clemson.edu rian. ean School of omputing lemson University bcdean@cs.clemson.edu pril 25, 2009

More information

Game Theory DR. ÖZGÜR GÜRERK UNIVERSITY OF ERFURT WINTER TERM 2012/13. Strict and nonstrict equilibria

Game Theory DR. ÖZGÜR GÜRERK UNIVERSITY OF ERFURT WINTER TERM 2012/13. Strict and nonstrict equilibria Game Theory 2. Strategic Games contd. DR. ÖZGÜR GÜRERK UNIVERSITY OF ERFURT WINTER TERM 2012/13 Strict and nonstrict equilibria In the examples we have seen so far: A unilaterally deviation from Nash equilibrium

More information

CS364A: Algorithmic Game Theory Lecture #16: Best-Response Dynamics

CS364A: Algorithmic Game Theory Lecture #16: Best-Response Dynamics CS364A: Algorithmic Game Theory Lecture #16: Best-Response Dynamics Tim Roughgarden November 13, 2013 1 Do Players Learn Equilibria? In this lecture we segue into the third part of the course, which studies

More information

The Generalized Stable Allocation Problem

The Generalized Stable Allocation Problem The Generalized Stable Allocation Problem Brian C. Dean and Namrata Swar School of Computing, Clemson University Clemson, SC, USA. {bcdean,nswar}@cs.clemson.edu Abstract. We introduce and study the generalized

More information

Published: Social Choice and Welfare, 33(1), June 2009, pp doi: /s SEQUENTIAL ENTRY IN MANY-TO-ONE MATCHING MARKETS

Published: Social Choice and Welfare, 33(1), June 2009, pp doi: /s SEQUENTIAL ENTRY IN MANY-TO-ONE MATCHING MARKETS Published: Social Choice and Welfare, 33(1), June 2009, pp 87-99 doi:10.1007/s00355-008-0347-3 SEQUENTIAL ENTRY IN MANY-TO-ONE MATCHING MARKETS ELETTE BOYLE AND FEDERICO ECHENIQUE Abstract. We study sequential

More information

Stable Matching Problems with Exchange Restrictions

Stable Matching Problems with Exchange Restrictions Stable Matching Problems with Exchange Restrictions Robert W. Irving Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK. email: rwi@dcs.gla.ac.uk telephone: 44-141-330-4478 fax:

More information

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples

Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples Game Theory and Algorithms Lecture 2: Nash Equilibria and Examples February 24, 2011 Summary: We introduce the Nash Equilibrium: an outcome (action profile) which is stable in the sense that no player

More information

A Generic Bound on Cycles in Two-Player Games

A Generic Bound on Cycles in Two-Player Games A Generic Bound on Cycles in Two-Player Games David S. Ahn February 006 Abstract We provide a bound on the size of simultaneous best response cycles for generic finite two-player games. The bound shows

More information

Realization Plans for Extensive Form Games without Perfect Recall

Realization Plans for Extensive Form Games without Perfect Recall Realization Plans for Extensive Form Games without Perfect Recall Richard E. Stearns Department of Computer Science University at Albany - SUNY Albany, NY 12222 April 13, 2015 Abstract Given a game in

More information

The Man-Exchange Stable Marriage Problem

The Man-Exchange Stable Marriage Problem The Man-Exchange Stable Marriage Problem Robert W. Irving Department of Computing Science, University of Glasgow, Glasgow G12 8QQ, UK. Email: {rwi}@dcs.gla.ac.uk. Abstract. We study a variant of the classical

More information

Improving Man-Optimal Stable Matchings by Minimum Change of Preference Lists

Improving Man-Optimal Stable Matchings by Minimum Change of Preference Lists Algorithms 2013, 6, 371-382; doi:10.3390/a6020371 Article OPEN ACCESS algorithms ISSN 1999-4893 www.mdpi.com/journal/algorithms Improving Man-Optimal Stable Matchings by Minimum Change of Preference Lists

More information

THREE ESSAYS ON GAME THEORY. Demet Yilmazkuday. Dissertation. Submitted to the Faculty of the. Graduate School of Vanderbilt University

THREE ESSAYS ON GAME THEORY. Demet Yilmazkuday. Dissertation. Submitted to the Faculty of the. Graduate School of Vanderbilt University THREE ESSAYS ON GAME THEORY By Demet Yilmazkuday Dissertation Submitted to the Faculty of the Graduate School of Vanderbilt University in partial ful llment of the requirements for the degree of DOCTOR

More information

The Blocking Lemma and Strategy-Proofness in Many-to-Many Matchings

The Blocking Lemma and Strategy-Proofness in Many-to-Many Matchings The Blocking Lemma and Strategy-Proofness in Many-to-Many Matchings Zhenhua Jiao Institute for Advanced Research and School of Economics Shanghai University of Finance and Economics Shanghai, 200433, China

More information

DOCUMENTOS DE TRABAJO Serie Economía

DOCUMENTOS DE TRABAJO Serie Economía DOCUMENTOS DE TRABAJO Serie Economía Nº 280 GAMES WITH CAPACITY MANIPULATION: INCENTIVES AND NASH EQUILIBRIA ANTONIO ROMERO-MEDINA Y MATTEO TRIOSSI Games with Capacity Manipulation: Incentives and Nash

More information

Weights in stable marriage problems increase manipulation opportunities

Weights in stable marriage problems increase manipulation opportunities Weights in stable marriage problems increase manipulation opportunities Maria Silvia Pini 1, Francesca Rossi 1, Kristen Brent Venable 1, Toby Walsh 2 1 : Department of Pure and Applied Mathematics, University

More information