EQUATIONS OF RIEMANN SURFACES OF GENUS 4, 5, AND 6 WITH LARGE AUTOMORPHISM GROUPS

Size: px
Start display at page:

Download "EQUATIONS OF RIEMANN SURFACES OF GENUS 4, 5, AND 6 WITH LARGE AUTOMORPHISM GROUPS"

Transcription

1 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS DVID SWINRSKI ND DVID SWINRSKI bstract. We say a Riemann surface has a large automorphism group if # ut() > 4(g ). We find equations of all genus 4 and 5 Riemann surfaces with large automorphism groups, and all but two of the genus 6 Riemann surfaces with large automorphisms groups. The strategy used is based on the Eichler trace formula and the projection formula from the character theory of finite groups. It is not completely algorithmic, but surprisingly yields enough information that we can finish each example by hand. In the last section we discuss how an algorithm for computing flattening stratifications could make the last step algorithmic as well. Every finite group G arises as a group of automorphisms of some smooth compact Riemann surface S (or complex algebraic curve ) or as the full automorphism group of a punctured Riemann surface [3, 7]. However, the property of #G being large compared to the genus g of S is special. general curve has no nontrivial automorphisms at all. There is the well-known bound due to Hurwitz: #G 84(g ), but most curves with automorphisms do not even come close to this. For instance, in genus 3, the Hurwitz bound is 68, but only five curves have automorphism groups satisfying #G > 4. We will call an automorphism group large if #G > 4(g ). y Riemann-Hurwitz, this implies that the quotient curve is P, and the quotient morphism branches over 3 or 4 points. Using Fuchsian group theory, it is possible to set up computer searches for large automorphism groups. lgebraists have carried this out [, ] and published lists of (G, g) such that there is a curve of genus g with large automorphism group G, but we don t know equations of all these curves. In other words, there is no published algorithm yet which given the group produces equations of the curve. In this note I will outline a non-algorithmic strategy for producing equations of Riemann surfaces with automorphisms under their canonical embeddings (or for curves, an equation of the form y = f(x) instead). Surprisingly, although my strategy is non-algorithmic, the algorithmic steps generally get us close enough to the answer that we can finish them by hand. Section presents an example which is very typical in this sense. In particular, I am able to find all of the genus 4 and 5 Riemann surfaces with large automorphism groups, and all but two of the genus 6 Riemann surfaces with large automorphism groups. Many of these example are classically known, but others may be new, and to my knowledge, this is the first time they are all collected in one place. In Section I outline the strategy in more detail. In Section I apply the strategy to one example; this section serves both as an illustration of the strategy and a mini-tutorial on how to use my Magma code. Section 3 is intended to be a reference work. In the final section, Section 4, I will discuss an idea for how the final step could be made algorithmic, too; in theory, this could lead to an algorithm for finding equations of any Riemann surface with automorphisms. (The missing ingredient is knowing how to compute a so-called flattening stratification.).. cknowledgements. I would like to thank the undergraduates from my Introductory VIGRE Research Group held in Fall at the University of Georgia: Eddie eck, Zachary Freeland, Tyler Johnson, Malik Obeidin, Jacob Rooney, and Lev Tovstopyat-Nelip, where I began the main programming of this work was begun. I am also very grateful to the computational algebra group at Date: July 5,.

2 DVID SWINRSKI ND DVID SWINRSKI the University of Sydney for hosting me for a visit, where a great deal of this work was completed. large number of people have provided supplied tips, conversations, and encouragement over a number of years, especially Marston onder, Johan de Jong, my Ksir, Ian Morrison, Jen Paulhus, Roy Smith, Robert Varley, and John Voight... Online. My webpage for this project is davids/ivrg/results.html This page contains links to the latest version of my Magma code, the main tables below, and several files of notes on specific examples.. The strategy Input: a finite group G, the genus g, and the ramification data (e,..., e r ) of the quotient morphism P. For 4 g this data is available in []. Marston onder has also published a list on his website going to g = ; however, this includes many groups which are not the full automorphism group of a Riemann surface. Step. ompute the classes and character table of G, and find a set of surface kernel generators. The notion of surface kernel generators has turned out to be very useful in the study of curves with automorphisms. Definition. set of surface kernel generators for the group G and ramification data (e,..., e r ) is a sequence of elements M i G such that () M i : i =,..., r = G; () Order(M i ) = e i ; and (3) M M M r =. We will use the surface kernel generators for Steps, 3 and 4 below. Step. Test for ity. There are two reasons why it is useful to know early on whether the curve is. First, if is, then the canonical divisor does not define an embedding. Second, curves can be specified by an equation of the form y = f(x), and their equations are well understood [3, 4]. So it is useful to know this gonality in advance, so that we don t try to find canonical equations when we shouldn t, and so that we can take advantage of what is known about curves. The curve is if and only if G contains a central involution σ with g + fixed points. The number of fixed points can be computed using Lemma.5 of [] (or Theorem 7 of [8]): Theorem. Let σ be an automorphism of order h > of a Riemann surface X of genus g. Let (M,..., M r ) be a set of surface kernel generators for X. Let Fix X,u (σ) be the set of fixed points of X where σ acts on a neighborhood of the fixed point by z exp(πiu/h)z. Then Fix X,u (σ) = G (σ) M i s.t. h m i σ M m i u/h i Thus, we can find all the central involutions in G, and compute the number of fixed points for each one (if there are any). If the curve is, we turn to [3] to get the equation of the form y = f(x), and then we can turn to [4] if we want to get the equations of undering a linear series. If the curve is not, we proceed. m i

