arxiv: v1 [math.ap] 14 Apr 2009

Size: px
Start display at page:

Download "arxiv: v1 [math.ap] 14 Apr 2009"

Transcription

1 ILL-POSEDNESS OF BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES arxiv: v1 [math.ap] 14 Apr 29 A. CHESKIDOV AND R. SHVYDKOY ABSTRACT. We give a construction of a divergence-free vector field u H s B,, 1 for all s < 1/2, such that any Leray-Hopf solution to the Navier-Stokes equation starting from u is discontinuous at t = in the metric of B, 1. For the Euler equation a similar result is proved in all Besov spaces Br, s where s > if r > 2, and s > n(2/r 1) if 1 r INTRODUCTION In recent years numerous results appear in the literature on well-posedness theory of the Euler and Navier-Stokes equations in Besov spaces (see for example, [1, 4, 5, 1, 13] and references therein). The best local existence and uniqueness result known for the Euler equation states that for any initial condition u B n r +1 r,1 with 1 < r, where n is the dimension of the fluid domain, there exists a unique weak solution u in space C([, T]; B n r +1 r,1 ), for some T >, such that u(t) u in B n r +1 r,1. The case of r = 2, n = 3 is especially interesting for it constitutes the borderline space for applicability of the standard energy method in proving local well-posedness (see [9]). Notice that B 5/2 2,1 is a proper subspace of the Sobolev space H5/2 = B 5/2 2,2, where local existence is an outstanding open problem. As a part of a construction presented here in Proposition 2.1 we show that the Euler equation is illposed in the opposite extreme space with respect to summation, namely in B 5/2 2,. Specifically, there exists a u B 5/2 2, such that any energy bounded weak solution to the Euler equation that starts from u does not converge back to u is the metric of B 5/2 2, as time goes to zero. Another particular case of Proposition 2.1 demonstrates similar ill-posedness result in B, 1 thus precluding a possible extension of Pak and Park s result in B,1 1 (see [1]). 2 Mathematics Subject Classification. Primary: 76D3 ; Secondary: 35Q3. Key words and phrases. Euler equation, Navier-Stokes equation, ill-posedness, Besov spaces. The work of A. Cheskidov is partially supported by NSF grant DMS The work of R. Shvydkoy was partially supported by NSF grant DMS

2 2 A. CHESKIDOV AND R. SHVYDKOY In the second part of this note we address the question of ill-posedness for the Navier-Stokes equations in the critical Besov space X = B, 1. We recall that the homogeneous space Ẋ = Ḃ 1, is invariant with respect to the natural scaling of the equation in R n. Moreover it is the largest such space [4]. The non-homogeneous space considered in this note is even larger although (quasi-)invariant only with respect to the small scale dialations. In a recent work of Bourgain and Pavlovic [3] the authors constructed a mild solution to NSE with initial condition u Ẋ < δ such that at a time t < δ the solution satisfies u(t) Ẋ > 1/δ. This shows the evolution under NSE is not continuous from Ẋ to C([, T]; Ẋ). In our Proposition 3.2, similar to the case of the Euler equation, we construct an initial condition U which belongs to all Besov spaces Br, 3/r 1 in the range 1 < r, in particular U has finite energy such that any Leray-Hopf weak solution starting from U does not return to U in the metric of inhomogeneous space X. This demonstrates an even more dramatic breakdown of NSE evolution in X as there is no continuous trajectory in X at all. More importantly our construction gives a simple model for the forward energy cascade, which is typically observed in turbulent flows [8]. Incidentally, the result proved in [7] shows that any left-continuous Leray-Hopf solution in X is necessarily regular. We consider periodic boundary conditions for two main reason. Firstly, we do not make use of lower frequencies in our analysis, and secondly, our constructions become much more transparent. However with the technique developed in [6] the results can be carried over to the open space too. Let us now introduce the notation and spaces used in this paper. We will fix the notation for scales λ q = 2 q in some inverse length units. Let us fix a nonnegative radial function χ C (R n ) such that χ(ξ) = 1 for ξ 1/2, and χ(ξ) = for ξ 1. We define ϕ(ξ) = χ(λ 1 1 ξ) χ(ξ), and ϕ q (ξ) = ϕ(λ 1 q ξ) for q, and ϕ 1 = χ. For a tempered distribution vector field u on the torus T n we consider the Littlewood-Paley projections (1) u q (x) = k Z n û(k)ϕ q (k)e ik x, q 1. So, we have u = q= 1 u q in the sense of distributions. We also use the following notation u q = q p= 1 u p, and ũ q = u q 1 + u q + u q+1. Let us recall the definition of Besov spaces. A tempered distribution u belongs to Br,l s for s R, 1 l, r iff ( ) 1/l u B s r,l = (λ s q u q r ) l <. q 1

3 ILL-POSEDNESS IN BESOV SPACES 3 2. INVISCID CASE The Euler equation for the evolution of ideal fluid is given by (2) u t + (u )u = p, where u is a divergence free field on T n. By a weak solution to (2) we understand an L 2 -valued weakly continuous field u satisfying (2) in the distributional sense. Let us recall that all such solutions have absolutely continuous in time Fourier coefficients (see for example [11]). Our construction below is two-dimensional. So, we denote by e 1, e 2 the vectors of the standard unit basis and define 1 u (x, y) = e 1 cos(y) + e 2 cos(λ q x). λ s q= q Proposition 2.1. If u is a weak solution to the Euler equation (2) with initial condition u() = u. Then there is δ = δ(n, r, s) > independent of u such that we have (3) lim sup t + u(t) u B s r, δ, where s > if r > 2, and s > n(2/r 1) if 1 r 2. The rest of the section is devoted to the proof of Proposition 2.1. Let us denote X = Br, s. We can make the assumption that for some t >, u L ([, t ]; X). Indeed, otherwise (3) follows immediately. Further proof is based on the fact that u produces a strong forward energy transfer which forces u to actually escape from Br, s unless (3) is met. To this end, let us consider frequencies ξ q = (λ q, 1). Let p(ξ) be the symbol of the Leray-Hopf projection. By a direct computation we have (4) f q = p(ξ q )(u u ) (ξ q ) = iλ 1 s q e 2 + O(1/λ s q ). We will prove the following estimate for the nonlinear term (5) (u v) q 1 λ 1 s q u X v X, for all u, v X and q 1. First, let us assume that r 2. Using the identity div(u v) = u v and the Bernstein inequality we obtain (6) div(u v) q 1 λ q (u v) q 1 λ q u p r v p r (7) Using that p,p q + λ q u q r v p r + λ q v q r u p r. p q w p r λ n(2/r 1) p w p r, p q

