Heating effects on the structure of noise sources of high-speed jets

Size: px
Start display at page:

Download "Heating effects on the structure of noise sources of high-speed jets"

Transcription

1 47th AIAA Aerospace Sciences Meeting Including The New Horizons Forum and Aerospace Exposition 5-8 January 2009, Orlando, Florida AIAA th Aerospace Sciences Meeting and Exhibit 5 8 January 2009, Reno, NV Heating effects on the structure of noise sources of high-speed jets Daniel J. Bodony Department of Aerospace Engineering University of Illinois at Urbana-Champaign Urbana, IL The noise from hot, high-speed jets is not yet fully understood. Predictive models, such as JeNo from NASA Glenn, face difficulties in constructing an effective closure strategy that correctly accounts for changes in the sound sources with heating. By utilizing two databases from a large-eddy simulation of an acoustic Mach number 1.47 jet the Lighthill sound sources are analyzed in detail with respect to changes with heating. It is shown that the individual components of the Lighthill stress tensor are tightly coupled, implying they are difficult to model separately. An alternative form of Lighthill s stress tensor which attempts to more usefully isolate the various effects is presented, but is shown to be only partially successful. A form of the acoustic analogy developed by Ffowcs Williams is also applied and it is found that the noise radiated to the 30 degree aft angle is dominated by the term [ u r / ] ρ/, which is linear in the density. Introduction It is known that the sound emitted by a turbulent jet is a function of both its Mach number and of its temperature. For low speed jets with fixed acoustic Mach number M a = U j /a < 0.7, heating increases the radiated sound while, for higher speed jets, heating decreases the sound. 1, 2 Several theoretical explanations for these observations exist but none are universally accepted. 2 4 In the context of Lighthill s acoustic analogy 5 the heating effects on the noise source are often associated with the so-called entropy term, [p p a 2 (ρ ρ )]δ i j. Lilley 6 rearranged this term into an alternative form γ 1 [ ( )] 2 ρu ku k + a 2 h h s ρu k dt δ i j } {{ } x k h } {{ } term I term II where the enthalpy fluctuations are more closely tied the source structure. In high-speed heated jets it has been shown 7, 8 that, indeed, the enthalpy source term does increase with heating. However, those investigations also suggest that the effects of heating are not solely tied to the enthalpy fluctuations but, instead, alter the spatial and temporal structure of the source. The objective of this paper is, thus, to examine the changes which occur in the noise sources due to heating, while keeping the jet velocity constant. To do this the LES database of Ref. 9 will be used and post-processed using the methods described below. As there is not yet one accepted aeroacoustic theory, initially we choose to consider the source described by Lighthill. 5 In particular the roles ofρ and T, the density and temperature fluctuations, will be highlighted as much as feasible. I. LES database of Bodony & Lele Large-eddy simulations were carried out in cylindrical coordinates for the filtered, compressible equations of motion using Reynolds-averaged variables in a 31 diameters in the axial direction and 25 diameters in the radial AIAA member.bodony@illinois.edu Copyright c 2009 by D. J. Bodony. Published by the American Institute of Aeronautics and Astronautics, Inc. with permission. Copyright 2009 by Daniel J. Bodony. Published by the American American Institute Instituteof ofaeronautics Aeronauticsand andastronautics, AstronauticsInc., Paper with permission. 1 of 5

2 direction. The dynamic Smagorinsky model 10 was used to close the subgrid scale stresses. Sixth order optimized compact finite difference schemes were used in the radial and axial directions; Fourier-spectral differencing was used in the azimuthal direction. Time integration used a low-dispersion, low-dissipation Runge-Kutta scheme. 11 Forcing and absorbing sponges 12 provide boundary conditions on the computational boundaries. For all boundaries the sponges absorb, without reflection, the outgoing vortical, entropic, and acoustic waves. At the inflow boundary the sponge also induces jet unsteadiness by forcing disturbances formed by a normal-mode solution of the linearized stability equations for a spatially-growing disturbance, on the inflow mean flow profile. Azimuthal mode number combinations, including n = ±1,..., ±4, are random walked in time to provide approximate broadband forcing without generating unphysical noise; the axisymmetric mode was not explicitly forced. The forcing amplitude, when summed over all modes, was u rms /U j = Consequences of this type of inflow condition are discussed in Bodony ( & Lele. [ 13 { }]) The initial mean flow profile, specified at x/r 0 = 0, was of the form U/U j = tanh 1 r 4θ 0 r 0 r 0 r. whereθ0, the initial momentum thickness, is a parameter. In all calculationsθ 0 /D j = Assuming constant static pressure, fixed stagnation temperature and known jet centerline temperature the density was found from the equation of state of an ideal gas. The reference solution used in the sponge zones was found from Reynolds-averaged Navier-okes solutions of the parabolized Navier-okes equations using the v 2 - f turbulence model. A Kirchhoff surface was used to extrapolate the sound field to the far-field. II. Modified Lighthill s analogy results It was shown in Ref. 13 that interpreting the Lighthill stress tensor, T i j =ρu i u j + [(p p ) a 2 (ρ ρ )]δ i j (1) as the sum of two independent sources was not feasible for high-speed jets, regardless of being heated. For, in the far-field, the individual spectra ofρu i u j and of the so-called entropy term did not resemble that of the overall far-field pressure. As a consequence there was significant cancellation between the two, such that they could not be considered independent. Part of the reason was the increased role ofρ andρ, the time-averaged density, and the near sonic speed of the jets which allowedρ u 2 x a 2 ρ. An attempt to make more independent the terms of T i j was made based on previous work 6, 14, 15 on separatingρ from T. The result is an equivalent form of T i j given by (assuming an ideal gas) { T i j =ρ u i u j γ 1 } ( 2 u ku k δ i j (ρ ρ ) a 2 δ i j + a2 ρ T 0 ρ ) T δ i j (2) γt ρ where T 0 = T[1+{(γ 1)/2}M 2 ] is the temperature and T is the ambient fluid temperature. In this form bothρ andρt 0 are more isolated, but not completely. ThatρT 0 changes with heating is shown in Fig. 1. Note that for the hot jetρ and T 0 are almost completely out of phase. The far-field predictions using Eq. (2) are shown in Fig. 2 for observers at 30 and rees. In the figure the labels, term B, and refer to the first, second, and third bracketed expression in Eq. (2), respectively. At both angles terms B and C are of the same amplitude over the available frequency range of , with an amount of phase difference that decreases with frequency indicating that, at low frequencies, terms B and C are strongly dependent. For both angles, is of the same amplitude as the combined term B+C, but with a phase difference that depends on angle. At 30 degrees there is an increasing amount of phase cancellation with increasing frequency, again suggesting that the terms cannot be treated independently, but at rees they are more independent, with their sum being slightly less than their individual contributions. For the 30 degree observer note that has a spectral shape that is unlike the, as was found earlier by Bodony & Lele 13 for the conventional expression for T i j. As argued in Ref. 13 this is a consequence of containing the productρu i u j and the selection by the free space Green s function for the componentρu x u x to contribute essentially to this observer. The result is that for high-speed jets, where compressibility effects on turbulence is important, theρ u 2 x contribution is non-negligible and, since u x a over a large region of the jet, the temporal spectral shape of the overall sound is found by significant cancellation betweenρu i u j and the other terms. This conclusion also holds for the far-field form of analogy using the second time derivative of T rr, the component of T i j in the direction of the observer. 2 of 5