3 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 3 Step 3: Test for ity. If is non-, then its canonical divisor defines an embedding, and the canonical ideal is generated at worst by quadrics and cubics. More specifically, by Petri s Theorem, the canonical ideal of a general curve is generated by quadrics, and it is only for curves and plane quintics that additional cubic generators are needed. So it is helpful to know in advance whether the curve is. osta and Izquierdo give criteria for testing for ity [4, Prop.,]. Step 4: Use the Eichler Trace Formula to compute the character of the action of G on S as well as on I and I 3. Proposition.3 (Eichler Trace Formula [5]) Suppose g, and let σ be a nontrivial automorphism of of order h. Write χ m for the character of the representation of ut() on H (, mk). Then + ζh u Fix,u (σ) ζ u if m = u<h h (u,h)= χ m (σ) = Fix,u (σ) ζu(m%h) h ζh u if m u<h (u,h)= Let S = Sym H (, K). y Noether s Theorem, the sequence I m S m H (, mk) is exact for all m, and so we can compute the character of the action of G on I and I 3 from knowing χ, χ, χ 3, Sym χ and Sym 3 χ. Step 5: Test whether is a plane quintic. I don t know a necessary and sufficient condition for testing for plane quintics. However, these only occur in genus 6, and then the canonical model lies on the Veronese surface in P 5. One way to detect plane quintics, then, is to see whether H (, K) = Sym V for some three-dimensional (not necessarily irreducible) represention V of G. In practice, this sufficed when studying all the genus 6 curves with large automorphism groups. Step 6: Obtain matrix generators for the action of G on H (, K). In a few cases, Magma was unable to find matrix generators for the required representation. I believe this is an implementation error, not an algorithmic one. In these cases, I was able to find the needed representation in [], [], or by using GP. Step 7: Use the projection formula to obtain candidate quadrics (and cubics, if applicable). We use the projection formula (cf. e.g. [6, Formula (.3)]): the projection of V onto its isotypical component V m i i is given by π i = dim V i G χ Vi (g)g. t this stage, the process becomes non-algorithmic. In general, an irreducible representation V i will show up with multiplicity in S or S 3. Frequently, some of the copies of V i will belong to I or I 3 while others will belong to H (, K) or H (, 3K), and I don t know an algorithmic way to decide how to split V m i i between them. However, at this stage, we may proceed following our intuition from algebraic geometry and frequently still obtain the equations we seek. In the next section we work through an example. g G Here is an example which is very typical.. n example: genus 5, G = (3, 8)

4 4 DVID SWINRSKI ND DVID SWINRSKI There is a one-parameter family of Riemann surfaces of genus 5 whose full automorphism group is the group G = (3, 8) in the notation of the GP library of small finite groups. The quotient morphism branches over 4 points of P with ramification (,,, 4). Magma V.7-6 Mon Jul 4 4:8:35 on dopey [Seed = 8534] Type? for help. Type <trl>-d to quit. > G:=SmallGroup(3,8); > G; GrpP : G of order 3 = ^5 P-Relations: G.^ = G.4, G.^G. = G. * G.4, G.3^G. = G.3 * G.5 The algorithmic steps described in the section above have been implemented in a function RunExample() in Magma. This function returns the images of the generators G. G.5 under the representation G H (, K) as well as lists of candidate quadrics and cubics. We can run the example at hand via MatGens38,Q,:=RunExample(G,5,[,,,4]); First, Magma computes the conjugacy classes and character table of G. (Since there is no canonical way to order the classes or the characters, we do this at the beginning to fix an ordering once and for all.) onjugacy lasses of group G [] Order Length Rep Id(G) [] Order Length Rep G.5 [3] Order Length Rep G.4 [4] Order Length Rep G.4 * G.5 [5] Order Length Rep G.3 [6] Order Length Rep G.3 * G.4 [7] Order Length 4 Rep G. * G. [8] Order Length 4 Rep G. [9] Order 4 Length Rep G. * G.3 * G.5 [] Order 4 Length Rep G. * G.3

5 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 5 [] Order 4 Length Rep G. * G.5 [] Order 4 Length Rep G. [3] Order 4 Length 4 Rep G. * G.3 [4] Order 4 Length 4 Rep G. * G. * G.3 haracter Table of Group G lass Size Order p = X. + X X X X X X X X X X X X *I *I X *I -*I Explanation of haracter Value Symbols I = RootOfUnity(4) Next, Magma computes a set of surface kernel generators. Since by [] we know that this curve is unique, it is only necessary to study one set of surface kernel generators. Magma then tests whether is. SKGs: [ G.3 * G.4, G. * G.4, G. * G. * G.4, G. * G.3 ] Is? false Next, Magma computes the G-module structure of several relevant G-modules. We list this information by the multiplicities of the irreducible representation (as ordered in the character table), i.e. if V = V m + Vr mr, then the vector of multiplicities (m,..., m r ) is displayed below: Multiplicities of irreducibles in relevant G-modules:

6 6 DVID SWINRSKI ND DVID SWINRSKI I_ =[,,,,,,,,,,,,, ] S_ =[,,,,,,,,,,,,, ] H^(,K)=[,,,,,,,,,,,,, ] I_ =[,,,,,,,,,,,,, ] S_ =[,,,,,,,,,,,,, ] H^(,K)=[,,,,,,,,,,,,, ] I_3 =[,,,,,,,, 3,,,,, ] S_3 =[,,,,,,,, 5,,,,, 4 ] H^(,3K)=[,,,,,,,,,,,,, ] ItimesS=[,,,,,,,, 3,,,,, ] Is clearly not generated by quadrics? false In the last line, Magma has compared I 3 and I S. If the multiplicity of any irreducible in I 3 exceeds its multiplicity in I S, then we cannot have I 3 I S, and so the curve must either be or a plane quintic. Remark: It would be interesting to know if the converse is true i.e. if is or a plane quintic and #G > 4(g ), then is there always an irreducible representation V i whose multiplicity in I 3 exceeds its multiplicity in I S? This would give a test for gonality that, to my knowledge, is new. Next Magma finds matrix generators for the representation ρ : G H (, K). First, it returns the list ρ(g.i), where G.i is a generator of the group G in whatever format Magma has it stored. Next, it returns ρ(m i ) for the surface kernel generators M i : Matrix generators for action on H^(,K): Field K yclotomic Field of order 3 and degree 6 [ [- ] [ ] [ - ] [ ] [ ], [ ] [ - ] [ ] [ ] [ - ], [ - ] [ ] [ ] [ -z^8] [ z^8 ] ] Surface Kernel Generators: [ [ - ] [ - ] [ - ] [ z^8] [ -z^8 ], [- ] [ - ] [ ]

7 ] EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 7 [ -] [ - ], [- ] [ ] [ ] [ ] [ -], [ - ] [ - ] [ ] [ z^8 ] [ z^8] Next, Magma uses the projection formula from representation theory to find the quadrics (and cubics, if relevant) which may be in I and I 3 : Finding quadrics: I contains a -dimensional subspace of haracterrow Dimension Multiplicity [ a^, b^ + c^ ] I contains a -dimensional subspace of haracterrow Dimension Multiplicity [ b*c, d^ - e^ ] I contains a -dimensional subspace of haracterrow 6 Dimension Multiplicity [ b^ - c^, d*e ] Thus, we seek coefficients µ,..., µ 6 such that I = µ a + µ (b + c ), µ bc + µ 4 (d e ), µ 5 (b c ) + µ 6 (de). t this point, the algorithmic steps are done. I don t know an algorithmic way to choose the necessary one-dimensional subspaces of these three two-dimensional subspaces. However, we can proceed intuitively. The canonical ideal of a curve should contain no monomials. In fact, let us suppose that none of the coefficients µ i is zero. We can divide each equation by the coefficient of the first term to set µ = µ 3 = µ 5 = : I = a + µ (b + c ), bc + µ 4 (d e ), (b c ) + µ 6 (de)

8 8 DVID SWINRSKI ND DVID SWINRSKI Next, note that by scaling a, we may assume that µ =, and by scaling d and e, we may assume that µ 4 =. Thus we obtain I = a + b + c, bc + d e, b c + µ 6 (de). Now µ 6 is the only remaining unknown coefficient. However, we are expecting a -dimensional family of curves with this automorphism group, and we have obtained a candidate pencil. The last step is to check that some member of this pencil is a smooth curve. If there is, then by Zariski-openness of smoothness, a general member of this pencil is smooth. > K<z>:=yclotomicField(3); > P4<a,b,c,d,e>:=ProjectiveSpace(K,4); > mu:=; > :=Scheme(P4,[a^+b^+c^,b*c+d^-e^,b^-c^+mu*d*e]); > Dimension(X); > IsSingular(X); false s a final check, we have Magma test that the matrix generators of G H (, K) are automorphisms of by running commands of the following type: > utomorphism(,matgens38[]); Mapping from: Sch: to Sch: with equations : -a b -c e d and inverse -a b -c e d (Magma would return an error if this matrix did not define an automorphism of.) 3. Results We list tables of equations of genus 4 and 5 curves with large automorphism groups, as well as the genus 6 curves with large automorphism groups whose quotient morphisms branch over 3 points of P. Note: in the first column of each of the following tables, we list: the number assigned to this curve in [], the GP identifier of the finite group (the first number is the order of the group), the ramification data of the quotient morphism, and whether the curve is,, or a plane quintic.

9 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 9 Figure. Genus 4, δ = Data Equations Surface kernel generators z 4 (,34) = S 5 ad + bc, z 3,4,5 a c ab + bd c z d z (7,4),3, 3 (7,4),4,6 4 (4,8),4, 5 (36,),6,6 6 (3,9),4,6 7 (4,3) 3,4,6 8 (8,) (,9,8) 9 (5,) = Z 5 3,5,5 a + b + c abc d 3 ab + cd, a 3 b 3 + c 3 d 3 y = x ad + c, a 3 d 3 + b 3 y = x 9 x y = x 9 b + cd, a 3 + bc + d 3 5 ), w = exp( πi, w = exp( πi 3 ) z z w w w w 3 ) w w, 6 ) y = x(x 4 )(x 4 + tx + ), t = 3 z z 5 z 5 z 5, 5 ) z z z + z 3 z 6 z 9 z 3

10 DVID SWINRSKI ND DVID SWINRSKI (36,),,,3 Figure. Genus 4, δ = Data Equations Surface kernel generators w ab + cd, w a 3 b 3 + t(c 3 d 3 ) (4,)=S 4,,,4 (,4),,,5 3 (8,3),,3,3 4 (6,7),,,8 a + b + c + td, abc d 3 y = (x 5 t 5 )(x 5 t 5 ) ac b, a 3 b 3 + d 3 + tabc y = x(x 4 t 4 )(x 4 t 4 ) w w,, w = exp( πi 3 ), w = exp( πi 3 ), w w w w w w