4 4 A. CHESKIDOV AND R. SHVYDKOY we have for the first sum u p r v p r λ q λ q p,p q p,p q For the second sum we obtain λ q u q r v p r λq 1 s λ s q u q r p q p q u p r λ s p v p rλ s p λn(2/r 1) 2s p λ 1+n(2/r 1) 2s q u X v X. v p r λ s pλ n(2/r 1) s p λ 1 s q u X v X. Similar estimate holds for the third term. We thus obtain (5). In the case r > 2, we use the basic embedding L r L r instead of Bernstein s inequalities in (6) (7). The rest of the argument is similar. We have (8) û(ξ q, t) = û(ξ q, ) + t p(ξ q )(u u) (ξ q, s)ds, for all t >. By our construction, û(ξ q, ) =. On the other hand we can estimate using (5) p(ξ q )(u u) (ξ q, s) f q (u u) (ξ q, s) (u u ) (ξ q ) Thus, from (8) we obtain = (u u) q (ξ q, s) (u u ) q (ξ q) (u u) q (s) (u u ) q 1 λ 1 s q ( u(s) X + u X ) u(s) u X. t λ s q û(ξ q, t) tλ q to(1) Cλ q ( u(s) X + u X ) u(s) u X ds. We can see that if the limit in (3) does not exceed δ = 1/(1C) then the integral becomes less than t/2. This implies that u(t) / X. 3. ILL-POSEDNESS OF NSE Now we turn to the analogous question for the viscous model. Navier-Stokes equation is given by (9) u t + (u )u = ν u p. The Here u is a three dimensional divergence free field on T 3. We refer to [12] for the classical well-posedness theory for this equation. Let us recall that for every field U L 2 (T 3 ) there exists a weak solution u C w ([, T); L 2 ) L 2 ([, T); H 1 ) to (9) such that the energy inequality (1) u(t) ν t u(s) 2 2ds U 2 2,

5 ILL-POSEDNESS IN BESOV SPACES 5 holds for all t > and u(t) U strongly in L 2 as t. In what follows we do not actually use inequality (1) which allows us to formulate a more general statement below in Proposition 3.2. Let us fix a small ǫ >. Let us choose a sequence q 1 < q 2 <... with elements sufficiently far apart so that λ 2 q i /λ qi+1 < ǫ. Let us fix a small c > and consider the following integer lattice blocks: A j = [(1 c)λ qj, (1 + c)λ qj ] [ cλ qj, cλ qj ] 2 Z 3 B j = [ cλ qj 1, cλ qj 1] 2 [(1 c)λ qj 1, (1 + c)λ qj 1] Z 3 C j = A j + B j A j = A j, B j = B j, C j = C j. Thus, A j, C j and their conjugates lie in the λ qj -th shell, while B j, B j lie in the contiguous λ qj 1-th shell. Let us denote We define e 1 (ξ) = p(ξ) e 1 and e 2 (ξ) = p(ξ) e 2. (11) U = j 1(U qj + U qj 1), where Û qj = 1 λ 2 ( e 2 (ξ)χ Aj A j + i( e 2(ξ) e 1 (ξ))χ Cj i( e 2 (ξ) e 1 (ξ))χ C j ), and Û qj 1 = e 1 (ξ)χ Bj B j. Since U has no modes in the ( + 1)-st shell, Ũ = U qj 1 + U qj. Lemma 3.1. We have U B 3 r 1 r,, for all 1 < r. Proof. We give the estimate only for one block. Using boundedness of the Leray-Hopf projection, we have for 1 < r < λ 2 ( e 2 ( )χ Aj ) r λ 2 (χ Aj ) r λ 2 D cλqj 3 r, where D N denote the Dini kernel. By a well-known estimate, we have D N r N 1 1 r, which implies the lemma. If r =, we simply use the triangle inequality to obtain U qj λ qj.

6 6 A. CHESKIDOV AND R. SHVYDKOY Let us now examine the trilinear term. We will use the following notation for convenience (12) u v : w = v i i w j u j dx. T 3 Using the antisymmetry we obtain U U : U qj = Ũ qk Ũq k : U qj + Ũ Ũ : U qj k j+1 + U qj 1 Ũ : U qj + Ũ U qj 1 : U qj = Ũ qk Ũq k : U qj + U qj 1 U qj : U qj U qj U qj : U qj 1 k j+1 = A + B + C. Using Bernstein s inequalities we estimate A λ qj U qj C U qj 2 2 k j 1 k j+1 Ũq k 2 2 λ2 λ qj+1 ǫ, λ qk Ũq k λ2 1 λ qj ǫ. On the other hand, a straightforward computation show that (13) B λ qj. Proposition 3.2. Let u C w ([, T); L 2 ) L 2 ([, T); H 1 ) be a weak solution solution to the NSE with initial condition u() = U. Then there is δ = δ(u) > such that (14) lim sup u(t) U B 1 δ., t + If in addition u is a Leray-Hopf solution satisfying the energy inequality (1), then c can be chosen independent of u. Proof. Using u qj as a test function we can write t (ũ qj u qj ) = ν ũ qj u qj + u u : u qj. Denoting E(t) = t u 2 2ds we obtain (15) ũ qj (t) 2 2 U 2 2 νe(t) + c 1λ qj t t c 2 u u : uqj U U : U qj ds, for some positive constants c 1 and c 2. We now show that if the conclusion of the proposition fails then for some small t > the integral term is less

7 ILL-POSEDNESS IN BESOV SPACES 7 than c 1 λ qj t/2 uniformly for all large j. This forces ũ qj (t) 2 2 λ t for all large j. Hence u has infinite energy, which is a contradiction. So suppose that for every δ > there exists t = t (δ) > such that u(t) U B 1, < δ for all < t t. Denoting w = u U we write u u : u qj U U : U qj = w U : U qj + u w : U qj + u u : w qj = A + B + C. We will now decompose each triplet into three terms according to the type of interaction (c.f. Bony [2]) and estimate each of them separately. A = w p U p : U qj + w qj Ũ : U qj p,p + w qj U qj : U qj repeated = A 1 + A 2 + A 3. Using Lemma 3.1 along with Hölder and Bernstein inequalities we obtain A 1 U qj 4 wp U p 4/3 λ 5/4 q wp j λ 5/4 p δλ qj, A 2 = U qj Ũ : w qj Ũ 2 2 w qj λ 1 A 3 λ qj U qj 2 U qj 2 w qj w qj < δλ qj. We have shown the following estimate: (16) A δλ qj. As to B we decompose analogously, B = u p w p : U qj + u qj w qj : U qj p,p p λ 2 pλ 1 p w p < δλ qj, + ũ qj w qj : U qj repeated = B 1 + B 2 + B 3. Again, using Lemma 3.1, Bernstein and Hölder inequalities we obtain B 1 λ qj U qj 2 up 2 w p δλ 1/2 u 2. B 2 = Uqj w qj : u qj Uqj 2 w qj u qj 2 λq 1/2 j w qj u 2 δλ 1/2 u 2. B 3 ũ qj 2 w qj U qj 2 λ 1/2 ũ qj 2 λ 1 p w p λ p p δλ 1/2 u 2. We thus obtain (17) B δλ 1/2 u 2.