3 6 5 Lipline 6 5 Centerline Phase of ρt Hot Cold Phase of ρt Hot Cold Figure 1: Phase ofρ-t 0 correlation taken at the maximum velocity fluctuation point deg term B term B+ Kirchhoff term B Kirchhoff term B+C 100 Figure 2: Far-field sound predictions using alternative form of T i j, given in Eq. (2). 3 of 5

4 III. Ffowcs Williams s analogy results The apparent necessity of strong inter-term dependency for T i j due to the presence ofρu i u j suggests that if one is interested in modeling the noise sources more independently, one cannot choose sources with that kind of nonlinearity. An alternative form of T i j which avoids this issue was derived by Ffowcs Williams in the context of Mach waves emitted from shear layers 16 to highlight the amplifying role the velocity gradient tensor. The result was an exact rearrangement of T i j in the far-field, with the expression for the density fluctuations given by {ρ ρ 0 }(x, t)= 1 4πa 2 0 V {[ (a 0 u r ) ρ ρ u r (ρu r) ]} dy (3) where a subscript r denotes in the direction of the observer. It will be observed thatρu i u j does not appear in Eq. (3). Indeed only a quadratic non-linearity appears in the last term, the first two terms being linear in the density. Application of Eq. (3) is shown in Fig. 3 for the cold jet and in Fig. 4 for the hot jet. In these figures we observe that terms A and C, which are first and last terms in Eq. (3), are very nearly identical over the entire range of frequencies, with a significant amount of cancelation. In contrast, the middle term proportional to [ u r / ] ρ/, which is strictly linear in the density, is more closely related to the sound pressure spectrum for three of the four observation points; at rees for the hot jet it is not dominant. There is some amount of cancellation between this term on the sum of terms A and C but, evidently, the velocity gradient-weight density is important and a useful indicator of the far-field spectrum for these jets deg Kirchhoff surface + Kirchhoff surface Figure 3: Ffowcs Williams analogy applied to the cold jet. The direct connection between the near-field density and the far-field pressure is, of course, not a new idea. Panda, 15 for example, found similar correlation betweenρ measurements in the jet and far-field measurements of p. However, what is useful is the fact that a linear source was, in some cases, dominant. It is not yet clear what this observation means in detail, however we can note that, from the continuity equation one can derive ρ = ρ u u ρ { 1 = ρ a 2 [ 1 2 u u u 2 1 ρ ]} p u ρ+o(re 1 D ) which relates the linear time derivative of the density to convective non-linearities. (4) IV. Conclusions Observations of the far-field spectra for two high-speed jets at the same velocities but at different temperatures suggested that the inter-dependence of the terms within T i j was a consequence of compressibility and not due to flowsound interaction. The dependence stemmed from theρu i u j term and an alternative form of T i j, which included this 4 of 5

5 deg + Kirchhoff surface 100 Figure 4: Ffowcs Williams analogy applied to the hot jet. term but better isolated the density, also exhibit a strong inter-term dependence. When the traditional form of T i j was replaced by an equivalent (in the far-field) expression due to Ffowcs Williams 16 which had terms linear inρamore useful source decomposition resulted in which cross-term dependancy was reduced. Acknowledgements This work is supported by NASA grant number NNX07AC86A, Cliff Brown and James Bridges program managers. Additional support by the University of Illinois Center for Simulation of Advanced Rockets research program, supported by the US Department of Energy through the University of California under subcontract B523819, is gratefully acknowledged. References 1 Tanna, H. K., An Experimental udy of Jet Noise Part I: Turbulent Mixing Noise, J. Sound Vib., Vol. 50, No. 3, 1977, pp Viswanathan, K., Aeroacoustics of Hot Jets, J. Fluid Mech., Vol. 516, 2004, pp Morfey, C. L., Szewczyk, V. M., and Tester, B. J., New scaling laws for hot and cold jet mixing noise based on a geometric acoustics model, J. Sound Vib., Vol. 61, No. 2, 1978, pp Lilley, G. M., The radiated noise from isotropic turbulence with applications to the theory of jet noise, J. Sound Vib., Vol. 190, No. 3, 1996, pp Lighthill, M. J., On sound generated aerodynamically I. General theory, Proc. R. Soc. London A, Vol. 211, 1952, pp Lilley, G. M., On the noise from jets, Tech. Rep. AGARD CP-131, March Bodony, D. J. and Lele, S. K., Generation of Low Frequency Sound in Turbulent Jets, AIAA Paper , Presented at the 11th AIAA/CEAS Aeroacoustics Conference and Exhibit, Monterey, CA, Bodony, D. J. and Lele, S. K., Low Frequency Sound Sources in High-Speed Turbulent Jets, J. Fluid Mech., Vol. 617, 2008, pp Bodony, D. J. and Lele, S. K., On Using Large-Eddy Simulation for the Prediction of Noise from Cold and Heated Turbulent Jets, Phys. Fluids, Vol. 17, No , Germano, M., Piomelli, U., Moin, P., and Cabot, W. H., A dynamic subgrid-scale eddy viscosity model, Phys. Fluids A, Vol. 3, No. 7, 1991, pp anescu, D. and Habashi, W. G., 2N-orage low dissipation and dispersion Runge-Kutta schemes for computational aeroacoustics, J. Comp. Phys., Vol. 143, 1998, pp Bodony, D. J., Analysis of Sponge Zones for Computational Fluid Mechanics, J. Comp. Phys., Vol. 212, 2006, pp Bodony, D. J. and Lele, S. K., Current status of jet noise predictions using large-eddy simulation, AIAA J., Vol. 46, No. 2, Antonia, R. A. and Van Atta, C. W., On the correlation between temperature and velocity dissipation fields in a heated turbulent jet, J. Fluid Mech., Vol. 67, No. 2, 1975, pp Panda, J., Experimental investigation of turbulent density fluctuations and noise generation from heated jets, J. Fluid Mech., Vol. 591, 2007, pp Ffowcs Williams, J. E. and Maidanik, G., The mach wave field radiated by supersonic turbulent shear flows, J. Fluid Mech., Vol. 21, No. 4, 1965, pp of 5