11 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS Figure 3. Genus 5, δ = Data Equations Surface kernel generators i a ibd, i z 3 (9,8) c + b + d,,3,8 e + ib id i z 5 z 7 z 5 i z = exp( πi 8 ) a + b + c + d + e, a (6,34) + (z 3 + z ) c + ( z 3 z ) d e,,4,5 b c + ( z 3 z ) d + (z 3 + z ) e ; z = exp( pi i/5) 3 (,35) y,3, = x x 6 x 4 (96,95),4,6 5 (64,3),4,8 6 (48,4),4, 7 (48,3) 3,4,4 8 (4,5),4, 9 (3,),6,5 (,),, c + ce + d de + e, a + c + ( 4z + )cd + zce + d zde + (z )e, b zc + ( z + 4)cd ce zd + de + (z )e ; 6 ) b + c + d + e, a + b + c d e, b c id + ie y = x y = x 33x 8 33x 4 + y = x x a + be, ac + de, ad bc, ab + c d + e 3, ae + cd + b 3 y = x z 9 z 3 z z 6 z = exp( πi 6 ) z z i 5 ) z z 7 z 4 z z 3

12 DVID SWINRSKI ND DVID SWINRSKI Figure 4. Genus 5, δ = Data Equations Surface kernel generators a + ab + b + c + cd +ce + d + de + e, a b + t(c (48,48),,,3 +cd de e ), ab + b + t( c ce + d + de) (3,43),,,4 3 (3,8),,,4 4 (3,7),,,4 5 (4,4),,,6 6 (4,8),,,6 7 (4,3),,3,3 8 (,4),,, a + be + cd, b + c + tde, d + e + tbc a + b + c, bc + d e, b c + tde a bc, a + d + e, b c + tde y = (x 6 t 6 )(x 6 t 6 ) a + b b c + c, ab + t(b + bc c ) + d + e, ac + t(b bc c ) +zd + ( z + )e ; 6 ) tab + c + d + e, a + c + (z )d ze, b + c zd + (z )e ; 6 ) y = x(x 5 t 5 )(x 5 t 5 ) i i z z z 3 z z z z 3 z z = exp( πi 8 ) i i 6 ) 6 ) z z z z

13 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 3 Figure 5. Genus 6, δ = Data Equations Surface kernel generators (5,5),3, g 6 (,34),4,6 3 (7,5),4,9 4 (56,7),4,4 5 (48,6),4,4 6 (48,9) = GL (3),6,8 7 (48,5),6,8 8 (39,),3,3 g 6 9 (3,),,5 g 6 (6,) = Z,3,6 (,) = Z 3,7, x 5 + y 5 + z 5 y 3 = x 8 + 4x 4 + y = x 4 y = x 3 x y = x(x 4 )(x 8 + 4x 4 + )) y 3 = x 8 x 4 y + y 4 z + z 4 x a 5 + b 4 c + zb 3 c + z b c 3 + z 3 bc 4 ; 5 ) y = x 3 y 3 = x 7 Normalization of the Wiman sextic; equations of this curve are known (see e.g. [9]), but I have not successfully run my strategy on this curve yet z 4 z, z3 z z z 5 )

14 4 DVID SWINRSKI ND DVID SWINRSKI 4. an we use flattening stratifications to make the last step algorithmic? It is known that the group S 4 is the automorphism group of a -dimensional family of genus 6 curves. The quotient curve is P, and the quotient morphism branches at 4 points with ramifications indices,, 3, 4. Moreover, these curves are neither nor. Let be a member of this family. We can use the Eichler trace formula to find the action of S 4 on H (, mk) for m =,. Moreover, we can find matrix generators for the action on H (, K):,,, and we can decompose the action on quadrics in these variables to get F := a + ab ac + b bc + c + d + df + e + ef + f ; F := µ (a ac b + bc) + µ (ad ae af bd be 3bf + ce + cf) + µ 3 (8de + 4df + 4ef + f ) F 3 := µ (ab + ac + /b /c ) + µ (/ad /ae + /af + bd + be + 3/bf 3/cd /ce cf) + µ 3 (d de + e f ) F 4 := µ 4 (a c ) + µ 5 (ad + bd be cd) + µ 6 (d + df e ef) F 5 := µ 4 (ab ac bc + c ) + µ 5 ( /ad /ae /af /bd + /be + cd + /cf) + µ 6 ( d df + e + ef) F 6 := µ 4 (b c ) + µ 5 (ad + ae + af + bd + bf cd cf) + µ 6 (d e ef f ) Let S = P P, where the first copy of P has coordinates [µ : µ : µ 3 ], and the second copy has coordinates [µ 4 : µ 5 : µ 6 ]. For each s S, let I s be the ideal F,... F 6. We are guaranteed that there exists at least one s S such that I s defines a smooth curve in P 5. How can we find such a point s? Note that most values of s define empty subschemes of P 5. It is a theorem (due originally to either Mumford or Grothendieck, I believe) that there exists a flattening stratification of S. The following is taken from [5]: Definition 4. Let F be a coherent sheaf on P n S. flattening stratification for F over S is a finite disjoint collection {S i } of locally closed subschemes of S such that () set-theoretically, S S i ; () for any morphism g : T S, the pullback ( g) F is flat over T if and only if each g i : S i T is open and closed in T. Proposition 4. ([5, Prop. 7.]) Let F be a coherent sheaf on P n S. There exists a flattening stratification {S P (z) } for F, indexed by numerical polynomials P (z), such that for all g : T S, we have: F T is T -flat with Hilbert polynomial P (z) if and only if g factors through S P (z).,