8 8 A. CHESKIDOV AND R. SHVYDKOY Continuing in a similar fashion we write C = u p u p : w qj + u qj ũ qj : w qj p,p C 1 w qj + ũ qj u qj : w qj repeated = C 1 + C 2 + C 3. p 2 ũ p 2 2 λ 1 w qj λ 2 u 2 2 δ u 2 2, C 2 u 2 ũ qj 2 w qj λ 1 u 2 2 w qj r δ u 2 2. Now using a uniform bound on the energy u(t) for almost all t, we estimate Thus, C 3 λ qj w qj ũ qj 2 δλ qj ũ qj 2. (18) C δ u δλ qj ũ qj 2. Now combining estimates (16), (17), (18) along with the boundedness of E(t ) we obtain (19) t Using that u u : uqj U U : U qj ds δλqj t + δλ 1/2 t 1/2 t ũ qj (s) 2 ds t + δ + δλ qj ũ qj (s) 2 ds. as j we can chose δ small enough and j large enough so that the left hand side of the (19) is less than c 1 2c 2 λ qj t for all j j. Going back to (15) this implies ũ qj (t ) 2 2 U 2 2 νe(t ) + c 1 λ qj t /2, for all j > j, which shows that u(t ) has infinite energy, a contradiction. The last statement of the proposition follows from the fact that we have the bounds on u(t) 2 U 2 and E(t ) (2ν) 1 U 2 2 which remove dependence of the constants on u.

9 ILL-POSEDNESS IN BESOV SPACES 9 REFERENCES [1] Herbert Amann. On the strong solvability of the Navier-Stokes equations. J. Math. Fluid Mech., 2(1):16 98, 2. [2] J-M Bony. Calcul symbolique et propagation des singularité pour leséquations aux dérivées partielles non linéaires. Ann. Ecole Norm. Sup., 14:29 246, [3] Jean Bourgain and Nataša Pavlović. Ill-posedness of the Navier-Stokes equations in a critical space in 3D. J. Funct. Anal., 255(9): , 28. [4] Marco Cannone. Harmonic analysis tools for solving the incompressible Navier- Stokes equations. In Handbook of mathematical fluid dynamics. Vol. III, pages North-Holland, Amsterdam, 24. [5] Dongho Chae. Local existence and blow-up criterion for the Euler equations in the Besov spaces. Asymptot. Anal., 38(3-4): , 24. [6] A. Cheskidov, P. Constantin, S. Friedlander, and R. Shvydkoy. Energy conservation and Onsager s conjecture for the Euler equations. Nonlinearity, 21(6): , 28. [7] Alexey Cheskidov and Roman Shvydkoy. On the regularity of weak solutions of the 3D Navier-Stokes equations in B, 1. to appear in Archive for Rational Mechanics and Analysis. [8] Uriel Frisch. Turbulence. Cambridge University Press, Cambridge, The legacy of A. N. Kolmogorov. [9] Andrew J. Majda and Andrea L. Bertozzi. Vorticity and incompressible flow, volume 27 of Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge, 22. [1] Hee Chul Pak and Young Ja Park. Existence of solution for the Euler equations in a critical Besov space B,1 1 (Rn ). Comm. Partial Differential Equations, 29(7-8): , 24. [11] Roman Shvydkoy. On the energy of inviscid singular flows. J. Math. Anal. Appl., 349(2): , 29. [12] Roger Temam. Navier-Stokes equations, volume 2 of Studies in Mathematics and its Applications. North-Holland Publishing Co., Amsterdam, third edition, Theory and numerical analysis, With an appendix by F. Thomasset. [13] Misha Vishik. Hydrodynamics in Besov spaces. Arch. Ration. Mech. Anal., 145(3): , (A. Cheskidov and R. Shvydkoy) DEPARTMENT OF MATHEMATICS, STAT. AND COMP. SCI., M/C 249,, UNIVERSITY OF ILLINOIS, CHICAGO, IL 667 address: acheskid@math.uic.edu address: shvydkoy@math.uic.edu

Another particular instance includes the space B 1/3

Another particular instance includes the space B 1/3 ILL-POSEDNESS OF BASIC EQUATIONS OF FLUID DYNAMICS IN BESOV SPACES A. CHESKIDOV AND R. SHVYDKOY ABSTRACT. We give a construction of a divergence-free vector field u H s B,, 1 for all s < 1/2, with arbitrarily

More information

arxiv: v2 [math.ap] 6 Sep 2007

arxiv: v2 [math.ap] 6 Sep 2007 ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1, arxiv:0708.3067v2 [math.ap] 6 Sep 2007 A. CHESKIDOV AND R. SHVYDKOY ABSTRACT. We show that if a Leray-Hopf solution u to the

More information

ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1

ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1 ON THE REGULARITY OF WEAK SOLUTIONS OF THE 3D NAVIER-STOKES EQUATIONS IN B 1, A. CHESKIDOV AND R. SHVYDKOY ABSTRACT. We show that if a Leray-Hopf solution u to the 3D Navier- Stokes equation belongs to

More information

Frequency Localized Regularity Criteria for the 3D Navier Stokes Equations. Z. Bradshaw & Z. Grujić. Archive for Rational Mechanics and Analysis

Frequency Localized Regularity Criteria for the 3D Navier Stokes Equations. Z. Bradshaw & Z. Grujić. Archive for Rational Mechanics and Analysis Frequency Localized Regularity Criteria for the 3D Navier Stokes Equations Z. Bradshaw & Z. Gruić Archive for Rational Mechanics and Analysis ISSN 0003-9527 Arch Rational Mech Anal DOI 10.1007/s00205-016-1069-9

More information

On the local existence for an active scalar equation in critical regularity setting

On the local existence for an active scalar equation in critical regularity setting On the local existence for an active scalar equation in critical regularity setting Walter Rusin Department of Mathematics, Oklahoma State University, Stillwater, OK 7478 Fei Wang Department of Mathematics,

More information

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION

A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 001 006, March 2009 001 A RECURRENCE THEOREM ON THE SOLUTIONS TO THE 2D EULER EQUATION Y. CHARLES LI Abstract. In this article, I will prove

More information

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1.

