Machine Learning for Language Technology Lecture 8: Decision Trees and k- Nearest Neighbors

Size: px
Start display at page:

Download "Machine Learning for Language Technology Lecture 8: Decision Trees and k- Nearest Neighbors"

Transcription

1 Machne Learnng for Language Technology Lecture 8: Decson Trees and k- Nearest Neghbors Marna San:n Department of Lngus:cs and Phlology Uppsala Unversty, Uppsala, Sweden Autumn 2014 Acknowledgement: Thanks to Prof. Joakm Nvre for course desgn and materals 1

2 Supervsed Classfca:on Dvde nstances nto (two or more) classes Instance (feature vector): Features may be categorcal or numercal Class (label): Tranng data: y X = {x t,y t N } t=1 x = x 1,, x m Classfca:on n Language Technology Spam flterng (spam vs. non- spam) Spellng error detec:on (error vs. no error) Text categorza:on (news, economy, culture, sport,...) Named en:ty classfca:on (person, loca:on, organza:on,...) 2

3 Models for Classfca:on Genera:ve probabls:c models: Model of P(x, y) Nave Bayes Cond:onal probabls:c models: Model of P(y x) Logs:c regresson Dscrmna:ve model: No explct probablty model Decson trees, nearest neghbor classfca:on Perceptron, support vector machnes, MIRA 3

4 Repea:ng Nose Data cleanng s expensve and :me consumng Margn Induc:ve bas Types of nductve bases Mnmum cross- valdaton error Maxmum margn Mnmum descrpton length [...] 4

5 DECISION TREES 5

6 Decson Trees Herarchcal tree structure for classfca:on Each nternal node specfes a test of some feature Each branch corresponds to a value for the tested feature Each leaf node provdes a classfca:on for the nstance Represents a dsjunc:on of conjunc:ons of constrants Each path from root to leaf specfes a conjunc:on of tests The tree tself represents the dsjunc:on of all paths 6

7 Decson Tree 7

8 Dvde and Conquer Internal decson nodes Unvarate: Uses a sngle a]rbute, x Numerc x : Bnary splt : x > w m Dscrete x : n- way splt for n possble values Mul:varate: Uses all a]rbutes, x Leaves Classfca:on: class labels (or propor:ons) Regresson: r average (or local ft) Learnng: Greedy recursve algorthm Fnd best splt X = (X 1,..., X p ), then nduce tree for each X 8

9 Classfca:on Trees (ID3, CART, C4.5) For node m, N m nstances reach m, N m belong to C ˆP ( C x, m) p m = N m N m Node m s pure f p m s 0 or 1 Measure of mpurty s entropy I m = K =1 p m log 2 p m 9

10 Example: Entropy Assume two classes (C 1, C 2 ) and four nstances (x 1, x 2, x 3, x 4 ) Case 1: C 1 = {x 1, x 2, x 3, x 4 }, C 2 = { } I m = (1 log log 0) = 0 Case 2: C 1 = {x 1, x 2, x 3 }, C 2 = {x 4 } I m = (0.75 log log 0.25) = 0.81 Case 3: C 1 = {x 1, x 2 }, C 2 = {x 3, x 4 } I m = (0.5 log log 0.5) = 1 10

11 Best Splt If node m s pure, generate a leaf and stop, otherwse splt wth test t and con:nue recursvely Fnd the test that mnmzes mpurty Impurty ager splt wth test t: N mj of N m take branch j N mj belong to C ˆP ( C x, m, j) p mj = N mj N mj I m = K =1 p m log 2 p m ˆP ( C x, m) p m = N m N m I m t = n j=1 N mj N m K =1 p log p mj 2 mj 11

12 12

13 Informa:on Gan We want to determne whch a]rbute n a gven set of tranng feature vectors s most useful for dscrmna:ng between the classes to be learned. Informa:on gan tells us how mportant a gven a]rbute of the feature vectors s. We wll use t to decde the orderng of a]rbutes n the nodes of a decson tree. 13

14 Informa:on Gan and Gan Ra:o Choosng the test that mnmzes mpurty maxmzes the nforma:on gan (IG): Informa:on gan prefers features wth many values IG m t I m t = I m I m t = I m = n N mj j=1 N m K =1 K =1 p m log 2 p m p mj log 2 p mj The normalzed verson s called gan ra:o (GR): V m t GR m t = n j=1 = IG m t V m t N mj N m log 2 N mj N m 14

15 Prunng Trees Decson trees are suscep:ble to overfjng Remove subtrees for be]er generalza:on: Preprunng: Early stoppng (e.g., wth entropy threshold) Postprunng: Grow whole tree, then prune subtrees Preprunng s faster, postprunng s more accurate (requres a separate valda:on set) 15

16 Rule Extrac:on from Trees C4.5Rules (Qunlan, 1993) 16

17 Learnng Rules Rule nduc:on s smlar to tree nduc:on but tree nduc:on s breadth- frst rule nduc:on s depth- frst (one rule at a :me) Rule learnng: A rule s a conjunc:on of terms (cf. tree path) A rule covers an example f all terms of the rule evaluate to true for the example (cf. sequence of tests) Sequen:al coverng: Generate rules one at a :me un:l all pos:ve examples are covered IREP (Fürnkrantz and Wdmer, 1994), Rpper (Cohen, 1995) 17