15 EQUTIONS OF RIEMNN SURFES OF GENUS 4, 5, ND 6 WITH LRGE UTOMORPHISM GROUPS 5 Returning to the example above: suppose we knew how to compute a flattening stratification of S. Then we could find the stratum S P (z) where P (z) = (g )z g + = z 5. This stratum may be irreducible and disconnected, but it should contain at least one irreducible component where the generic fiber is a smooth curve in P 5. So, how can we compute flattening stratifications? I don t know the answer, but I have had some suggestions: () There are hints in the literature that Fitting ideals are relevant to this purpose, but I don t understand the precise connection yet. () Dave ayer pointed me to [], which studies the behavior of Gröbner bases with respect to extension of scalars. (3) Mark Watkins suggested another approach: search over finite fields for points s S where the fiber dimension is correct, then try to lift. Lastly, we note that there are examples where flattening stratifications fail to exist when the base S is nonreduced. However, in all of the examples which arise from the strategy outlined in Section, the base S will be a product of Grassmannians, and so this issue will not arise for us. References [] Dave ayer, ndré Galligo, and Mike Stillman, Gröbner bases and extension of scalars, omputational algebraic geometry and commutative algebra (ortona, 99), Sympos. Math., XXXIV, ambridge Univ. Press, ambridge, 993, pp MR5399 (94j:3) 5 [] Thomas reuer, haracters and automorphism groups of compact Riemann surfaces, London Mathematical Society Lecture Note Series, vol. 8, ambridge University Press, ambridge,. MR79676 (i:434), [3] W. urnside, Theory of groups of finite order, Dover Publications Inc., New York, 955. d ed. MR6988 (6,86c) [4] ntonio F. osta and Milagros Izquierdo, Maximal order of automorphisms of Riemann surfaces, J. lgebra 33 (), no., 7 3, DOI.6/j.jalgebra MR56486 (a:463) 3 [5] H. M. Farkas and I. Kra, Riemann surfaces, nd ed., Graduate Texts in Mathematics, vol. 7, Springer-Verlag, New York, 99. MR39765 (93a:347) 3 [6] William Fulton and Joe Harris, Representation theory, Graduate Texts in Mathematics, vol. 9, Springer- Verlag, New York, 99. first course; Readings in Mathematics. MR5349 (93a:69) 3 [7] Leon Greenberg, onformal transformations of Riemann surfaces, mer. J. Math. 8 (96), MR988 (3 #39) [8] W. J. Harvey, yclic groups of automorphisms of a compact Riemann surface, Quart. J. Math. Oxford Ser. () 7 (966), MR69 (34 #5) [9] Naoki Inoue and Fumiharu Kato, On the geometry of Wiman s sextic, J. Math. Kyoto Univ. 45 (5), no. 4, MR668 (7m:478) 3 [] Izumi Kuribayashi and kikazu Kuribayashi, utomorphism groups of compact Riemann surfaces of genera three and four, J. Pure ppl. lgebra 65 (99), no. 3, 77 9, DOI.6/-449(9)97-S. MR785 (9a:34) 3 [] kikazu Kuribayashi and Hideyuki Kimura, utomorphism groups of compact Riemann surfaces of genus five, J. lgebra 34 (99), no., 8 3, DOI.6/-8693(9)9-7. MR6846 (9j:333) 3 [] K. Magaard, T. Shaska, S. Shpectorov, and H. Völklein, The locus of curves with prescribed automorphism group, Sūrikaisekikenkyūsho Kōkyūroku 67 (), 4, available at arxiv:math.g/534. ommunications in arithmetic fundamental groups (Kyoto, 999/). MR95437,, 5, 8 [3] Tanush Shaska, Determining the automorphism group of a curve, Proceedings of the 3 International Symposium on Symbolic and lgebraic omputation, M, New York, 3, pp (electronic), DOI.45/ , (to appear in print). MR359 (5c:437) [4] Jan Stevens, Deformations of singularities, Lecture Notes in Mathematics, vol. 8, Springer-Verlag, erlin, 3. MR9766 (4b:349) [5] Stein rild Strømme, Elementary introduction to representable functors and Hilbert schemes, Parameter spaces (Warsaw, 994), anach enter Publ., vol. 36, Polish cad. Sci., Warsaw, 996, pp MR48486 (98m:44) 4

16 6 DVID SWINRSKI ND DVID SWINRSKI Software Packages Referenced [6] The GP Group, GP: Groups, lgorithms, and Programming, a system for computational discrete algebra (8), available at Version [7] School of Mathematics and Statistics omputational lgebra Research Group University of Sydney, MGM computational algebra system (8), available at Version.5-. address: davidsmath.uga.edu

EQUATIONS OF RIEMANN SURFACES OF GENUS 4, 5, AND 6 WITH LARGE AUTOMORPHISM GROUPS

EQUATIONS OF RIEMANN SURFACES OF GENUS 4, 5, AND 6 WITH LARGE AUTOMORPHISM GROUPS EQUATIONS OF RIEMANN SURFACES OF GENUS 4, 5, AND 6 WITH LARGE AUTOMORPHISM GROUPS DAVID SWINARSKI Abstract. We say a Riemann surface has a large automorphism group if # Aut(C) > 4(g 1). We find equations

More information

EQUATIONS OF THE GENUS 6 CURVE WITH AUTOMORPHISM GROUP G = 72, 15

EQUATIONS OF THE GENUS 6 CURVE WITH AUTOMORPHISM GROUP G = 72, 15 EQUATIONS OF THE GENUS 6 CURVE WITH AUTOMORPHISM GROUP G = 72, 15 DAVID SWINARSKI The group G = 72, 15 is the automorphism group of a genus 6 curve X. One notable feature of this curve is that the representation

More information

EQUATIONS OF RIEMANN SURFACES WITH AUTOMORPHISMS DAVID SWINARSKI

EQUATIONS OF RIEMANN SURFACES WITH AUTOMORPHISMS DAVID SWINARSKI EQUATIONS OF RIEMANN SURFACES WITH AUTOMORPHISMS DAVID SWINARSKI Abstract. We present an algorithm for computing equations of canonically embedded Riemann surfaces with automorphisms. A variant of this