Ray traces through unsteady jet turbulence

Ray traces through unsteady jet turbulence aeroacoustics volume 1 number 1 2002 pages 83 96 83 Ray traces through unsteady jet turbulence J. B. Freund 1 and T. G. Fleischman 2 1 Theoretical and Applied Mechanics, University of Illinois at Urbana-Champaign

More information

Journal of Computational Physics 157, (2000) doi: /jcph , available online at

Journal of Computational Physics 157, (2000) doi: /jcph , available online at Journal of Computational Physics 157, 796 800 000) doi:10.1006/jcph.1999.639, available online at http://www.idealibrary.com on NOTE A Simple Method for Computing Far-Field Sound in Aeroacoustic Computations

More information

Investigation of Noise Sources in Turbulent Hot Jets using Large Eddy Simulation Data

Investigation of Noise Sources in Turbulent Hot Jets using Large Eddy Simulation Data 45th AIAA Aerospace Sciences Meeting and Exhibit 8-11 January 2007, Reno, Nevada AIAA 2007-16 45th AIAA Aerospace Sciences Meeting and Exhibit, January 8-11, 2007, Reno, NV., USA. Investigation of Noise

More information

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets

Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Journal of Scientific Computing, Vol. 21, No. 3, December 2004 ( 2004) Application of Compact Schemes to Large Eddy Simulation of Turbulent Jets Ali Uzun, 1 Gregory A. Blaisdell, 2 and Anastasios S. Lyrintzis

More information

Post-processing of large-eddy simulations for jet noise predictions

Post-processing of large-eddy simulations for jet noise predictions Center for Turbulence Research Annual Research Briefs 2009 7 Post-processing of large-eddy simulations for jet noise predictions By S. Mendez, M. Shoeybi, A. Sharma, S. K. Lele AND P. Moin. Motivation

More information

RANS-Based Noise Predictions of Jets with Internal Forced Mixers *

RANS-Based Noise Predictions of Jets with Internal Forced Mixers * 12th AIAA/CEAS Aeroacoustics Conference (27th AIAA Aeroacoustics Conference) 8-10 May 2006, Cambridge, Massachusetts AIAA 2006-2599 RANS-Based Noise Predictions of Jets with Internal Forced Mixers * L.A.

More information

Vasily A. Semiletov 1 and Sergey A. Karabasov 2 Queen Mary University of London, Mile End Rd, London, E1 4NS, UK. Abstract

Vasily A. Semiletov 1 and Sergey A. Karabasov 2 Queen Mary University of London, Mile End Rd, London, E1 4NS, UK. Abstract Adjoint Linearised Euler solver and Source Modelling for Goldstein acoustic analogy equations for 3D jet flow problems: verification and capability study Vasily A. Semiletov 1 and Sergey A. Karabasov 2

More information

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE

FEDSM COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET IMPINGEMENT ON A FLAT PLATE WITH/WITHOUT HOLE Proceedings of FEDSM2007: 5 th Joint ASME/JSME Fluids Engineering Conference July 30-August 2, 2007, San Diego, CA, USA FEDSM2007-37563 COMPUTATIONAL AEROACOUSTIC ANALYSIS OF OVEREXPANDED SUPERSONIC JET

More information

An evaluation of a conservative fourth order DNS code in turbulent channel flow

An evaluation of a conservative fourth order DNS code in turbulent channel flow Center for Turbulence Research Annual Research Briefs 2 2 An evaluation of a conservative fourth order DNS code in turbulent channel flow By Jessica Gullbrand. Motivation and objectives Direct numerical

More information

Computations of Nonlinear Propagation of Sound Emitted from High Speed Mixing Layers

Computations of Nonlinear Propagation of Sound Emitted from High Speed Mixing Layers The Open Acoustics Journal, 2010, 3, 11-20 11 Open Access Computations of Nonlinear Propagation of Sound Emitted from High Speed Mixing Layers J. Punekar 1, E.J. Avital *,1 and R.E. Musafir 2 1 School

More information

On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra

On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra On Theoretical Broadband Shock-Associated Noise Near-Field Cross-Spectra Steven A. E. Miller The National Aeronautics and Space Administration NASA Langley Research Center Aeroacoustics Branch AIAA Aeroacoustics

More information

Over-expansion Effects on Mach 3.0 Supersonic Jet Acoustics

Over-expansion Effects on Mach 3.0 Supersonic Jet Acoustics 14th AIAA/CEAS Aeroacoustics Conference (29th AIAA Aeroacoustics Conference) 5-7 May 28, Vancouver, British Columbia Canada AIAA 28-286 Over-expansion Effects on Mach. Supersonic Jet Acoustics Taku Nonomura

More information

An evaluation of LES for jet noise prediction

An evaluation of LES for jet noise prediction Center for Turbulence Research Proceedings of the Summer Program 2002 5 An evaluation of LES for jet noise prediction By B. Rembold, J. B. Freund AND M. Wang Large-eddy simulation (LES) is an attractive

More information

Computational Aeroacoustics

Computational Aeroacoustics Computational Aeroacoustics Simple Sources and Lighthill s Analogy Gwénaël Gabard Institute of Sound and Vibration Research University of Southampton, UK gabard@soton.ac.uk ISVR, University of Southampton,