18 Proper:es of Decson Trees Decson trees are approprate for classfca:on when: Features can be both categorcal and numerc Dsjunc:ve descrp:ons may be requred Tranng data may be nosy (mssng values, ncorrect labels) Interpreta:on of learned model s mportant (rules) Induc0ve bas of (most) decson tree learners: 1. Prefers trees wth nforma0ve aerbutes close to the root 2. Prefers smaller trees over bgger ones (wth prunng) 3. Preference bas (ncomplete search of complete space) 18

19 K- NEAREST NEIGHBORS 19

20 Nearest Neghbor Classfca:on An old dea Ths rule of nearest neghbor has consderable elementary ntutve appeal and probably corresponds to practce n many stuatons. For example, t s possble that much medcal dagnoss s nfluenced by the doctor's recollecton of the subsequent hstory of an earler patent whose symptoms resemble n some way those of the current patent. (Fx and Hodges, 1952) Key components: Storage of old nstances Smlarty- based reasonng to new nstances 20

21 k- Nearest Neghbour Learnng: Store tranng nstances n memory Classfca:on: Gven new test nstance x, Compare t to all stored nstances Compute a dstance between x and each stored nstance x t Keep track of the k closest nstances (nearest neghbors) Assgn to x the majorty class of the k nearest neghbours A geometrc vew of learnng Proxmty n (feature) space à same class The smoothness assump:on 21

22 Eager and Lazy Learnng Eager learnng (e.g., decson trees) Learnng nduce an abstract model from data Classfca:on apply model to new data Lazy learnng (a.k.a. memory- based learnng) Learnng store data n memory Classfca:on compare new data to data n memory Proper:es: Retans all the nforma:on n the tranng set no abstrac:on Complex hypothess space sutable for natural language? Man drawback classfca:on can be very neffcent 22

23 Dmensons of a k- NN Classfer Dstance metrc How do we measure dstance between nstances? Determnes the layout of the nstance space The k parameter How large neghborhood should we consder? Determnes the complexty of the hypothess space 23

24 Dstance Metrc 1 Overlap = count of msmatchng features m =1 Δ(x,z) = δ(x,z ) δ ( x, z ) = x max 0 1 z mn f f f numerc, else x x = z z 24

25 Dstance Metrc 2 MVDM = Modfed Value Dfference Metrc m =1 Δ(x,z) = δ(x,z ) K j=1 δ(x,z ) = P(C j x ) P(C j z ) 25

26 The k parameter Tunes the complexty of the hypothess space If k = 1, every nstance has ts own neghborhood If k = N, all the feature space s one neghborhood k = 1 k = 15 Ê = E(h V ) = M t=1 1( h( x t ) r t ) 26

27 A Smple Example Tranng set: 1. (a, b, a, c) à A 2. (a, b, c, a) à B 3. (b, a, c, c) à C 4. (c, a, b, c) à A New nstance: 5. (a, b, b, a) m =1 x z max mn δ ( x, z ) = 0 1 Δ(x,z) = δ(x,z ) f numerc, else f x f x = z z Dstances (overlap): Δ(1, 5) = 2 Δ(2, 5) = 1 Δ(3, 5) = 4 Δ(4, 5) = 3 k- NN classfca:on: 1- NN(5) = B 2- NN(5) = A/B 3- NN(5) = A 4- NN(5) = A 27

28 Further Vara:ons on k- NN Feature weghts: The overlap metrc gves all features equal weght Features can be weghted by IG or GR Weghted vo:ng: The normal decson rule gves all neghbors equal weght Instances can be weghted by (nverse) dstance 28

29 Proper:es of k- NN Nearest neghbor classfca:on s approprate when: Features can be both categorcal and numerc Dsjunc:ve descrp:ons may be requred Tranng data may be nosy (mssng values, ncorrect labels) Fast classfca:on s not crucal Induc0ve bas of k- NN: 1. Nearby nstances should have the same label (smoothness assump0on) 2. All features are equally mportant (wthout feature weghts) 3. Complexty tuned by the k parameter 29

30 End of Lecture 8 30

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification

Instance-Based Learning (a.k.a. memory-based learning) Part I: Nearest Neighbor Classification Instance-Based earnng (a.k.a. memory-based learnng) Part I: Nearest Neghbor Classfcaton Note to other teachers and users of these sldes. Andrew would be delghted f you found ths source materal useful n

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-66: Numercal Methods for Engneerng Desgn and Optmzaton n L Department of EE arnege Mellon Unversty Pttsburgh, PA 53 Slde Overve lassfcaton Support vector machne Regularzaton Slde lassfcaton Predct categorcal

More information

Kernel Methods and SVMs Extension

Kernel Methods and SVMs Extension Kernel Methods and SVMs Extenson The purpose of ths document s to revew materal covered n Machne Learnng 1 Supervsed Learnng regardng support vector machnes (SVMs). Ths document also provdes a general

More information

Ensemble Methods: Boosting

Ensemble Methods: Boosting Ensemble Methods: Boostng Ncholas Ruozz Unversty of Texas at Dallas Based on the sldes of Vbhav Gogate and Rob Schapre Last Tme Varance reducton va baggng Generate new tranng data sets by samplng wth replacement

More information

Support Vector Machines. Vibhav Gogate The University of Texas at dallas

Support Vector Machines. Vibhav Gogate The University of Texas at dallas Support Vector Machnes Vbhav Gogate he Unversty of exas at dallas What We have Learned So Far? 1. Decson rees. Naïve Bayes 3. Lnear Regresson 4. Logstc Regresson 5. Perceptron 6. Neural networks 7. K-Nearest

More information

Multilayer Perceptron (MLP)

Multilayer Perceptron (MLP) Multlayer Perceptron (MLP) Seungjn Cho Department of Computer Scence and Engneerng Pohang Unversty of Scence and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjn@postech.ac.kr 1 / 20 Outlne

More information

Lecture 12: Classification

Lecture 12: Classification Lecture : Classfcaton g Dscrmnant functons g The optmal Bayes classfer g Quadratc classfers g Eucldean and Mahalanobs metrcs g K Nearest Neghbor Classfers Intellgent Sensor Systems Rcardo Guterrez-Osuna

More information

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results.