A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE. 1. A LOWER BOUND ON BLOWUP RATES FOR THE 3D INCOMPRESSIBLE EULER EQUATION AND A SINGLE EXPONENTIAL BEALE-KATO-MAJDA ESTIMATE THOMAS CHEN AND NATAŠA PAVLOVIĆ Abstract. We prove a Beale-Kato-Majda criterion

More information

VANISHING VISCOSITY IN THE PLANE FOR VORTICITY IN BORDERLINE SPACES OF BESOV TYPE

VANISHING VISCOSITY IN THE PLANE FOR VORTICITY IN BORDERLINE SPACES OF BESOV TYPE VANISHING VISCOSITY IN THE PLANE FOR VORTICITY IN BORDERLINE SPACES OF BESOV TYPE ELAINE COZZI AND JAMES P. KELLIHER Abstract. The existence and uniqueness of solutions to the Euler equations for initial

More information

Global regularity of a modified Navier-Stokes equation

Global regularity of a modified Navier-Stokes equation Global regularity of a modified Navier-Stokes equation Tobias Grafke, Rainer Grauer and Thomas C. Sideris Institut für Theoretische Physik I, Ruhr-Universität Bochum, Germany Department of Mathematics,

More information

FINITE TIME BLOW-UP FOR A DYADIC MODEL OF THE EULER EQUATIONS

FINITE TIME BLOW-UP FOR A DYADIC MODEL OF THE EULER EQUATIONS TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 357, Number 2, Pages 695 708 S 0002-9947(04)03532-9 Article electronically published on March 12, 2004 FINITE TIME BLOW-UP FOR A DYADIC MODEL OF

More information

VANISHING VISCOSITY IN THE PLANE FOR NONDECAYING VELOCITY AND VORTICITY

VANISHING VISCOSITY IN THE PLANE FOR NONDECAYING VELOCITY AND VORTICITY VANISHING VISCOSITY IN THE PLANE FOR NONDECAYING VELOCITY AND VORTICITY ELAINE COZZI Abstract. Assuming that initial velocity and initial vorticity are bounded in the plane, we show that on a sufficiently

More information

The 3D Euler and 2D surface quasi-geostrophic equations

The 3D Euler and 2D surface quasi-geostrophic equations The 3D Euler and 2D surface quasi-geostrophic equations organized by Peter Constantin, Diego Cordoba, and Jiahong Wu Workshop Summary This workshop focused on the fundamental problem of whether classical

More information

arxiv: v1 [math.ap] 16 May 2007

arxiv: v1 [math.ap] 16 May 2007 arxiv:0705.446v1 [math.ap] 16 May 007 Regularity criterion for 3D Navier-Stokes equations in terms of the direction of the velocity Alexis Vasseur October 3, 018 Abstract In this short note, we give a

More information

ON THE GLOBAL REGULARITY OF GENERALIZED LERAY-ALPHA TYPE MODELS

ON THE GLOBAL REGULARITY OF GENERALIZED LERAY-ALPHA TYPE MODELS ON THE GLOBAL REGULARITY OF GENERALIZED LERAY-ALPHA TYPE MODELS KAZUO YAMAZAKI 1 2 Abstract. We generalize Leray-alpha type models studied in [3] and [8] via fractional Laplacians and employ Besov space

More information

Remarks on the blow-up criterion of the 3D Euler equations

Remarks on the blow-up criterion of the 3D Euler equations Remarks on the blow-up criterion of the 3D Euler equations Dongho Chae Department of Mathematics Sungkyunkwan University Suwon 44-746, Korea e-mail : chae@skku.edu Abstract In this note we prove that the

More information

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY

REGULARITY OF GENERALIZED NAVEIR-STOKES EQUATIONS IN TERMS OF DIRECTION OF THE VELOCITY Electronic Journal of Differential Equations, Vol. 00(00), No. 05, pp. 5. ISSN: 07-669. UR: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu REGUARITY OF GENERAIZED NAVEIR-STOKES

More information

Available online at J. Math. Comput. Sci. 4 (2014), No. 3, ISSN:

Available online at   J. Math. Comput. Sci. 4 (2014), No. 3, ISSN: Available online at http://scik.org J. Math. Comput. Sci. 4 (2014), No. 3, 587-593 ISSN: 1927-5307 A SMALLNESS REGULARITY CRITERION FOR THE 3D NAVIER-STOKES EQUATIONS IN THE LARGEST CLASS ZUJIN ZHANG School

More information

Regularity and Decay Estimates of the Navier-Stokes Equations

Regularity and Decay Estimates of the Navier-Stokes Equations Regularity and Decay Estimates of the Navier-Stokes Equations Hantaek Bae Ulsan National Institute of Science and Technology (UNIST), Korea Recent Advances in Hydrodynamics, 216.6.9 Joint work with Eitan

More information

Nonuniqueness of weak solutions to the Navier-Stokes equation

Nonuniqueness of weak solutions to the Navier-Stokes equation Nonuniqueness of weak solutions to the Navier-Stokes equation Tristan Buckmaster (joint work with Vlad Vicol) Princeton University November 29, 2017 Tristan Buckmaster (Princeton University) Nonuniqueness

More information

Research Statement. 1 Overview. Zachary Bradshaw. October 20, 2016

Research Statement. 1 Overview. Zachary Bradshaw. October 20, 2016 Research Statement Zachary Bradshaw October 20, 2016 1 Overview My research is in the field of partial differential equations. I am primarily interested in the three dimensional non-stationary Navier-Stokes

More information

ISABELLE GALLAGHER AND MARIUS PAICU

ISABELLE GALLAGHER AND MARIUS PAICU REMARKS ON THE BLOW-UP OF SOLUTIONS TO A TOY MODEL FOR THE NAVIER-STOKES EQUATIONS ISABELLE GALLAGHER AND MARIUS PAICU Abstract. In [14], S. Montgomery-Smith provides a one dimensional model for the three

More information

arxiv: v2 [math.ap] 30 Jan 2015

arxiv: v2 [math.ap] 30 Jan 2015 LOCAL WELL-POSEDNESS FOR THE HALL-MHD EQUATIONS WITH FRACTIONAL MAGNETIC DIFFUSION DONGHO CHAE 1, RENHUI WAN 2 AND JIAHONG WU 3 arxiv:144.486v2 [math.ap] 3 Jan 215 Abstract. The Hall-magnetohydrodynamics

More information

arxiv:math/ v1 [math.ap] 16 Nov 2006

arxiv:math/ v1 [math.ap] 16 Nov 2006 arxiv:math/611494v1 [mathap] 16 Nov 26 ON THE GLOBAL SOLUTIONS OF THE SUPER-CRITICAL 2D QUASI-GEOSTROPHIC EQUATION IN BESOV SPACES TAOUFIK HMIDI AND SAHBI KERAANI Abstract In this paper we study the super-critical