More information

Parabolized Stability Analysis of Jets Issuing from Serrated Nozzles

Parabolized Stability Analysis of Jets Issuing from Serrated Nozzles Parabolized Stability Analysis of Jets Issuing from Serrated Nozzles Aniruddha Sinha, Hao Xia and Tim Colonius Abstract Jets issuing from serrated nozzles have a correspondingly serrated timeaveraged flow

More information

3-D Large Eddy Simulation for Jet Aeroacoustics

3-D Large Eddy Simulation for Jet Aeroacoustics 3-D Large Eddy Simulation for Jet Aeroacoustics A. Uzun, G. A. Blaisdell, and A. S. Lyrintzis School of Aeronautics and Astronautics Purdue University West Lafayette, IN 4797 We present 3-D Large Eddy

More information

8th AIAA/CEAS Aeroacoustics Conference June 17 19, 2002 Breckenridge, CO

8th AIAA/CEAS Aeroacoustics Conference June 17 19, 2002 Breckenridge, CO AIAA 598 Recent Progress Towards a Large Eddy Simulation Code for Jet Aeroacoustics A. Uzun, G. A. Blaisdell, and A. S. Lyrintzis School of Aeronautics and Astronautics Purdue University West Lafayette,

More information

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration

Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration 1 Numerical Investigation of the Transonic Base Flow of A Generic Rocket Configuration A. Henze, C. Glatzer, M. Meinke, W. Schröder Institute of Aerodynamics, RWTH Aachen University, Germany March 21,

More information

Parabolized stability equation models of large-scale jet mixing noise

Parabolized stability equation models of large-scale jet mixing noise Procedia Engineering Procedia Engineering 00 (2010) 1 8 IUTAM Symposium on Computational Aero-Acoustics for Aircraft Noise Prediction Parabolized stability equation models of large-scale jet mixing noise

More information

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions

Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions June 30 - July 3, 2015 Melbourne, Australia 9 P-26 Large eddy simulation of turbulent flow over a backward-facing step: effect of inflow conditions Jungwoo Kim Department of Mechanical System Design Engineering

More information

IMPLEMENTING THE FFOWCS WILLIAMS AND HAWKINGS ACOUSTIC ANALOGY IN ANTARES

IMPLEMENTING THE FFOWCS WILLIAMS AND HAWKINGS ACOUSTIC ANALOGY IN ANTARES IMPLEMENTING THE FFOWCS WILLIAMS AND HAWKINGS ACOUSTIC ANALOGY IN ANTARES Danilo Di Stefano, Aldo Rona, Edward Hall Department of Engineering, University of Leicester, University Road, LE1 7RH, Leicester,

More information

Large Eddy Simulation of Three-Stream Jets

Large Eddy Simulation of Three-Stream Jets Large Eddy Simulation of Three-Stream Jets J. Xiong 1, F. Liu 2, and D. Papamoschou 3 University of California, Irvine, Irvine, CA, 92697 We present a computational study of three-stream jets simulating

More information

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers

Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers Computational Fluid Dynamics Analysis of Jets with Internal Forced Mixers L. A. Garrison A. S. Lyrintzis G. A. Blaisdell Purdue University, West Lafayette, IN, 47907, USA W. N. Dalton Rolls-Royce Corporation,

More information

Parabolized Stability Equation Models for Turbulent Jets and Their Radiated Sound

Parabolized Stability Equation Models for Turbulent Jets and Their Radiated Sound 15th AIAA/CEAS Aeroacoustics Conference (3th AIAA Aeroacoustics Conference) 11-13 May 29, Miami, Florida AIAA 29-33 Parabolized Stability Equation Models for Turbulent Jets and Their Radiated Sound Kristjan

More information

On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations

On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations Under consideration for publication in International Journal of Aeroacoustics On the use of the Ffowcs Williams-Hawkings equation to predict far-field jet noise from large-eddy simulations By S. Mendez,

More information

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray

Anisotropic grid-based formulas. for subgrid-scale models. By G.-H. Cottet 1 AND A. A. Wray Center for Turbulence Research Annual Research Briefs 1997 113 Anisotropic grid-based formulas for subgrid-scale models By G.-H. Cottet 1 AND A. A. Wray 1. Motivations and objectives Anisotropic subgrid-scale

More information

Anisotropic Formulation of the Velocity Correlation Tensor

Anisotropic Formulation of the Velocity Correlation Tensor Internal eport 4/2 Anisotropic Formulation of the Velocity Correlation Tensor Mattias Billson, Lars-Erik Eriksson, Peter ordan and Lars Davidson Division of Thermo and Fluid Dynamics Department of Mechanical

More information

ANALYSIS OF JET SHEAR LAYER SELF-SUSTAINED INSTABILITY EFFECTS ON THE INFLOW CONDITIONS

ANALYSIS OF JET SHEAR LAYER SELF-SUSTAINED INSTABILITY EFFECTS ON THE INFLOW CONDITIONS 22nd International Congress of Mechanical Engineering COBEM 2013) November 3-7, 2013, Ribeirão Preto, SP, Brazil Copyright c 2013 by ABCM ANALYSIS OF JET SHEAR LAYER SELF-SUSTAINED INSTABILITY EFFECTS

More information

Jet Noise Analysis of a Mixed Turbofan Engine

Jet Noise Analysis of a Mixed Turbofan Engine Jet Noise Analysis of a Mixed Turbofan Engine Jens TRÜMNER 1 ; Christian MUNDT 2 1,2 Institute for Thermodynamics, UniBw München, Germany ABSTRACT Due to constantly increasing flight traffic the aircraft

More information

[N175] Development of Combined CAA-CFD Algorithm for the Efficient Simulation of Aerodynamic Noise Generation and Propagation

[N175] Development of Combined CAA-CFD Algorithm for the Efficient Simulation of Aerodynamic Noise Generation and Propagation The 32nd International Congress and Exposition on Noise Control Engineering Jeju International Convention Center, Seogwipo, Korea, August 25-28, 2003 [N175] Development of Combined CAA-CFD Algorithm for

More information

Turbulence and Aeroacoustics Research Team of the Centre Acoustique Laboratoire des Fluides et d Acoustique UMR CNRS 5509, Ecole Centrale de Lyon MUSAF II Colloquium Toulouse, September 2013 Ö Ø ÓÑÔÙØ

More information

Modeling Jet Noise from Organized Structures using Near-Field Hydrodynamic Pressure

Modeling Jet Noise from Organized Structures using Near-Field Hydrodynamic Pressure th AIAA/CEAS Aeroacoustics Conference (th AIAA Aeroacoustics Conference) - May, Monterey, California AIAA -9 Modeling Jet Noise from Organized ructures using Near-Field Hydrodynamic Pressure R. Reba and

More information

Aeroacoustics, Launcher Acoustics, Large-Eddy Simulation.