For now, let us focus on a specific model of neurons. These are simplified from reality but can achieve remarkable results. Neural Networks : Dervaton compled by Alvn Wan from Professor Jtendra Malk s lecture Ths type of computaton s called deep learnng and s the most popular method for many problems, such as computer vson

More information

MDL-Based Unsupervised Attribute Ranking

MDL-Based Unsupervised Attribute Ranking MDL-Based Unsupervsed Attrbute Rankng Zdravko Markov Computer Scence Department Central Connectcut State Unversty New Brtan, CT 06050, USA http://www.cs.ccsu.edu/~markov/ markovz@ccsu.edu MDL-Based Unsupervsed

More information

Lecture 10 Support Vector Machines. Oct

Lecture 10 Support Vector Machines. Oct Lecture 10 Support Vector Machnes Oct - 20-2008 Lnear Separators Whch of the lnear separators s optmal? Concept of Margn Recall that n Perceptron, we learned that the convergence rate of the Perceptron

More information

Problem Set 9 Solutions

Problem Set 9 Solutions Desgn and Analyss of Algorthms May 4, 2015 Massachusetts Insttute of Technology 6.046J/18.410J Profs. Erk Demane, Srn Devadas, and Nancy Lynch Problem Set 9 Solutons Problem Set 9 Solutons Ths problem

More information

UVA CS / Introduc8on to Machine Learning and Data Mining

UVA CS / Introduc8on to Machine Learning and Data Mining UVA CS 4501-001 / 6501 007 Introduc8on to Machne Learnng and Data Mnng Lecture 16: Genera,ve vs. Dscrmna,ve / K- nearest- neghbor Classfer / LOOCV Yanjun Q / Jane,, PhD Unversty of Vrgna Department of

More information

Generalized Linear Methods

Generalized Linear Methods Generalzed Lnear Methods 1 Introducton In the Ensemble Methods the general dea s that usng a combnaton of several weak learner one could make a better learner. More formally, assume that we have a set

More information

Boostrapaggregating (Bagging)

Boostrapaggregating (Bagging) Boostrapaggregatng (Baggng) An ensemble meta-algorthm desgned to mprove the stablty and accuracy of machne learnng algorthms Can be used n both regresson and classfcaton Reduces varance and helps to avod

More information

10-701/ Machine Learning, Fall 2005 Homework 3

10-701/ Machine Learning, Fall 2005 Homework 3 10-701/15-781 Machne Learnng, Fall 2005 Homework 3 Out: 10/20/05 Due: begnnng of the class 11/01/05 Instructons Contact questons-10701@autonlaborg for queston Problem 1 Regresson and Cross-valdaton [40

More information

Lecture 10 Support Vector Machines II

Lecture 10 Support Vector Machines II Lecture 10 Support Vector Machnes II 22 February 2016 Taylor B. Arnold Yale Statstcs STAT 365/665 1/28 Notes: Problem 3 s posted and due ths upcomng Frday There was an early bug n the fake-test data; fxed

More information

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing

Machine Learning. Classification. Theory of Classification and Nonparametric Classifier. Representing data: Hypothesis (classifier) Eric Xing Machne Learnng 0-70/5 70/5-78, 78, Fall 008 Theory of Classfcaton and Nonarametrc Classfer Erc ng Lecture, Setember 0, 008 Readng: Cha.,5 CB and handouts Classfcaton Reresentng data: M K Hyothess classfer

More information

Which Separator? Spring 1

Which Separator? Spring 1 Whch Separator? 6.034 - Sprng 1 Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng Whch Separator? Mamze the margn to closest ponts 6.034 - Sprng 3 Margn of a pont " # y (w $ + b) proportonal

More information

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics

Space of ML Problems. CSE 473: Artificial Intelligence. Parameter Estimation and Bayesian Networks. Learning Topics /7/7 CSE 73: Artfcal Intellgence Bayesan - Learnng Deter Fox Sldes adapted from Dan Weld, Jack Breese, Dan Klen, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer What s Beng Learned? Space

More information

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach

A Bayes Algorithm for the Multitask Pattern Recognition Problem Direct Approach A Bayes Algorthm for the Multtask Pattern Recognton Problem Drect Approach Edward Puchala Wroclaw Unversty of Technology, Char of Systems and Computer etworks, Wybrzeze Wyspanskego 7, 50-370 Wroclaw, Poland

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture #16 Scribe: Yannan Wang April 3, 2014 COS 511: Theoretcal Machne Learnng Lecturer: Rob Schapre Lecture #16 Scrbe: Yannan Wang Aprl 3, 014 1 Introducton The goal of our onlne learnng scenaro from last class s C comparng wth best expert and

More information

Bayesian Learning. Smart Home Health Analytics Spring Nirmalya Roy Department of Information Systems University of Maryland Baltimore County