More information

PROBLEMS FOR VIASM MINICOURSE: GEOMETRY OF MODULI SPACES LAST UPDATED: DEC 25, 2013

PROBLEMS FOR VIASM MINICOURSE: GEOMETRY OF MODULI SPACES LAST UPDATED: DEC 25, 2013 PROBLEMS FOR VIASM MINICOURSE: GEOMETRY OF MODULI SPACES LAST UPDATED: DEC 25, 2013 1. Problems on moduli spaces The main text for this material is Harris & Morrison Moduli of curves. (There are djvu files

More information

On the Moduli Space of Klein Four Covers of the Projective Line

On the Moduli Space of Klein Four Covers of the Projective Line On the Moduli Space of Klein Four Covers of the Projective Line D. Glass, R. Pries a Darren Glass Department of Mathematics Columbia University New York, NY 10027 glass@math.columbia.edu Rachel Pries Department

More information

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism

where m is the maximal ideal of O X,p. Note that m/m 2 is a vector space. Suppose that we are given a morphism 8. Smoothness and the Zariski tangent space We want to give an algebraic notion of the tangent space. In differential geometry, tangent vectors are equivalence classes of maps of intervals in R into the

More information

Porteous s Formula for Maps between Coherent Sheaves

Porteous s Formula for Maps between Coherent Sheaves Michigan Math. J. 52 (2004) Porteous s Formula for Maps between Coherent Sheaves Steven P. Diaz 1. Introduction Recall what the Thom Porteous formula for vector bundles tells us (see [2, Sec. 14.4] for

More information

Math 248B. Applications of base change for coherent cohomology

Math 248B. Applications of base change for coherent cohomology Math 248B. Applications of base change for coherent cohomology 1. Motivation Recall the following fundamental general theorem, the so-called cohomology and base change theorem: Theorem 1.1 (Grothendieck).

More information

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS

AN INTRODUCTION TO MODULI SPACES OF CURVES CONTENTS AN INTRODUCTION TO MODULI SPACES OF CURVES MAARTEN HOEVE ABSTRACT. Notes for a talk in the seminar on modular forms and moduli spaces in Leiden on October 24, 2007. CONTENTS 1. Introduction 1 1.1. References

More information

ALGORITHMS FOR ALGEBRAIC CURVES

ALGORITHMS FOR ALGEBRAIC CURVES ALGORITHMS FOR ALGEBRAIC CURVES SUMMARY OF LECTURE 7 I consider the problem of computing in Pic 0 (X) where X is a curve (absolutely integral, projective, smooth) over a field K. Typically K is a finite

More information

SCHURRINGS: A PACKAGE FOR COMPUTING WITH SYMMETRIC FUNCTIONS

SCHURRINGS: A PACKAGE FOR COMPUTING WITH SYMMETRIC FUNCTIONS SCHURRINGS: A PACKAGE FOR COMPUTING WITH SYMMETRIC FUNCTIONS CLAUDIU RAICU AND MIKE STILLMAN Abstract. We describe a software package facilitating computations with symmetric functions, with an emphasis

More information

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY

NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY NOTES ON FLAT MORPHISMS AND THE FPQC TOPOLOGY RUNE HAUGSENG The aim of these notes is to define flat and faithfully flat morphisms and review some of their important properties, and to define the fpqc

More information

Math 249B. Nilpotence of connected solvable groups

Math 249B. Nilpotence of connected solvable groups Math 249B. Nilpotence of connected solvable groups 1. Motivation and examples In abstract group theory, the descending central series {C i (G)} of a group G is defined recursively by C 0 (G) = G and C

More information

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON HYPERSURFACES

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON HYPERSURFACES ARITHMETICALLY COHEN-MACAULAY BUNDLES ON HYPERSURFACES N. MOHAN KUMAR, A. P. RAO, AND G. V. RAVINDRA Abstract. We prove that any rank two arithmetically Cohen- Macaulay vector bundle on a general hypersurface

More information

ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF

ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF ON THE ISOMORPHISM BETWEEN THE DUALIZING SHEAF AND THE CANONICAL SHEAF MATTHEW H. BAKER AND JÁNOS A. CSIRIK Abstract. We give a new proof of the isomorphism between the dualizing sheaf and the canonical

More information

EXAMPLES OF CALABI-YAU 3-MANIFOLDS WITH COMPLEX MULTIPLICATION

EXAMPLES OF CALABI-YAU 3-MANIFOLDS WITH COMPLEX MULTIPLICATION EXAMPLES OF CALABI-YAU 3-MANIFOLDS WITH COMPLEX MULTIPLICATION JAN CHRISTIAN ROHDE Introduction By string theoretical considerations one is interested in Calabi-Yau manifolds since Calabi-Yau 3-manifolds

More information

LINKED HOM SPACES BRIAN OSSERMAN

LINKED HOM SPACES BRIAN OSSERMAN LINKED HOM SPACES BRIAN OSSERMAN Abstract. In this note, we describe a theory of linked Hom spaces which complements that of linked Grassmannians. Given two chains of vector bundles linked by maps in both

More information

SPACES OF RATIONAL CURVES IN COMPLETE INTERSECTIONS

SPACES OF RATIONAL CURVES IN COMPLETE INTERSECTIONS SPACES OF RATIONAL CURVES IN COMPLETE INTERSECTIONS ROYA BEHESHTI AND N. MOHAN KUMAR Abstract. We prove that the space of smooth rational curves of degree e in a general complete intersection of multidegree