Aeroacoustics, Launcher Acoustics, Large-Eddy Simulation. Seventh International Conference on Computational Fluid Dynamics (ICCFD7), Big Island, Hawaii, July 9-13, 2012 ICCFD7-2012-3104 ICCFD7-3104 Analysis of Acoustic Wave from Supersonic Jets Impinging to an

More information

fluctuations based on the resolved mean flow

fluctuations based on the resolved mean flow Temperature Fluctuation Scaling in Reacting Boundary Layers M. Pino Martín CTR/NASA Ames, Moffett Field, CA 94035 Graham V. Candler Aerospace Engineering and Mechanics University of Minnesota, Minneapolis,

More information

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION

CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION CHAPTER 7 SEVERAL FORMS OF THE EQUATIONS OF MOTION 7.1 THE NAVIER-STOKES EQUATIONS Under the assumption of a Newtonian stress-rate-of-strain constitutive equation and a linear, thermally conductive medium,

More information

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS

LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS The 6th ASME-JSME Thermal Engineering Joint Conference March 6-, 3 TED-AJ3-3 LARGE EDDY SIMULATION OF MASS TRANSFER ACROSS AN AIR-WATER INTERFACE AT HIGH SCHMIDT NUMBERS Akihiko Mitsuishi, Yosuke Hasegawa,

More information

Predicting natural transition using large eddy simulation

Predicting natural transition using large eddy simulation Center for Turbulence Research Annual Research Briefs 2011 97 Predicting natural transition using large eddy simulation By T. Sayadi AND P. Moin 1. Motivation and objectives Transition has a big impact

More information

Semi-Empirical Prediction of Noise from Non-Zero Pressure Gradient Turbulent Boundary Layers

Semi-Empirical Prediction of Noise from Non-Zero Pressure Gradient Turbulent Boundary Layers Semi-Empirical Prediction of Noise from Non-Zero Pressure Gradient Turbulent Boundary Layers S. A. E. Miller University of Florida Department of Mechanical and Aerospace Engineering Theoretical Fluid Dynamics

More information

Direct numerical simulation of a turbulent reacting jet

Direct numerical simulation of a turbulent reacting jet Center for Turbulence Research Annual Research Briefs 999 59 Direct numerical simulation of a turbulent reacting jet By B. J. Boersma. Motivation and objectives Turbulent reacting jets are important in

More information

Computational Investigations of High-Speed Dual-Stream Jets

Computational Investigations of High-Speed Dual-Stream Jets 9th AIAA/CEAS Aeroacoustics Conference and Exhibit -4 May 3, Hilton Head, South Carolina AIAA 3-33 Computational Investigations of High-Speed Dual-Stream Jets Nicholas J. Georgiadis * National Aeronautics

More information

41st Aerospace Sciences Meeting and Exhibit 6-9 January 2003, Reno, Nevada Modeling shock unsteadiness in shock/turbulence interaction

41st Aerospace Sciences Meeting and Exhibit 6-9 January 2003, Reno, Nevada Modeling shock unsteadiness in shock/turbulence interaction 4st Aerospace Sciences Meeting and Exhibit 6-9 January 003, Reno, Nevada Modeling shock unsteadiness in shock/turbulence interaction AIAA 003-65 Krishnendu Sinha*, Krishnan Mahesh and Graham V. Candler

More information

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue

Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue 11 Basic Features of the Fluid Dynamics Simulation Software FrontFlow/Blue Yang GUO*, Chisachi KATO** and Yoshinobu YAMADE*** 1 FrontFlow/Blue 1) is a general-purpose finite element program that calculates

More information

APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM

APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM AIAA 2003-3693 APPLICATION OF SPACE-TIME MAPPING ANALYSIS METHOD TO UNSTEADY NONLINEAR GUST-AIRFOIL INTERACTION PROBLEM Vladimir V. Golubev* and Axel Rohde Embry-Riddle Aeronautical University Daytona

More information

High-order numerical methods for LES of turbulent flows with shocks

High-order numerical methods for LES of turbulent flows with shocks Center for Turbulence Research Annual Research Briefs 04 89 High-order numerical methods for LES of turbulent flows with shocks By D. Kotov, H.C. Yee, A. Hadjadj, A. Wray AND B. Sjögreen. Motivation and

More information

Local correlations for flap gap oscillatory blowing active flow control technology

Local correlations for flap gap oscillatory blowing active flow control technology Local correlations for flap gap oscillatory blowing active flow control technology Cătălin NAE* *Corresponding author INCAS - National Institute for Aerospace Research Elie Carafoli Bdul Iuliu Maniu 0,

More information

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows

On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows Center for Turbulence Research Annual Research Briefs 1998 267 On the feasibility of merging LES with RANS for the near-wall region of attached turbulent flows By Jeffrey S. Baggett 1. Motivation and objectives

More information

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate

On the aeroacoustic tonal noise generation mechanism of a sharp-edged. plate On the aeroacoustic tonal noise generation mechanism of a sharp-edged plate Danielle J. Moreau, Laura A. Brooks and Con J. Doolan School of Mechanical Engineering, The University of Adelaide, South Australia,

More information

Aeroacoustic and Aerodynamics of Swirling Flows*

Aeroacoustic and Aerodynamics of Swirling Flows* Aeroacoustic and Aerodynamics of Swirling Flows* Hafiz M. Atassi University of Notre Dame * supported by ONR grant and OAIAC OVERVIEW OF PRESENTATION Disturbances in Swirling Flows Normal Mode Analysis