Bayesian Learning. Smart Home Health Analytics Spring Nirmalya Roy Department of Information Systems University of Maryland Baltimore County Smart Home Health Analytcs Sprng 2018 Bayesan Learnng Nrmalya Roy Department of Informaton Systems Unversty of Maryland Baltmore ounty www.umbc.edu Bayesan Learnng ombnes pror knowledge wth evdence to

More information

Lecture Notes on Linear Regression

Lecture Notes on Linear Regression Lecture Notes on Lnear Regresson Feng L fl@sdueducn Shandong Unversty, Chna Lnear Regresson Problem In regresson problem, we am at predct a contnuous target value gven an nput feature vector We assume

More information

SDMML HT MSc Problem Sheet 4

SDMML HT MSc Problem Sheet 4 SDMML HT 06 - MSc Problem Sheet 4. The recever operatng characterstc ROC curve plots the senstvty aganst the specfcty of a bnary classfer as the threshold for dscrmnaton s vared. Let the data space be

More information

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique

Outline and Reading. Dynamic Programming. Dynamic Programming revealed. Computing Fibonacci. The General Dynamic Programming Technique Outlne and Readng Dynamc Programmng The General Technque ( 5.3.2) -1 Knapsac Problem ( 5.3.3) Matrx Chan-Product ( 5.3.1) Dynamc Programmng verson 1.4 1 Dynamc Programmng verson 1.4 2 Dynamc Programmng

More information

Calculation of time complexity (3%)

Calculation of time complexity (3%) Problem 1. (30%) Calculaton of tme complexty (3%) Gven n ctes, usng exhaust search to see every result takes O(n!). Calculaton of tme needed to solve the problem (2%) 40 ctes:40! dfferent tours 40 add

More information

Evaluation for sets of classes

Evaluation for sets of classes Evaluaton for Tet Categorzaton Classfcaton accuracy: usual n ML, the proporton of correct decsons, Not approprate f the populaton rate of the class s low Precson, Recall and F 1 Better measures 21 Evaluaton

More information

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD.

Cluster Validation Determining Number of Clusters. Umut ORHAN, PhD. Cluster Analyss Cluster Valdaton Determnng Number of Clusters 1 Cluster Valdaton The procedure of evaluatng the results of a clusterng algorthm s known under the term cluster valdty. How do we evaluate

More information

Lecture 3: Dual problems and Kernels

Lecture 3: Dual problems and Kernels Lecture 3: Dual problems and Kernels C4B Machne Learnng Hlary 211 A. Zsserman Prmal and dual forms Lnear separablty revsted Feature mappng Kernels for SVMs Kernel trck requrements radal bass functons SVM

More information

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012

MLE and Bayesian Estimation. Jie Tang Department of Computer Science & Technology Tsinghua University 2012 MLE and Bayesan Estmaton Je Tang Department of Computer Scence & Technology Tsnghua Unversty 01 1 Lnear Regresson? As the frst step, we need to decde how we re gong to represent the functon f. One example:

More information

VQ widely used in coding speech, image, and video

VQ widely used in coding speech, image, and video at Scalar quantzers are specal cases of vector quantzers (VQ): they are constraned to look at one sample at a tme (memoryless) VQ does not have such constrant better RD perfomance expected Source codng

More information

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015

CS 3710: Visual Recognition Classification and Detection. Adriana Kovashka Department of Computer Science January 13, 2015 CS 3710: Vsual Recognton Classfcaton and Detecton Adrana Kovashka Department of Computer Scence January 13, 2015 Plan for Today Vsual recognton bascs part 2: Classfcaton and detecton Adrana s research

More information

Homework Assignment 3 Due in class, Thursday October 15

Homework Assignment 3 Due in class, Thursday October 15 Homework Assgnment 3 Due n class, Thursday October 15 SDS 383C Statstcal Modelng I 1 Rdge regresson and Lasso 1. Get the Prostrate cancer data from http://statweb.stanford.edu/~tbs/elemstatlearn/ datasets/prostate.data.

More information

Online Classification: Perceptron and Winnow

Online Classification: Perceptron and Winnow E0 370 Statstcal Learnng Theory Lecture 18 Nov 8, 011 Onlne Classfcaton: Perceptron and Wnnow Lecturer: Shvan Agarwal Scrbe: Shvan Agarwal 1 Introducton In ths lecture we wll start to study the onlne learnng

More information

Machine Learning 2nd Edi7on

Machine Learning 2nd Edi7on Lecture Slides for INTRODUCTION TO Machine Learning 2nd Edi7on CHAPTER 9: Decision Trees ETHEM ALPAYDIN The MIT Press, 2010 Edited and expanded for CS 4641 by Chris Simpkins alpaydin@boun.edu.tr h1p://www.cmpe.boun.edu.tr/~ethem/i2ml2e

More information

Support Vector Machines

Support Vector Machines Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x n class

More information

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING

ADVANCED MACHINE LEARNING ADVANCED MACHINE LEARNING 1 ADVANCED ACHINE LEARNING ADVANCED ACHINE LEARNING Non-lnear regresson technques 2 ADVANCED ACHINE LEARNING Regresson: Prncple N ap N-dm. nput x to a contnuous output y. Learn a functon of the type: N

More information

Natural Language Processing and Information Retrieval

Natural Language Processing and Information Retrieval Natural Language Processng and Informaton Retreval Support Vector Machnes Alessandro Moschtt Department of nformaton and communcaton technology Unversty of Trento Emal: moschtt@ds.untn.t Summary Support

More information

Feature Selection: Part 1

Feature Selection: Part 1 CSE 546: Machne Learnng Lecture 5 Feature Selecton: Part 1 Instructor: Sham Kakade 1 Regresson n the hgh dmensonal settng How do we learn when the number of features d s greater than the sample sze n?