More information

Nonlinear instability for the Navier-Stokes equations

Nonlinear instability for the Navier-Stokes equations Communications in Mathematical Physics manuscript No. (will be inserted by the editor) Nonlinear instability for the Navier-Stokes equations Susan Friedlander 1, Nataša Pavlović 2, Roman Shvydkoy 1 1 University

More information

The enigma of the equations of fluid motion: A survey of existence and regularity results

The enigma of the equations of fluid motion: A survey of existence and regularity results The enigma of the equations of fluid motion: A survey of existence and regularity results RTG summer school: Analysis, PDEs and Mathematical Physics The University of Texas at Austin Lecture 1 1 The review

More information

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS

THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS ASIAN J. MATH. c 2009 International Press Vol. 13, No. 1, pp. 007 014, March 2009 002 THE POINCARÉ RECURRENCE PROBLEM OF INVISCID INCOMPRESSIBLE FLUIDS Y. CHARLES LI Abstract. Nadirashvili presented a

More information

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID

REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID REMARKS ON THE VANISHING OBSTACLE LIMIT FOR A 3D VISCOUS INCOMPRESSIBLE FLUID DRAGOŞ IFTIMIE AND JAMES P. KELLIHER Abstract. In [Math. Ann. 336 (2006), 449-489] the authors consider the two dimensional

More information

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS

CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS CONNECTIONS BETWEEN A CONJECTURE OF SCHIFFER S AND INCOMPRESSIBLE FLUID MECHANICS JAMES P. KELLIHER Abstract. We demonstrate connections that exists between a conjecture of Schiffer s (which is equivalent

More information

arxiv:math/ v1 [math.ap] 6 Mar 2007

arxiv:math/ v1 [math.ap] 6 Mar 2007 arxiv:math/73144v1 [math.ap] 6 Mar 27 ON THE GLOBAL EXISTENCE FOR THE AXISYMMETRIC EULER EQUATIONS HAMMADI ABIDI, TAOUFIK HMIDI, AND SAHBI KERAANI Abstract. This paper deals with the global well-posedness

More information

Week 6 Notes, Math 865, Tanveer

Week 6 Notes, Math 865, Tanveer Week 6 Notes, Math 865, Tanveer. Energy Methods for Euler and Navier-Stokes Equation We will consider this week basic energy estimates. These are estimates on the L 2 spatial norms of the solution u(x,

More information

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN

DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN DIRECTION OF VORTICITY AND A REFINED BLOW-UP CRITERION FOR THE NAVIER-STOKES EQUATIONS WITH FRACTIONAL LAPLACIAN KENGO NAKAI Abstract. We give a refined blow-up criterion for solutions of the D Navier-

More information

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces

Nonlinear Analysis. A regularity criterion for the 3D magneto-micropolar fluid equations in Triebel Lizorkin spaces Nonlinear Analysis 74 (11) 5 Contents lists available at ScienceDirect Nonlinear Analysis journal homepage: www.elsevier.com/locate/na A regularity criterion for the 3D magneto-micropolar fluid equations

More information

Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion

Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic Diffusion J. Math. Fluid Mech. 17 (15), 67 638 c 15 Springer Basel 14-698/15/467-1 DOI 1.17/s1-15--9 Journal of Mathematical Fluid Mechanics Local Well-Posedness for the Hall-MHD Equations with Fractional Magnetic

More information

Journal of Differential Equations

Journal of Differential Equations J. Differential Equations 48 (1) 6 74 Contents lists available at ScienceDirect Journal of Differential Equations www.elsevier.com/locate/jde Two regularity criteria for the D MHD equations Chongsheng

More information

Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D.

Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. Global well-posedness for a Smoluchowski equation coupled with Navier-Stokes equations in 2D. P. Constantin Department of Mathematics, The University of Chicago 5734 S. University Avenue, Chicago, Il 6637

More information

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang

ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS. Tian Ma. Shouhong Wang DISCRETE AND CONTINUOUS Website: http://aimsciences.org DYNAMICAL SYSTEMS Volume 11, Number 1, July 004 pp. 189 04 ASYMPTOTIC STRUCTURE FOR SOLUTIONS OF THE NAVIER STOKES EQUATIONS Tian Ma Department of

More information

GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION

GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION GLOBAL REGULARITY OF LOGARITHMICALLY SUPERCRITICAL 3-D LAMHD-ALPHA SYSTEM WITH ZERO DIFFUSION KAZUO YAMAZAKI Abstract. We study the three-dimensional Lagrangian-averaged magnetohydrodynamicsalpha system

More information

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM

REGULARITY CRITERIA FOR WEAK SOLUTIONS TO 3D INCOMPRESSIBLE MHD EQUATIONS WITH HALL TERM Electronic Journal of Differential Equations, Vol. 2018 (2018), No. 10, pp. 1 12. ISSN: 1072-6691. UL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu EGULAITY CITEIA FO WEAK SOLUTIONS TO D INCOMPESSIBLE

More information

Recent developments in the Navier-Stokes problem

Recent developments in the Navier-Stokes problem P G Lemarie-Rieusset Recent developments in the Navier-Stokes problem CHAPMAN & HALL/CRC A CRC Press Company Boca Raton London New York Washington, D.C. Table of contents Introduction 1 Chapter 1: What

More information

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION

OSGOOD TYPE REGULARITY CRITERION FOR THE 3D NEWTON-BOUSSINESQ EQUATION Electronic Journal of Differential Equations, Vol. 013 (013), No. 3, pp. 1 6. ISSN: 107-6691. URL: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu OSGOOD TYPE REGULARITY

More information

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS

ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS Abdelhafid Younsi To cite this version: Abdelhafid Younsi. ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS. 4 pages. 212. HAL Id:

More information

A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations

A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations A posteriori regularity of the three-dimensional Navier-Stokes equations from numerical computations Sergei I. Chernyshenko, Aeronautics and Astronautics, School of Engineering Sciences, University of

More information

arxiv: v1 [math.ap] 5 Nov 2018

arxiv: v1 [math.ap] 5 Nov 2018 STRONG CONTINUITY FOR THE 2D EULER EQUATIONS GIANLUCA CRIPPA, ELIZAVETA SEMENOVA, AND STEFANO SPIRITO arxiv:1811.01553v1 [math.ap] 5 Nov 2018 Abstract. We prove two results of strong continuity with respect

More information

Miami, Florida, USA. Engineering, University of California, Irvine, California, USA. Science, Rehovot, Israel