More information

DNS, LES, and wall-modeled LES of separating flow over periodic hills

DNS, LES, and wall-modeled LES of separating flow over periodic hills Center for Turbulence Research Proceedings of the Summer Program 4 47 DNS, LES, and wall-modeled LES of separating flow over periodic hills By P. Balakumar, G. I. Park AND B. Pierce Separating flow in

More information

Curriculum Vitae of Sergio Pirozzoli

Curriculum Vitae of Sergio Pirozzoli Curriculum Vitae of Sergio Pirozzoli Address University of Rome La Sapienza Department of Mechanical and Aerospace Engineering Via Eudossiana 18 00184, Roma Contact tel.: +39 06 44585202 fax : +39 06 4881759

More information

Computational issues and algorithm assessment for shock/turbulence interaction problems

Computational issues and algorithm assessment for shock/turbulence interaction problems University of Nebraska - Lincoln DigitalCommons@University of Nebraska - Lincoln NASA Publications National Aeronautics and Space Administration 2007 Computational issues and algorithm assessment for shock/turbulence

More information

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace

Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Tutorial School on Fluid Dynamics: Aspects of Turbulence Session I: Refresher Material Instructor: James Wallace Adapted from Publisher: John S. Wiley & Sons 2002 Center for Scientific Computation and

More information

Introduction of compressible turbulence

Introduction of compressible turbulence Introduction of compressible turbulence 1 Main topics Derive averaged equations for compressible turbulence Introduce a math. technique to perform averaging in presence of density variation Favre average

More information

Lift-Off Acoustics Predictions for the Ares I Launch Pad

Lift-Off Acoustics Predictions for the Ares I Launch Pad 15th AIAA/CEAS Aeroacoustics Conference (30th AIAA Aeroacoustics Conference) 11-13 May 2009, Miami, Florida AIAA 2009-3163 Lift-Off Acoustics Predictions for the Ares I Launch Pad Kenneth J. Plotkin *

More information

Sound generation in a mixing layer

Sound generation in a mixing layer J. Fluid Mech. (1997), vol. 330, pp. 375 409 Copyright c 1997 Cambridge University Press 375 Sound generation in a mixing layer By TIM COLONIUS 1, SANJIVA K. LELE 2 AND PARVIZ MOIN 2 1 Division of Engineering

More information

Turbulence models and excitation of solar oscillation modes

Turbulence models and excitation of solar oscillation modes Center for Turbulence Research Annual Research Briefs Turbulence models and excitation of solar oscillation modes By L. Jacoutot, A. Wray, A. G. Kosovichev AND N. N. Mansour. Motivation and objectives

More information

Sound generation in the interaction of two isentropic vortices

Sound generation in the interaction of two isentropic vortices Sound generation in the interaction of two isentropic vortices Shuhai Zhang 1, Hanxin Zhang 2 and Chi-Wang Shu 3 Summary: Through direct numerical simulation (DNS) for the sound generated by the interaction

More information

Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data

Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data 45th AIAA Aerospace Science Meeting and Exhibit, January 8 11, 25/Reno, Nevada Analysis of Shock Motion in STBLI Induced by a Compression Ramp Configuration Using DNS Data M. Wu and M.P. Martin Mechanical

More information

On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows

On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows PHYSICS OF FLUIDS VOLUME 11, NUMBER 5 MAY 1999 On the relationship between the mean flow and subgrid stresses in large eddy simulation of turbulent shear flows L. Shao a) Laboratoire de Mécanique des Fluides

More information

Stefano Rolfo, Charles Moulinec and David R. Emerson. Scientific Computing Department, STFC Daresbury Laboratory, Warrington

Stefano Rolfo, Charles Moulinec and David R. Emerson. Scientific Computing Department, STFC Daresbury Laboratory, Warrington Implementation of a highly scalable aeroacoustic module based on the Ffowcs-Williams and Hawkings analogy within the open-source CFD software Code_Saturne Stefano Rolfo, Charles Moulinec and David R. Emerson

More information

Improvements of a parametric model for fan broadband and tonal noise

Improvements of a parametric model for fan broadband and tonal noise Improvements of a parametric model for fan broadband and tonal noise A. Moreau and L. Enghardt DLR - German Aerospace Center, Mueller-Breslau-Str. 8, 10623 Berlin, Germany antoine.moreau@dlr.de 4083 Engine

More information

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling

Numerical Methods in Aerodynamics. Turbulence Modeling. Lecture 5: Turbulence modeling Turbulence Modeling Niels N. Sørensen Professor MSO, Ph.D. Department of Civil Engineering, Alborg University & Wind Energy Department, Risø National Laboratory Technical University of Denmark 1 Outline

More information

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS

HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS HELMHOLTZ RESONATORS FOR DAMPING COMBUSTOR THERMOACOUSTICS Dong Yang and Aimee S. Morgans Department of Aeronautics, Imperial College London, London, UK, SW7 AZ email: d.yang13@imperial.ac.uk Helmholtz

More information

Numerical Approach for Noise Reduction of Wind Turbine Blade Tip with Earth Simulator

Numerical Approach for Noise Reduction of Wind Turbine Blade Tip with Earth Simulator Journal of the Earth Simulator, Volume 2, March 2005, 11 33 Numerical Approach for Noise Reduction of Wind Turbine Blade Tip with Earth Simulator Chuichi Arakawa* 1, Oliver Fleig 1, Makoto Iida 1 and Masakazu

More information

Influence of nozzle-exit boundary-layer profile on high-subsonic jets

Influence of nozzle-exit boundary-layer profile on high-subsonic jets AIAA Aviation 16-2 June 214, Atlanta, GA 2th AIAA/CEAS Aeroacoustics Conference AIAA 214-26 Influence of nozzle-exit boundary-layer profile on high-subsonic jets Christophe Bogey and Olivier Marsden Laboratoire

More information

Numerical Modelling of Aerodynamic Noise in Compressible Flows

Numerical Modelling of Aerodynamic Noise in Compressible Flows Open Journal of Fluid Dynamics 22 2 65-69 http://dx.doi.org/.4236/ofd.22.237 Published Online September 22 (http://www.scirp.org/ournal/ofd) Numerical Modelling of Aerodynamic Noise in Compressible Flows

More information

COMPARISON OF DIFFERENT SUBGRID TURBULENCE MODELS AND BOUNDARY CONDITIONS FOR LARGE-EDDY-SIMULATIONS OF ROOM AIR FLOWS.