More information

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen

Hopfield networks and Boltzmann machines. Geoffrey Hinton et al. Presented by Tambet Matiisen Hopfeld networks and Boltzmann machnes Geoffrey Hnton et al. Presented by Tambet Matsen 18.11.2014 Hopfeld network Bnary unts Symmetrcal connectons http://www.nnwj.de/hopfeld-net.html Energy functon The

More information

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018

INF 5860 Machine learning for image classification. Lecture 3 : Image classification and regression part II Anne Solberg January 31, 2018 INF 5860 Machne learnng for mage classfcaton Lecture 3 : Image classfcaton and regresson part II Anne Solberg January 3, 08 Today s topcs Multclass logstc regresson and softma Regularzaton Image classfcaton

More information

Lecture 9: Classification and Regression Tree (CART) (Draft: version 0.8.1)

Lecture 9: Classification and Regression Tree (CART) (Draft: version 0.8.1) Lectures on Machne Learnng (Fall 2017) Hyeong In Cho Seoul Natonal Unversty Lecture 9: Classfcaton and Regresson Tree (CART) (Draft: verson 0.8.1) Topcs to be covered: Basc deas of CART Classfcaton tree

More information

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD

The Gaussian classifier. Nuno Vasconcelos ECE Department, UCSD he Gaussan classfer Nuno Vasconcelos ECE Department, UCSD Bayesan decson theory recall that we have state of the world X observatons g decson functon L[g,y] loss of predctng y wth g Bayes decson rule s

More information

CSC 411 / CSC D11 / CSC C11

CSC 411 / CSC D11 / CSC C11 18 Boostng s a general strategy for learnng classfers by combnng smpler ones. The dea of boostng s to take a weak classfer that s, any classfer that wll do at least slghtly better than chance and use t

More information

Support Vector Machines

Support Vector Machines /14/018 Separatng boundary, defned by w Support Vector Machnes CISC 5800 Professor Danel Leeds Separatng hyperplane splts class 0 and class 1 Plane s defned by lne w perpendcular to plan Is data pont x

More information

Semi-supervised Classification with Active Query Selection

Semi-supervised Classification with Active Query Selection Sem-supervsed Classfcaton wth Actve Query Selecton Jao Wang and Swe Luo School of Computer and Informaton Technology, Beng Jaotong Unversty, Beng 00044, Chna Wangjao088@63.com Abstract. Labeled samples

More information

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks

Other NN Models. Reinforcement learning (RL) Probabilistic neural networks Other NN Models Renforcement learnng (RL) Probablstc neural networks Support vector machne (SVM) Renforcement learnng g( (RL) Basc deas: Supervsed dlearnng: (delta rule, BP) Samples (x, f(x)) to learn

More information

Learning Theory: Lecture Notes

Learning Theory: Lecture Notes Learnng Theory: Lecture Notes Lecturer: Kamalka Chaudhur Scrbe: Qush Wang October 27, 2012 1 The Agnostc PAC Model Recall that one of the constrants of the PAC model s that the data dstrbuton has to be

More information

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester

Admin NEURAL NETWORKS. Perceptron learning algorithm. Our Nervous System 10/25/16. Assignment 7. Class 11/22. Schedule for the rest of the semester 0/25/6 Admn Assgnment 7 Class /22 Schedule for the rest of the semester NEURAL NETWORKS Davd Kauchak CS58 Fall 206 Perceptron learnng algorthm Our Nervous System repeat untl convergence (or for some #

More information

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI

Logistic Regression. CAP 5610: Machine Learning Instructor: Guo-Jun QI Logstc Regresson CAP 561: achne Learnng Instructor: Guo-Jun QI Bayes Classfer: A Generatve model odel the posteror dstrbuton P(Y X) Estmate class-condtonal dstrbuton P(X Y) for each Y Estmate pror dstrbuton

More information

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang

CS 331 DESIGN AND ANALYSIS OF ALGORITHMS DYNAMIC PROGRAMMING. Dr. Daisy Tang CS DESIGN ND NLYSIS OF LGORITHMS DYNMIC PROGRMMING Dr. Dasy Tang Dynamc Programmng Idea: Problems can be dvded nto stages Soluton s a sequence o decsons and the decson at the current stage s based on the

More information

Linear Classification, SVMs and Nearest Neighbors

Linear Classification, SVMs and Nearest Neighbors 1 CSE 473 Lecture 25 (Chapter 18) Lnear Classfcaton, SVMs and Nearest Neghbors CSE AI faculty + Chrs Bshop, Dan Klen, Stuart Russell, Andrew Moore Motvaton: Face Detecton How do we buld a classfer to dstngush

More information

Manning & Schuetze, FSNLP (c)1999, 2001

Manning & Schuetze, FSNLP (c)1999, 2001 page 589 16.2 Maxmum Entropy Modelng 589 Mannng & Schuetze, FSNLP (c)1999, 2001 a decson tree that detects spam. Fndng the rght features s paramount for ths task, so desgn your feature set carefully. Exercse