More information

The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves

The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves The Reducibility and Dimension of Hilbert Schemes of Complex Projective Curves Krishna Dasaratha dasaratha@college.harvard.edu Advisor: Joe Harris Submitted to the Department of Mathematics in partial

More information

Bi-elliptic Weierstrass points on curves of genus 5

Bi-elliptic Weierstrass points on curves of genus 5 Bi-elliptic Weierstrass points on curves of genus 5 T. Kato, K. Magaard and H. Völklein A curve of genus > 5 has at most one bi-elliptic involution (i.e., involution yielding a quotient curve of genus

More information

STABILITY OF GENUS 5 CANONICAL CURVES

STABILITY OF GENUS 5 CANONICAL CURVES STABILITY OF GENUS 5 CANONICAL CURVES MAKSYM FEDORCHUK AND DAVID ISHII SMYTH To Joe Harris on his sixtieth birthday Abstract. We analyze GIT stability of nets of quadrics in P 4 up to projective equivalence.

More information

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY

COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY COMPLEX VARIETIES AND THE ANALYTIC TOPOLOGY BRIAN OSSERMAN Classical algebraic geometers studied algebraic varieties over the complex numbers. In this setting, they didn t have to worry about the Zariski

More information

MODULI SPACES OF CURVES

MODULI SPACES OF CURVES MODULI SPACES OF CURVES SCOTT NOLLET Abstract. My goal is to introduce vocabulary and present examples that will help graduate students to better follow lectures at TAGS 2018. Assuming some background

More information

The Grothendieck Ring of Varieties

The Grothendieck Ring of Varieties The Grothendieck Ring of Varieties Ziwen Zhu University of Utah October 25, 2016 These are supposed to be the notes for a talk of the student seminar in algebraic geometry. In the talk, We will first define

More information

Representations and Linear Actions

Representations and Linear Actions Representations and Linear Actions Definition 0.1. Let G be an S-group. A representation of G is a morphism of S-groups φ G GL(n, S) for some n. We say φ is faithful if it is a monomorphism (in the category

More information

INTERPOLATION PROBLEMS: DEL PEZZO SURFACES

INTERPOLATION PROBLEMS: DEL PEZZO SURFACES INTERPOLATION PROBLEMS: DEL PEZZO SURFACES AARON LANDESMAN AND ANAND PATEL Abstract. We consider the problem of interpolating projective varieties through points and linear spaces. After proving general

More information

RIMS-1743 K3 SURFACES OF GENUS SIXTEEN. Shigeru MUKAI. February 2012 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES. KYOTO UNIVERSITY, Kyoto, Japan

RIMS-1743 K3 SURFACES OF GENUS SIXTEEN. Shigeru MUKAI. February 2012 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES. KYOTO UNIVERSITY, Kyoto, Japan RIMS-1743 K3 SURFACES OF GENUS SIXTEEN By Shigeru MUKAI February 2012 RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES KYOTO UNIVERSITY, Kyoto, Japan K3 SURFACES OF GENUS SIXTEEN SHIGERU MUKAI Abstract. The

More information

Holomorphic maps between Riemann surfaces of small genera

Holomorphic maps between Riemann surfaces of small genera Holomorphic maps between Riemann surfaces of small genera Ilya Mednykh Sobolev Institute of Mathematics Novosibirsk State University Russia Branched Coverings, Degenerations, and Related Topis 2010 Hiroshima,

More information

IRREDUCIBILITY AND COMPONENTS RIGID IN MODULI OF THE HILBERT SCHEME OF SMOOTH CURVES

IRREDUCIBILITY AND COMPONENTS RIGID IN MODULI OF THE HILBERT SCHEME OF SMOOTH CURVES IRREDUCIBILITY AND COMPONENTS RIGID IN MODULI OF THE HILBERT SCHEME OF SMOOTH CURVES CHANGHO KEEM*, YUN-HWAN KIM AND ANGELO FELICE LOPEZ** Abstract. Denote by H d,g,r the Hilbert scheme of smooth curves,

More information

SPACES OF RATIONAL CURVES ON COMPLETE INTERSECTIONS

SPACES OF RATIONAL CURVES ON COMPLETE INTERSECTIONS SPACES OF RATIONAL CURVES ON COMPLETE INTERSECTIONS ROYA BEHESHTI AND N. MOHAN KUMAR Abstract. We prove that the space of smooth rational curves of degree e on a general complete intersection of multidegree

More information

a double cover branched along the smooth quadratic line complex

a double cover branched along the smooth quadratic line complex QUADRATIC LINE COMPLEXES OLIVIER DEBARRE Abstract. In this talk, a quadratic line complex is the intersection, in its Plücker embedding, of the Grassmannian of lines in an 4-dimensional projective space

More information

Computing syzygies with Gröbner bases

Computing syzygies with Gröbner bases Computing syzygies with Gröbner bases Steven V Sam July 2, 2008 1 Motivation. The aim of this article is to motivate the inclusion of Gröbner bases in algebraic geometry via the computation of syzygies.