Miami, Florida, USA. Engineering, University of California, Irvine, California, USA. Science, Rehovot, Israel This article was downloaded by:[weizmann Institute Science] On: July 008 Access Details: [subscription number 7918096] Publisher: Taylor & Francis Informa Ltd Registered in England and Wales Registered

More information

A new approach to the study of the 3D-Navier-Stokes System

A new approach to the study of the 3D-Navier-Stokes System Contemporary Mathematics new approach to the study of the 3D-Navier-Stokes System Yakov Sinai Dedicated to M Feigenbaum on the occasion of his 6 th birthday bstract In this paper we study the Fourier transform

More information

Dissipative quasi-geostrophic equations with L p data

Dissipative quasi-geostrophic equations with L p data Electronic Journal of Differential Equations, Vol. (), No. 56, pp. 3. ISSN: 7-669. URL: http://ejde.math.swt.edu or http://ejde.math.unt.edu ftp ejde.math.swt.edu (login: ftp) Dissipative quasi-geostrophic

More information

GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS WITH NONREGULAR FORCE

GENERIC SOLVABILITY FOR THE 3-D NAVIER-STOKES EQUATIONS WITH NONREGULAR FORCE Electronic Journal of Differential Equations, Vol. 2(2), No. 78, pp. 1 8. ISSN: 172-6691. UR: http://ejde.math.txstate.edu or http://ejde.math.unt.edu ftp ejde.math.txstate.edu (login: ftp) GENERIC SOVABIITY

More information

Smoluchowski Navier-Stokes Systems

Smoluchowski Navier-Stokes Systems Smoluchowski Navier-Stokes Systems Peter Constantin Mathematics, U. of Chicago CSCAMM, April 18, 2007 Outline: 1. Navier-Stokes 2. Onsager and Smoluchowski 3. Coupled System Fluid: Navier Stokes Equation

More information

c 2014 Society for Industrial and Applied Mathematics

c 2014 Society for Industrial and Applied Mathematics SIAM J. MATH. ANAL. Vol. 46, No. 1, pp. 588 62 c 214 Society for Industrial and Applied Mathematics THE 2D INCOMPRESSIBLE MAGNETOHYDRODYNAMICS EQUATIONS WITH ONLY MAGNETIC DIFFUSION CHONGSHENG CAO, JIAHONG

More information

hal , version 6-26 Dec 2012

hal , version 6-26 Dec 2012 ON THE UNIQUENESS IN THE 3D NAVIER-STOKES EQUATIONS ABDEHAFID YOUNSI Abstract. In this paper, we give a new regularity criterion on the uniqueness results of weak solutions for the 3D Navier-Stokes equations

More information

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation

Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Blow up of solutions for a 1D transport equation with nonlocal velocity and supercritical dissipation Dong Li a,1 a School of Mathematics, Institute for Advanced Study, Einstein Drive, Princeton, NJ 854,

More information

Mathematical Hydrodynamics

Mathematical Hydrodynamics Mathematical Hydrodynamics Ya G. Sinai 1. Introduction Mathematical hydrodynamics deals basically with Navier-Stokes and Euler systems. In the d-dimensional case and incompressible fluids these are the

More information

Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin

Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin Energy Spectrum of Quasi-Geostrophic Turbulence Peter Constantin Department of Mathematics The University of Chicago 9/3/02 Abstract. We consider the energy spectrum of a quasi-geostrophic model of forced,

More information

Partial regularity for suitable weak solutions to Navier-Stokes equations

Partial regularity for suitable weak solutions to Navier-Stokes equations Partial regularity for suitable weak solutions to Navier-Stokes equations Yanqing Wang Capital Normal University Joint work with: Quansen Jiu, Gang Wu Contents 1 What is the partial regularity? 2 Review

More information

Piecewise Smooth Solutions to the Burgers-Hilbert Equation

Piecewise Smooth Solutions to the Burgers-Hilbert Equation Piecewise Smooth Solutions to the Burgers-Hilbert Equation Alberto Bressan and Tianyou Zhang Department of Mathematics, Penn State University, University Park, Pa 68, USA e-mails: bressan@mathpsuedu, zhang

More information

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED

BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED BLOWUP THEORY FOR THE CRITICAL NONLINEAR SCHRÖDINGER EQUATIONS REVISITED TAOUFIK HMIDI AND SAHBI KERAANI Abstract. In this note we prove a refined version of compactness lemma adapted to the blowup analysis

More information

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem:

Seong Joo Kang. Let u be a smooth enough solution to a quasilinear hyperbolic mixed problem: Comm. Korean Math. Soc. 16 2001, No. 2, pp. 225 233 THE ENERGY INEQUALITY OF A QUASILINEAR HYPERBOLIC MIXED PROBLEM Seong Joo Kang Abstract. In this paper, e establish the energy inequalities for second

More information

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics

Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Global well-posedness of the primitive equations of oceanic and atmospheric dynamics Jinkai Li Department of Mathematics The Chinese University of Hong Kong Dynamics of Small Scales in Fluids ICERM, Feb

More information

LOCALISATION AND COMPACTNESS PROPERTIES OF THE NAVIER-STOKES GLOBAL REGULARITY PROBLEM

LOCALISATION AND COMPACTNESS PROPERTIES OF THE NAVIER-STOKES GLOBAL REGULARITY PROBLEM LOCALISATION AND COMPACTNESS PROPERTIES OF THE NAVIER-STOKES GLOBAL REGULARITY PROBLEM TERENCE TAO Abstract. In this paper we establish a number of implications between various qualitative and quantitative

More information

Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus

Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus Infinite-time Exponential Growth of the Euler Equation on Two-dimensional Torus arxiv:1608.07010v1 [math.ap] 5 Aug 016 Zhen Lei Jia Shi August 6, 016 Abstract For any A >, we construct solutions to the

More information

A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations

A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations Ann. I. H. Poincaré AN 27 (2010) 773 778 www.elsevier.com/locate/anihpc A regularity criterion for the 3D NSE in a local version of the space of functions of bounded mean oscillations Zoran Grujić a,,

More information

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS

OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS PORTUGALIAE MATHEMATICA Vol. 59 Fasc. 2 2002 Nova Série OPTIMAL CONTROL AND STRANGE TERM FOR A STOKES PROBLEM IN PERFORATED DOMAINS J. Saint Jean Paulin and H. Zoubairi Abstract: We study a problem of

More information

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN

ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN ON THE STRONG SOLUTIONS OF THE INHOMOGENEOUS INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN A THIN DOMAIN XIAN LIAO Abstract. In this work we will show the global existence of the strong solutions of the inhomogeneous