More information

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU,

Classification. Representing data: Hypothesis (classifier) Lecture 2, September 14, Reading: Eric CMU, Machne Learnng 10-701/15-781, 781, Fall 2011 Nonparametrc methods Erc Xng Lecture 2, September 14, 2011 Readng: 1 Classfcaton Representng data: Hypothess (classfer) 2 1 Clusterng 3 Supervsed vs. Unsupervsed

More information

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING

Department of Computer Science Artificial Intelligence Research Laboratory. Iowa State University MACHINE LEARNING MACHINE LEANING Vasant Honavar Bonformatcs and Computatonal Bology rogram Center for Computatonal Intellgence, Learnng, & Dscovery Iowa State Unversty honavar@cs.astate.edu www.cs.astate.edu/~honavar/

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far Supervsed machne learnng Lnear models Least squares regresson Fsher s dscrmnant, Perceptron, Logstc model Non-lnear

More information

Maximum Likelihood Estimation (MLE)

Maximum Likelihood Estimation (MLE) Maxmum Lkelhood Estmaton (MLE) Ken Kreutz-Delgado (Nuno Vasconcelos) ECE 175A Wnter 01 UCSD Statstcal Learnng Goal: Gven a relatonshp between a feature vector x and a vector y, and d data samples (x,y

More information

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov

9.913 Pattern Recognition for Vision. Class IV Part I Bayesian Decision Theory Yuri Ivanov 9.93 Class IV Part I Bayesan Decson Theory Yur Ivanov TOC Roadmap to Machne Learnng Bayesan Decson Makng Mnmum Error Rate Decsons Mnmum Rsk Decsons Mnmax Crteron Operatng Characterstcs Notaton x - scalar

More information

We present the algorithm first, then derive it later. Assume access to a dataset {(x i, y i )} n i=1, where x i R d and y i { 1, 1}.

We present the algorithm first, then derive it later. Assume access to a dataset {(x i, y i )} n i=1, where x i R d and y i { 1, 1}. CS 189 Introducton to Machne Learnng Sprng 2018 Note 26 1 Boostng We have seen that n the case of random forests, combnng many mperfect models can produce a snglodel that works very well. Ths s the dea

More information

NP-Completeness : Proofs

NP-Completeness : Proofs NP-Completeness : Proofs Proof Methods A method to show a decson problem Π NP-complete s as follows. (1) Show Π NP. (2) Choose an NP-complete problem Π. (3) Show Π Π. A method to show an optmzaton problem

More information

Chapter Newton s Method

Chapter Newton s Method Chapter 9. Newton s Method After readng ths chapter, you should be able to:. Understand how Newton s method s dfferent from the Golden Secton Search method. Understand how Newton s method works 3. Solve

More information

Composite Hypotheses testing

Composite Hypotheses testing Composte ypotheses testng In many hypothess testng problems there are many possble dstrbutons that can occur under each of the hypotheses. The output of the source s a set of parameters (ponts n a parameter

More information

Support Vector Machines

Support Vector Machines Support Vector Machnes Konstantn Tretyakov (kt@ut.ee) MTAT.03.227 Machne Learnng So far So far Supervsed machne learnng Lnear models Non-lnear models Unsupervsed machne learnng Generc scaffoldng So far

More information

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline

Outline. Bayesian Networks: Maximum Likelihood Estimation and Tree Structure Learning. Our Model and Data. Outline Outlne Bayesan Networks: Maxmum Lkelhood Estmaton and Tree Structure Learnng Huzhen Yu janey.yu@cs.helsnk.f Dept. Computer Scence, Unv. of Helsnk Probablstc Models, Sprng, 200 Notces: I corrected a number

More information

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z )

C4B Machine Learning Answers II. = σ(z) (1 σ(z)) 1 1 e z. e z = σ(1 σ) (1 + e z ) C4B Machne Learnng Answers II.(a) Show that for the logstc sgmod functon dσ(z) dz = σ(z) ( σ(z)) A. Zsserman, Hlary Term 20 Start from the defnton of σ(z) Note that Then σ(z) = σ = dσ(z) dz = + e z e z

More information

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition

ENG 8801/ Special Topics in Computer Engineering: Pattern Recognition. Memorial University of Newfoundland Pattern Recognition EG 880/988 - Specal opcs n Computer Engneerng: Pattern Recognton Memoral Unversty of ewfoundland Pattern Recognton Lecture 7 May 3, 006 http://wwwengrmunca/~charlesr Offce Hours: uesdays hursdays 8:30-9:30

More information

CSE 546 Midterm Exam, Fall 2014(with Solution)

CSE 546 Midterm Exam, Fall 2014(with Solution) CSE 546 Mdterm Exam, Fall 014(wth Soluton) 1. Personal nfo: Name: UW NetID: Student ID:. There should be 14 numbered pages n ths exam (ncludng ths cover sheet). 3. You can use any materal you brought:

More information

Learning from Data 1 Naive Bayes

Learning from Data 1 Naive Bayes Learnng from Data 1 Nave Bayes Davd Barber dbarber@anc.ed.ac.uk course page : http://anc.ed.ac.uk/ dbarber/lfd1/lfd1.html c Davd Barber 2001, 2002 1 Learnng from Data 1 : c Davd Barber 2001,2002 2 1 Why