COMPARISON OF DIFFERENT SUBGRID TURBULENCE MODELS AND BOUNDARY CONDITIONS FOR LARGE-EDDY-SIMULATIONS OF ROOM AIR FLOWS. 7 TH INTRNATINAL CNFRNC N AIR DISTRIBTIN IN RMS, RMVNT 2 pp. 31-36 CMPARISN F DIFFRNT SBGRID TRBLNC MDLS AND BNDARY CNDITINS FR LARG-DDY-SIMLATINS F RM AIR FLWS. D. Müller 1, L. Davidson 2 1 Lehrstuhl

More information

An artificial nonlinear diffusivity method for shock-capturing in supersonic reacting flows

An artificial nonlinear diffusivity method for shock-capturing in supersonic reacting flows Center for Turbulence Research Annual Research Briefs 005 57 An artificial nonlinear diffusivity method for shock-capturing in supersonic reacting flows By B. Fiorina AND S. K. Lele. Motivation and objectives

More information

Large-eddy simulations of turbulent reacting stagnation point flows

Large-eddy simulations of turbulent reacting stagnation point flows Copyright 1997, American Institute of Aeronautics and Astronautics, Inc. AIAA Meeting Papers on Disc, January 1997 A9715437, AIAA Paper 97-0372 Large-eddy simulations of turbulent reacting stagnation point

More information

INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD

INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD INVESTIGATION OF FLOW PARAMETERS AND NOISE OF SUBSONIC AND SUPERSONIC JETS USING RANS/ILES HIGH RESOLUTION METHOD L.A. Benderskiy, D.A. Lyubimov Central Institute of Aviation Motors, Russia Leosun.Ben@gmail.com

More information

An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise

An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise An iterative algorithm for computing aeroacoustic integrals with application to the analysis of free shear flow noise Florent Margnat a DynFluid, Arts et Metiers ParisTech, 151 Boulevard de l Hopital,

More information

Numerical Study of Mach Number and Thermal Effects on Sound Radiation by a Mixing Layer

Numerical Study of Mach Number and Thermal Effects on Sound Radiation by a Mixing Layer Numerical Study of Mach Number and Thermal Effects on Sound Radiation by a Mixing Layer C. Moser E. Lamballais F. Margnat V. Fortuné Y. Gervais June 29, 2012 Abstract Mach number and thermal effects on

More information

DIRECT NUMERICAL SIMULATIONS OF HIGH SPEED FLOW OVER CAVITY. Abstract

DIRECT NUMERICAL SIMULATIONS OF HIGH SPEED FLOW OVER CAVITY. Abstract 3 rd AFOSR International Conference on DNS/LES (TAICDL), August 5-9 th, 2001, Arlington, Texas. DIRECT NUMERICAL SIMULATIONS OF HIGH SPEED FLOW OVER CAVITY A. HAMED, D. BASU, A. MOHAMED AND K. DAS Department

More information

Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows. Xiaochuan Chai and Krishnan Mahesh

Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows. Xiaochuan Chai and Krishnan Mahesh 40th Fluid Dynamics Conference and Exhibit 8 June - July 00, Chicago, Illinois AIAA 00-506 Dynamic k-equation Model for Large Eddy Simulation of Compressible Flows Xiaochuan Chai and Krishnan Mahesh University

More information

REFRACTION CORRECTIONS FOR SURFACE INTEGRAL METHODS IN JET AEROACOUSTICS

REFRACTION CORRECTIONS FOR SURFACE INTEGRAL METHODS IN JET AEROACOUSTICS REFRACTION CORRECTIONS FOR SURFACE INTEGRAL METHODS IN JET AEROACOUSTICS F. L. Pan Purdue University, West Lafayette, IN, 47907-2023 A. Uzun Florida State University, Tallahassee, FL, 32306-4120 and A.

More information

compression corner flows with high deflection angle, for example, the method cannot predict the location

compression corner flows with high deflection angle, for example, the method cannot predict the location 4nd AIAA Aerospace Sciences Meeting and Exhibit 5-8 January 4, Reno, Nevada Modeling the effect of shock unsteadiness in shock-wave/ turbulent boundary layer interactions AIAA 4-9 Krishnendu Sinha*, Krishnan

More information

The Effect of Heat on Turbulent Mixing Noise in Supersonic Jets.

The Effect of Heat on Turbulent Mixing Noise in Supersonic Jets. 49th AIAA Aerospace Sciences Meeting including the New Horizons Forum and Aerospace Exposition 4-7 January 2, Orlando, Florida AIAA 2-29 The Effect of Heat on Turbulent Mixing Noise in Supersonic Jets.

More information

DNS of Reacting H 2 /Air Laminar Vortex Rings

DNS of Reacting H 2 /Air Laminar Vortex Rings 46th AIAA Aerospace Sciences Meeting and Exhibit 7-10 January 2008, Reno, Nevada AIAA 2008-508 DNS of Reacting H 2 /Air Laminar Vortex Rings Jeff Doom and Krishnan Mahesh University of Minnesota, Minneapolis,

More information

Noise sources in a low-reynolds-number turbulent jet at Mach 0.9

Noise sources in a low-reynolds-number turbulent jet at Mach 0.9 J. Fluid Mech. (1), vol. 438, pp. 77 35. Printed in the United Kingdom c 1 Cambridge University Press 77 Noise sources in a low-reynolds-number turbulent jet at Mach.9 By JONATHAN B. FREUND Mechanical

More information

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600

Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 1600 Problem C3.5 Direct Numerical Simulation of the Taylor-Green Vortex at Re = 6 Overview This problem is aimed at testing the accuracy and the performance of high-order methods on the direct numerical simulation

More information

Resolving the dependence on free-stream values for the k-omega turbulence model

Resolving the dependence on free-stream values for the k-omega turbulence model Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok Resolving the dependence on free-stream values for the k-omega turbulence model J.C. Kok This report is based on