More information

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS

EXISTENCE AND REGULARITY RESULTS FOR SOME NONLINEAR PARABOLIC EQUATIONS EXISTECE AD REGULARITY RESULTS FOR SOME OLIEAR PARABOLIC EUATIOS Lucio BOCCARDO 1 Andrea DALL AGLIO 2 Thierry GALLOUËT3 Luigi ORSIA 1 Abstract We prove summability results for the solutions of nonlinear

More information

arxiv: v1 [math.ap] 12 Mar 2009

arxiv: v1 [math.ap] 12 Mar 2009 LIMITING FRACTIONAL AND LORENTZ SPACES ESTIMATES OF DIFFERENTIAL FORMS JEAN VAN SCHAFTINGEN arxiv:0903.282v [math.ap] 2 Mar 2009 Abstract. We obtain estimates in Besov, Lizorkin-Triebel and Lorentz spaces

More information

Energy transfer model and large periodic boundary value problem for the quintic NLS

Energy transfer model and large periodic boundary value problem for the quintic NLS Energy transfer model and large periodic boundary value problem for the quintic NS Hideo Takaoka Department of Mathematics, Kobe University 1 ntroduction This note is based on a talk given at the conference

More information

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations

Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Low Froude Number Limit of the Rotating Shallow Water and Euler Equations Kung-Chien Wu Department of Pure Mathematics and Mathematical Statistics University of Cambridge, Wilberforce Road Cambridge, CB3

More information

ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES

ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES Iwabuchi, T. and Ogawa, T. Osaka J. Math. 53 (216), 919 939 ILL-POSEDNESS ISSUE FOR THE DRIFT DIFFUSION SYSTEM IN THE HOMOGENEOUS BESOV SPACES TSUKASA IWABUCHI and TAKAYOSHI OGAWA (Received February 13,

More information

LORENZO BRANDOLESE AND JIAO HE

LORENZO BRANDOLESE AND JIAO HE UNIQUENESS THEOREMS FOR THE BOUSSINESQ SYSTEM LORENZO BRANDOLESE AND JIAO HE Abstract. We address the uniqueness problem for mild solutions of the Boussinesq system in R 3. We provide several uniqueness

More information

Global unbounded solutions of the Fujita equation in the intermediate range

Global unbounded solutions of the Fujita equation in the intermediate range Global unbounded solutions of the Fujita equation in the intermediate range Peter Poláčik School of Mathematics, University of Minnesota, Minneapolis, MN 55455, USA Eiji Yanagida Department of Mathematics,

More information

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics.

ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS. Citation Osaka Journal of Mathematics. ANALYTIC SMOOTHING EFFECT FOR NONLI TitleSCHRÖDINGER EQUATION IN TWO SPACE DIMENSIONS Author(s) Hoshino, Gaku; Ozawa, Tohru Citation Osaka Journal of Mathematics. 51(3) Issue 014-07 Date Text Version publisher

More information

The Inviscid Limit for Non-Smooth Vorticity

The Inviscid Limit for Non-Smooth Vorticity The Inviscid Limit for Non-Smooth Vorticity Peter Constantin & Jiahong Wu Abstract. We consider the inviscid limit of the incompressible Navier-Stokes equations for the case of two-dimensional non-smooth

More information

A new regularity criterion for weak solutions to the Navier-Stokes equations

A new regularity criterion for weak solutions to the Navier-Stokes equations A new regularity criterion for weak solutions to the Navier-Stokes equations Yong Zhou Department of Mathematics, East China Normal University Shanghai 6, CHINA yzhou@math.ecnu.edu.cn Proposed running

More information

Wavelets and modular inequalities in variable L p spaces

Wavelets and modular inequalities in variable L p spaces Wavelets and modular inequalities in variable L p spaces Mitsuo Izuki July 14, 2007 Abstract The aim of this paper is to characterize variable L p spaces L p( ) (R n ) using wavelets with proper smoothness

More information

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen

ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS. Zhongwei Shen W,p ESTIMATES FOR ELLIPTIC HOMOGENIZATION PROBLEMS IN NONSMOOTH DOMAINS Zhongwei Shen Abstract. Let L = div`a` x, > be a family of second order elliptic operators with real, symmetric coefficients on a

More information

DISSIPATIVE MODELS GENERALIZING THE 2D NAVIER-STOKES AND THE SURFACE QUASI-GEOSTROPHIC EQUATIONS

DISSIPATIVE MODELS GENERALIZING THE 2D NAVIER-STOKES AND THE SURFACE QUASI-GEOSTROPHIC EQUATIONS DISSIPATIVE MODELS GENERALIZING THE 2D NAVIER-STOKES AND THE SURFACE QUASI-GEOSTROPHIC EQUATIONS DONGHO CHAE, PETER CONSTANTIN 2 AND JIAHONG WU 3 Abstract. This paper is devoted to the global (in time)

More information

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations

Sufficient conditions on Liouville type theorems for the 3D steady Navier-Stokes equations arxiv:1805.07v1 [math.ap] 6 May 018 Sufficient conditions on Liouville type theorems for the D steady Navier-Stokes euations G. Seregin, W. Wang May 8, 018 Abstract Our aim is to prove Liouville type theorems

More information

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations

On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations On Smoothness of Suitable Weak Solutions to the Navier-Stokes Equations G. Seregin, V. Šverák Dedicated to Vsevolod Alexeevich Solonnikov Abstract We prove two sufficient conditions for local regularity

More information

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction

SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS. Massimo Grosi Filomena Pacella S. L. Yadava. 1. Introduction Topological Methods in Nonlinear Analysis Journal of the Juliusz Schauder Center Volume 21, 2003, 211 226 SYMMETRY RESULTS FOR PERTURBED PROBLEMS AND RELATED QUESTIONS Massimo Grosi Filomena Pacella S.

More information

hal , version 1-22 Nov 2009

hal , version 1-22 Nov 2009 Author manuscript, published in "Kinet. Relat. Models 1, 3 8) 355-368" PROPAGATION OF GEVREY REGULARITY FOR SOLUTIONS OF LANDAU EQUATIONS HUA CHEN, WEI-XI LI AND CHAO-JIANG XU Abstract. By using the energy-type

More information

On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in R 3

On the blow-up criterion of strong solutions for the MHD equations with the Hall and ion-slip effects in R 3 Z. Angew. Math. Phys. 016 67:18 c 016 The Authors. This article is published with open access at Springerlink.com 0044-75/16/00001-10 published online April, 016 DOI 10.1007/s000-016-0617- Zeitschrift

More information

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University

The 2D Magnetohydrodynamic Equations with Partial Dissipation. Oklahoma State University The 2D Magnetohydrodynamic Equations with Partial Dissipation Jiahong Wu Oklahoma State University IPAM Workshop Mathematical Analysis of Turbulence IPAM, UCLA, September 29-October 3, 2014 1 / 112 Outline