More information

Pattern Classification

Pattern Classification Pattern Classfcaton All materals n these sldes ere taken from Pattern Classfcaton (nd ed) by R. O. Duda, P. E. Hart and D. G. Stork, John Wley & Sons, 000 th the permsson of the authors and the publsher

More information

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks

Internet Engineering. Jacek Mazurkiewicz, PhD Softcomputing. Part 3: Recurrent Artificial Neural Networks Self-Organising Artificial Neural Networks Internet Engneerng Jacek Mazurkewcz, PhD Softcomputng Part 3: Recurrent Artfcal Neural Networks Self-Organsng Artfcal Neural Networks Recurrent Artfcal Neural Networks Feedback sgnals between neurons Dynamc

More information

Week 5: Neural Networks

Week 5: Neural Networks Week 5: Neural Networks Instructor: Sergey Levne Neural Networks Summary In the prevous lecture, we saw how we can construct neural networks by extendng logstc regresson. Neural networks consst of multple

More information

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification

2E Pattern Recognition Solutions to Introduction to Pattern Recognition, Chapter 2: Bayesian pattern classification E395 - Pattern Recognton Solutons to Introducton to Pattern Recognton, Chapter : Bayesan pattern classfcaton Preface Ths document s a soluton manual for selected exercses from Introducton to Pattern Recognton

More information

The big picture. Outline

The big picture. Outline The bg pcture Vncent Claveau IRISA - CNRS, sldes from E. Kjak INSA Rennes Notatons classes: C = {ω = 1,.., C} tranng set S of sze m, composed of m ponts (x, ω ) per class ω representaton space: R d (=

More information

Dynamic Programming! CSE 417: Algorithms and Computational Complexity!

Dynamic Programming! CSE 417: Algorithms and Computational Complexity! Dynamc Programmng CSE 417: Algorthms and Computatonal Complexty Wnter 2009 W. L. Ruzzo Dynamc Programmng, I:" Fbonacc & Stamps Outlne: General Prncples Easy Examples Fbonacc, Lckng Stamps Meater examples

More information

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING

Sampling Theory MODULE VII LECTURE - 23 VARYING PROBABILITY SAMPLING Samplng heory MODULE VII LECURE - 3 VARYIG PROBABILIY SAMPLIG DR. SHALABH DEPARME OF MAHEMAICS AD SAISICS IDIA ISIUE OF ECHOLOGY KAPUR he smple random samplng scheme provdes a random sample where every

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Verson ECE IIT, Kharagpur Lesson 6 Theory of Quantzaton Verson ECE IIT, Kharagpur Instructonal Objectves At the end of ths lesson, the students should be able to:

More information

Spectral Clustering. Shannon Quinn

Spectral Clustering. Shannon Quinn Spectral Clusterng Shannon Qunn (wth thanks to Wllam Cohen of Carnege Mellon Unverst, and J. Leskovec, A. Raaraman, and J. Ullman of Stanford Unverst) Graph Parttonng Undrected graph B- parttonng task:

More information

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 15 Scribe: Jieming Mao April 1, 2013

COS 511: Theoretical Machine Learning. Lecturer: Rob Schapire Lecture # 15 Scribe: Jieming Mao April 1, 2013 COS 511: heoretcal Machne Learnng Lecturer: Rob Schapre Lecture # 15 Scrbe: Jemng Mao Aprl 1, 013 1 Bref revew 1.1 Learnng wth expert advce Last tme, we started to talk about learnng wth expert advce.

More information

Support Vector Machines

Support Vector Machines CS 2750: Machne Learnng Support Vector Machnes Prof. Adrana Kovashka Unversty of Pttsburgh February 17, 2016 Announcement Homework 2 deadlne s now 2/29 We ll have covered everythng you need today or at

More information

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan

Kernels in Support Vector Machines. Based on lectures of Martin Law, University of Michigan Kernels n Support Vector Machnes Based on lectures of Martn Law, Unversty of Mchgan Non Lnear separable problems AND OR NOT() The XOR problem cannot be solved wth a perceptron. XOR Per Lug Martell - Systems

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machne Learnng - Lectures Lecture 1-2: Concept Learnng (M. Pantc Lecture 3-4: Decson Trees & CC Intro (M. Pantc Lecture 5-6: Artfcal Neural Networks (S.Zaferou Lecture 7-8: Instance ased Learnng

More information

Assortment Optimization under MNL

Assortment Optimization under MNL Assortment Optmzaton under MNL Haotan Song Aprl 30, 2017 1 Introducton The assortment optmzaton problem ams to fnd the revenue-maxmzng assortment of products to offer when the prces of products are fxed.

More information

Classification as a Regression Problem

Classification as a Regression Problem Target varable y C C, C,, ; Classfcaton as a Regresson Problem { }, 3 L C K To treat classfcaton as a regresson problem we should transform the target y nto numercal values; The choce of numercal class

More information

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering /

P R. Lecture 4. Theory and Applications of Pattern Recognition. Dept. of Electrical and Computer Engineering / Theory and Applcatons of Pattern Recognton 003, Rob Polkar, Rowan Unversty, Glassboro, NJ Lecture 4 Bayes Classfcaton Rule Dept. of Electrcal and Computer Engneerng 0909.40.0 / 0909.504.04 Theory & Applcatons

More information

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil

Outline. Multivariate Parametric Methods. Multivariate Data. Basic Multivariate Statistics. Steven J Zeil Outlne Multvarate Parametrc Methods Steven J Zel Old Domnon Unv. Fall 2010 1 Multvarate Data 2 Multvarate ormal Dstrbuton 3 Multvarate Classfcaton Dscrmnants Tunng Complexty Dscrete Features 4 Multvarate