More information

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE

inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering August 2000, Nice, FRANCE Copyright SFA - InterNoise 2000 1 inter.noise 2000 The 29th International Congress and Exhibition on Noise Control Engineering 27-30 August 2000, Nice, FRANCE I-INCE Classification: 1.0 ACOUSTIC ENVIRONMENT

More information

aeroacoustics volume 8 number

aeroacoustics volume 8 number LES prediction of wall-pressure fluctuations and noise of a low-speed airfoil by Meng Wang, Stephane Moreau, Gianluca Iaccarino and Michel Roger reprinted from aeroacoustics volume 8 number 3 9 published

More information

Numerical Simulation of Noise Generation and Propagation In Turbomachinery

Numerical Simulation of Noise Generation and Propagation In Turbomachinery Technische Universität München Lehrstuhl für Fluidmechanik - Fachgebiet Gasdynamik Univ. Professor Dr.-Ing. habil. G.H. Schnerr JASS 2008 - Joint Advanced Student School, Saint Petersburg, 9. - 19.3.2008

More information

Computation of trailing-edge aeroacoustics with vortex shedding

Computation of trailing-edge aeroacoustics with vortex shedding Center for Turbulence Research Annual Research Briefs 5 379 Computation of trailing-edge aeroacoustics with vortex shedding By M. Wang. Motivation and objectives The prediction and control of noise generated

More information

Prediction of unsteady heat transfer from a cylinder in crossflow

Prediction of unsteady heat transfer from a cylinder in crossflow Center for Turbulence Research Proceedings of the Summer Program 202 07 Prediction of unsteady heat transfer from a cylinder in crossflow By S. T. Bose, B. C. Wang AND M. Saeedi The accuracy of a tensorial

More information

2004 ASME Rayleigh Lecture

2004 ASME Rayleigh Lecture 24 ASME Rayleigh Lecture Fluid-Structure Interaction and Acoustics Hafiz M. Atassi University of Notre Dame Rarely does one find a mass of analysis without illustrations from experience. Rayleigh Analysis

More information

Subsonic jet noise simulations using both structured. and unstructured grids

Subsonic jet noise simulations using both structured. and unstructured grids Subsonic jet noise simulations using both structured and unstructured grids A. Fosso P. 1 and M. Sanjosé 2 and S. Moreau 3 Université de Sherbrooke, Sherbrooke, Qc, Canada, J1K 2R1 G. Daviller 4 and H.

More information

Aero Acoustics Analysis of Car s ORVM

Aero Acoustics Analysis of Car s ORVM International Journal of Science and Engineering Investigations vol. 4, issue 38, March 2015 ISSN: 2251-8843 Aero s Analysis of Car s ORVM Roshan Kumar Gopal 1, Remin V. 2, Richard Sen 3 1 Technical Support

More information

Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings

Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings Center for Turbulence Research Annual Research Briefs 1999 239 Large eddy simulation of a forced round turbulent buoyant plume in neutral surroundings By A. J. Basu AND N. N. Mansour 1. Motivation and

More information

Defense Technical Information Center Compilation Part Notice

Defense Technical Information Center Compilation Part Notice UNCLASSIFIED Defense Technical Information Center Compilation Part Notice ADP013688 TITLE: Large-Eddy Simulation of Mach 3.0 Flow Past a 24-Degree Compression Ramp DISTRIBUTION: Approved for public release,

More information

The silent base flow and the sound sources in a laminar jet

The silent base flow and the sound sources in a laminar jet The silent base flow and the sound sources in a laminar jet Samuel Sinayoko a) Institute of Sound and Vibration Research, University of Southampton, Southampton SO17 IBJ, United Kingdom Anurag Agarwal

More information

Aerodynamic sound generation by global modes in hot jets

Aerodynamic sound generation by global modes in hot jets Aerodynamic sound generation by global modes in hot jets Lutz Lesshafft, Patrick Huerre, Pierre Sagaut To cite this version: Lutz Lesshafft, Patrick Huerre, Pierre Sagaut. Aerodynamic sound generation

More information

Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering

Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering Computers & Fluids 35 (26) 344 358 www.elsevier.com/locate/compfluid Computation of a high Reynolds number jet and its radiated noise using large eddy simulation based on explicit filtering Christophe

More information

A Study of the Role of Organized Structures in Jet Noise Generation

A Study of the Role of Organized Structures in Jet Noise Generation AIAA Paper 23-3314 A Study of the Role of Organized Structures in Jet Noise Generation R. Reba and S. Narayanan United Technologies Research Center, E Hartford, CT T. Colonius and M. J. Dunlop California

More information

Acoustic analysis of flat plate trailing edge noise

Acoustic analysis of flat plate trailing edge noise Proceedings of 20th International Congress on Acoustics, ICA 2010 23 27 August 2010, Sydney, Australia PACS: 43.28.Ra ABSTRACT Acoustic analysis of flat plate trailing edge noise D.J. Moreau, M.R. Tetlow,

More information

Bicoherence analysis of model-scale jet noise

Bicoherence analysis of model-scale jet noise Bicoherence analysis of model-scale jet noise Kent L. Gee a) Department of Physics and Astronomy, Brigham Young University, Provo, Utah 84602 kentgee@byu.edu Anthony A. Atchley, Lauren E. Falco, and Micah

More information

Numerical Simulation of Freestream Acoustic Disturbances in Hypersonic Ground Facilities and Their Effect on Boundary Layer Transition

Numerical Simulation of Freestream Acoustic Disturbances in Hypersonic Ground Facilities and Their Effect on Boundary Layer Transition Numerical Simulation of Freestream Acoustic Disturbances in Hypersonic Ground Facilities and Their Effect on Boundary Layer Transition PI: Lian Duan --- YIP FA9550-14-1-0170 --- Missouri U. of S&T Project

More information

Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model

Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model International Journal of Heat and Fluid Flow 27 (26) 63 61 www.elsevier.com/locate/ijhff Large eddy simulations of round free jets using explicit filtering with/without dynamic Smagorinsky model Christophe

More information

HPC enabling of OpenFOAM R for CFD applications

HPC enabling of OpenFOAM R for CFD applications HPC enabling of OpenFOAM R for CFD applications Numerical acoustic analysis of a turbulent flow around a bluff body 06-08 April 2016, Casalecchio di Reno, BOLOGNA. Marta Cianferra, University of Trieste

More information