More information

LACK OF HÖLDER REGULARITY OF THE FLOW FOR 2D EULER EQUATIONS WITH UNBOUNDED VORTICITY. 1. Introduction

LACK OF HÖLDER REGULARITY OF THE FLOW FOR 2D EULER EQUATIONS WITH UNBOUNDED VORTICITY. 1. Introduction LACK OF HÖLDER REGULARITY OF THE FLOW FOR 2D EULER EQUATIONS WITH UNBOUNDED VORTICITY JAMES P. KELLIHER Abstract. We construct a class of examples of initial vorticities for which the solution to the Euler

More information

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator

Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Global Solutions for a Nonlinear Wave Equation with the p-laplacian Operator Hongjun Gao Institute of Applied Physics and Computational Mathematics 188 Beijing, China To Fu Ma Departamento de Matemática

More information

u t + u u = p (1.1) u = 0 (1.2)

u t + u u = p (1.1) u = 0 (1.2) METHODS AND APPLICATIONS OF ANALYSIS. c 2005 International Press Vol. 12, No. 4, pp. 427 440, December 2005 004 A LEVEL SET FORMULATION FOR THE 3D INCOMPRESSIBLE EULER EQUATIONS JIAN DENG, THOMAS Y. HOU,

More information

Uniform estimates for Stokes equations in domains with small holes and applications in homogenization problems

Uniform estimates for Stokes equations in domains with small holes and applications in homogenization problems Uniform estimates for Stokes equations in domains with small holes and applications in homogenization problems Yong Lu Abstract We consider the Dirichlet problem for the Stokes equations in a domain with

More information

Incompressible Navier-Stokes Equations in R 3

Incompressible Navier-Stokes Equations in R 3 Incompressible Navier-Stokes Equations in R 3 Zhen Lei ( ) School of Mathematical Sciences Fudan University Incompressible Navier-Stokes Equations in R 3 p. 1/5 Contents Fundamental Work by Jean Leray

More information

arxiv: v1 [math.ap] 28 Mar 2014

arxiv: v1 [math.ap] 28 Mar 2014 GROUNDSTATES OF NONLINEAR CHOQUARD EQUATIONS: HARDY-LITTLEWOOD-SOBOLEV CRITICAL EXPONENT VITALY MOROZ AND JEAN VAN SCHAFTINGEN arxiv:1403.7414v1 [math.ap] 28 Mar 2014 Abstract. We consider nonlinear Choquard

More information

An application of the the Renormalization Group Method to the Navier-Stokes System

An application of the the Renormalization Group Method to the Navier-Stokes System 1 / 31 An application of the the Renormalization Group Method to the Navier-Stokes System Ya.G. Sinai Princeton University A deep analysis of nature is the most fruitful source of mathematical discoveries

More information

THE INVISCID LIMIT FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLUIDS WITH UNBOUNDED VORTICITY. James P. Kelliher

THE INVISCID LIMIT FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLUIDS WITH UNBOUNDED VORTICITY. James P. Kelliher Mathematical Research Letters 11, 519 528 (24) THE INVISCID LIMIT FOR TWO-DIMENSIONAL INCOMPRESSIBLE FLUIDS WITH UNBOUNDED VORTICITY James P. Kelliher Abstract. In [C2], Chemin shows that solutions of

More information

Energy Dissipation in Fractal-Forced Flow. Abstract

Energy Dissipation in Fractal-Forced Flow. Abstract APS/13-QED Energy Dissipation in Fractal-Forced Flow Alexey Chesidov Department of Mathematics, University of Michigan, Ann Arbor, MI 48109 Charles R. Doering Department of Mathematics & Michigan Center

More information

On 2 d incompressible Euler equations with partial damping.

On 2 d incompressible Euler equations with partial damping. On 2 d incompressible Euler equations with partial damping. Wenqing Hu 1. (Joint work with Tarek Elgindi 2 and Vladimir Šverák 3.) 1. Department of Mathematics and Statistics, Missouri S&T. 2. Department

More information

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PSEUDO-COMPRESSIBILITY METHODS FOR THE UNSTEADY INCOMPRESSIBLE NAVIER-STOKES EQUATIONS Jie Shen Department of Mathematics, Penn State University University Par, PA 1680, USA Abstract. We present in this

More information

A STOCHASTIC LAGRANGIAN REPRESENTATION OF THE 3-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

A STOCHASTIC LAGRANGIAN REPRESENTATION OF THE 3-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS A STOCHASTIC LAGRANGIAN REPRESENTATION OF THE 3-DIMENSIONAL INCOMPRESSIBLE NAVIER-STOKES EQUATIONS PETER CONSTANTIN AND GAUTAM IYER Abstract. In this paper we derive a probabilistic representation of the

More information

On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals

On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals On the uniqueness of heat flow of harmonic maps and hydrodynamic flow of nematic liquid crystals Fanghua Lin Changyou Wang Dedicated to Professor Roger Temam on the occasion of his 7th birthday Abstract

More information

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t))

at time t, in dimension d. The index i varies in a countable set I. We call configuration the family, denoted generically by Φ: U (x i (t) x j (t)) Notations In this chapter we investigate infinite systems of interacting particles subject to Newtonian dynamics Each particle is characterized by its position an velocity x i t, v i t R d R d at time

More information

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n

THE L 2 -HODGE THEORY AND REPRESENTATION ON R n THE L 2 -HODGE THEORY AND REPRESENTATION ON R n BAISHENG YAN Abstract. We present an elementary L 2 -Hodge theory on whole R n based on the minimization principle of the calculus of variations and some

More information

GAKUTO International Series

GAKUTO International Series 1 GAKUTO International Series Mathematical Sciences and Applications, Vol.**(****) xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx, pp. xxx-xxx NAVIER-STOKES SPACE TIME DECAY REVISITED In memory of Tetsuro Miyakawa,

More information

The Navier-Stokes equations I consider an incompressible fluid continuum R 3, of constant density ( 0 = 1) I conservation of mass/incompressibility re

The Navier-Stokes equations I consider an incompressible fluid continuum R 3, of constant density ( 0 = 1) I conservation of mass/incompressibility re Turbulent weak solutions of the Euler equations Vlad Vicol (Princeton University) Colloquium, U Penn February 8, 2017 The Navier-Stokes equations I consider an incompressible fluid continuum R 3, of constant

More information

Proof of the existence (by a contradiction)

Proof of the existence (by a contradiction) November 6, 2013 ν v + (v )v + p = f in, divv = 0 in, v = h on, v velocity of the fluid, p -pressure. R n, n = 2, 3, multi-connected domain: (NS) S 2 S 1 Incompressibility of the fluid (divv = 0) implies

More information