More information

Vapnik-Chervonenkis theory

Vapnik-Chervonenkis theory Vapnk-Chervonenks theory Rs Kondor June 13, 2008 For the purposes of ths lecture, we restrct ourselves to the bnary supervsed batch learnng settng. We assume that we have an nput space X, and an unknown

More information

MAXIMUM A POSTERIORI TRANSDUCTION

MAXIMUM A POSTERIORI TRANSDUCTION MAXIMUM A POSTERIORI TRANSDUCTION LI-WEI WANG, JU-FU FENG School of Mathematcal Scences, Peng Unversty, Bejng, 0087, Chna Center for Informaton Scences, Peng Unversty, Bejng, 0087, Chna E-MIAL: {wanglw,

More information

Errors for Linear Systems

Errors for Linear Systems Errors for Lnear Systems When we solve a lnear system Ax b we often do not know A and b exactly, but have only approxmatons  and ˆb avalable. Then the best thng we can do s to solve ˆx ˆb exactly whch

More information

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one)

Why Bayesian? 3. Bayes and Normal Models. State of nature: class. Decision rule. Rev. Thomas Bayes ( ) Bayes Theorem (yes, the famous one) Why Bayesan? 3. Bayes and Normal Models Alex M. Martnez alex@ece.osu.edu Handouts Handoutsfor forece ECE874 874Sp Sp007 If all our research (n PR was to dsappear and you could only save one theory, whch

More information

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata

Multilayer Perceptrons and Backpropagation. Perceptrons. Recap: Perceptrons. Informatics 1 CG: Lecture 6. Mirella Lapata Multlayer Perceptrons and Informatcs CG: Lecture 6 Mrella Lapata School of Informatcs Unversty of Ednburgh mlap@nf.ed.ac.uk Readng: Kevn Gurney s Introducton to Neural Networks, Chapters 5 6.5 January,

More information

p 1 c 2 + p 2 c 2 + p 3 c p m c 2

p 1 c 2 + p 2 c 2 + p 3 c p m c 2 Where to put a faclty? Gven locatons p 1,..., p m n R n of m houses, want to choose a locaton c n R n for the fre staton. Want c to be as close as possble to all the house. We know how to measure dstance

More information

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law:

Introduction to Vapor/Liquid Equilibrium, part 2. Raoult s Law: CE304, Sprng 2004 Lecture 4 Introducton to Vapor/Lqud Equlbrum, part 2 Raoult s Law: The smplest model that allows us do VLE calculatons s obtaned when we assume that the vapor phase s an deal gas, and

More information

Supporting Information

Supporting Information Supportng Informaton The neural network f n Eq. 1 s gven by: f x l = ReLU W atom x l + b atom, 2 where ReLU s the element-wse rectfed lnear unt, 21.e., ReLUx = max0, x, W atom R d d s the weght matrx to

More information

Société de Calcul Mathématique SA

Société de Calcul Mathématique SA Socété de Calcul Mathématque SA Outls d'ade à la décson Tools for decson help Probablstc Studes: Normalzng the Hstograms Bernard Beauzamy December, 202 I. General constructon of the hstogram Any probablstc

More information

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang /

CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors. Furong Huang / CMSC 422 Introduction to Machine Learning Lecture 4 Geometry and Nearest Neighbors Furong Huang / furongh@cs.umd.edu What we know so far Decision Trees What is a decision tree, and how to induce it from

More information

CS246: Mining Massive Datasets Jure Leskovec, Stanford University

CS246: Mining Massive Datasets Jure Leskovec, Stanford University CS246: Mnng Massve Datasets Jure Leskovec, Stanford Unversty http://cs246.stanford.edu 2/19/18 Jure Leskovec, Stanford CS246: Mnng Massve Datasets, http://cs246.stanford.edu 2 Hgh dm. data Graph data Infnte

More information

Support Vector Machines CS434

Support Vector Machines CS434 Support Vector Machnes CS434 Lnear Separators Many lnear separators exst that perfectly classfy all tranng examples Whch of the lnear separators s the best? + + + + + + + + + Intuton of Margn Consder ponts

More information

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 4: Regulariza5on, Sparsity & Lasso

Machine Learning & Data Mining CS/CNS/EE 155. Lecture 4: Regulariza5on, Sparsity & Lasso Machne Learnng Data Mnng CS/CS/EE 155 Lecture 4: Regularza5on, Sparsty Lasso 1 Recap: Complete Ppelne S = {(x, y )} Tranng Data f (x, b) = T x b Model Class(es) L(a, b) = (a b) 2 Loss Func5on,b L( y, f

More information

Clustering gene expression data & the EM algorithm

Clustering gene expression data & the EM algorithm CG, Fall 2011-12 Clusterng gene expresson data & the EM algorthm CG 08 Ron Shamr 1 How Gene Expresson Data Looks Entres of the Raw Data matrx: Rato values Absolute values Row = gene s expresson pattern

More information

Relevance Vector Machines Explained

Relevance Vector Machines Explained October 19, 2010 Relevance Vector Machnes Explaned Trstan Fletcher www.cs.ucl.ac.uk/staff/t.fletcher/ Introducton Ths document has been wrtten n an attempt to make Tppng s [1] Relevance Vector Machnes

More information