More information

On isolated strata of pentagonal Riemann surfaces in the branch locus of moduli spaces

On isolated strata of pentagonal Riemann surfaces in the branch locus of moduli spaces On isolated strata of pentagonal Riemann surfaces in the branch locus of moduli spaces Gabriel Bartolini, Antonio F. Costa and Milagros Izquierdo Linköping University Post Print N.B.: When citing this

More information

COMPLETELY DECOMPOSABLE JACOBIAN VARIETIES IN NEW GENERA

COMPLETELY DECOMPOSABLE JACOBIAN VARIETIES IN NEW GENERA COMPLETELY DECOMPOSABLE JACOBIAN VARIETIES IN NEW GENERA JENNIFER PAULHUS AND ANITA M. ROJAS Abstract. We present a new technique to study Jacobian variety decompositions using subgroups of the automorphism

More information

MODULI SPACES AND DEFORMATION THEORY, CLASS 1. Contents 1. Preliminaries 1 2. Motivation for moduli spaces Deeper into that example 4

MODULI SPACES AND DEFORMATION THEORY, CLASS 1. Contents 1. Preliminaries 1 2. Motivation for moduli spaces Deeper into that example 4 MODULI SPACES AND DEFORMATION THEORY, CLASS 1 RAVI VAKIL Contents 1. Preliminaries 1 2. Motivation for moduli spaces 3 2.1. Deeper into that example 4 1. Preliminaries On the off chance that any of you

More information

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12

MATH 8253 ALGEBRAIC GEOMETRY WEEK 12 MATH 8253 ALGEBRAIC GEOMETRY WEEK 2 CİHAN BAHRAN 3.2.. Let Y be a Noetherian scheme. Show that any Y -scheme X of finite type is Noetherian. Moreover, if Y is of finite dimension, then so is X. Write f

More information

Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013

Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 18.782 Introduction to Arithmetic Geometry Fall 2013 Lecture #23 11/26/2013 As usual, a curve is a smooth projective (geometrically irreducible) variety of dimension one and k is a perfect field. 23.1

More information

On the generation of the coefficient field of a newform by a single Hecke eigenvalue

On the generation of the coefficient field of a newform by a single Hecke eigenvalue On the generation of the coefficient field of a newform by a single Hecke eigenvalue Koopa Tak-Lun Koo and William Stein and Gabor Wiese November 2, 27 Abstract Let f be a non-cm newform of weight k 2

More information

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON THREE DIMENSIONAL HYPERSURFACES

ARITHMETICALLY COHEN-MACAULAY BUNDLES ON THREE DIMENSIONAL HYPERSURFACES ARITHMETICALLY COHEN-MACAULAY BUNDLES ON THREE DIMENSIONAL HYPERSURFACES N. MOHAN KUMAR, A. P. RAO, AND G. V. RAVINDRA Abstract. We prove that any rank two arithmetically Cohen- Macaulay vector bundle

More information

KLEIN-FOUR COVERS OF THE PROJECTIVE LINE IN CHARACTERISTIC TWO

KLEIN-FOUR COVERS OF THE PROJECTIVE LINE IN CHARACTERISTIC TWO ALBANIAN JOURNAL OF MATHEMATICS Volume 1, Number 1, Pages 3 11 ISSN 1930-135(electronic version) KLEIN-FOUR COVERS OF THE PROJECTIVE LINE IN CHARACTERISTIC TWO DARREN GLASS (Communicated by T. Shaska)

More information

Projective Schemes with Degenerate General Hyperplane Section II

Projective Schemes with Degenerate General Hyperplane Section II Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 44 (2003), No. 1, 111-126. Projective Schemes with Degenerate General Hyperplane Section II E. Ballico N. Chiarli S. Greco

More information

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves. Yuichiro Hoshi

Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves. Yuichiro Hoshi Hokkaido Mathematical Journal ol. 45 (2016) p. 271 291 Finiteness of the Moderate Rational Points of Once-punctured Elliptic Curves uichiro Hoshi (Received February 28, 2014; Revised June 12, 2014) Abstract.

More information

FOUR-BY-FOUR PFAFFIANS. This paper is dedicated to Paolo Valabrega on his sixtieth birthday.

FOUR-BY-FOUR PFAFFIANS. This paper is dedicated to Paolo Valabrega on his sixtieth birthday. FOUR-BY-FOUR PFAFFIANS N. MOHAN KUMAR - A. P. RAO - G. V. RAVINDRA This paper is dedicated to Paolo Valabrega on his sixtieth birthday. Abstract. This paper shows that the general hypersurface of degree

More information

0.1 Spec of a monoid

0.1 Spec of a monoid These notes were prepared to accompany the first lecture in a seminar on logarithmic geometry. As we shall see in later lectures, logarithmic geometry offers a natural approach to study semistable schemes.

More information

NOTES ON DIMENSION THEORY OF SCHEMES

NOTES ON DIMENSION THEORY OF SCHEMES NOTES ON DIMENSION THEORY OF SCHEMES BRIAN OSSERMAN In this expository note, we discuss various aspects of the theory of dimension of schemes, in particular focusing on which hypotheses are necessary in

More information

On p-hyperelliptic Involutions of Riemann Surfaces

On p-hyperelliptic Involutions of Riemann Surfaces Beiträge zur Algebra und Geometrie Contributions to Algebra and Geometry Volume 46 (2005), No. 2, 581-586. On p-hyperelliptic Involutions of Riemann Surfaces Ewa Tyszkowska Institute of Mathematics, University

More information

Parameterizing orbits in flag varieties

Parameterizing orbits in flag varieties Parameterizing orbits in flag varieties W. Ethan Duckworth April 2008 Abstract In this document we parameterize the orbits of certain groups acting on partial flag varieties with finitely many orbits.

More information

1.5.4 Every abelian variety is a quotient of a Jacobian

1.5.4 Every abelian variety is a quotient of a Jacobian 16 1. Abelian Varieties: 10/10/03 notes by W. Stein 1.5.4 Every abelian variety is a quotient of a Jacobian Over an infinite field, every abelin variety can be obtained as a quotient of a Jacobian variety.

More information

A remark on the arithmetic invariant theory of hyperelliptic curves

A remark on the arithmetic invariant theory of hyperelliptic curves A remark on the arithmetic invariant theory of hyperelliptic curves Jack A. Thorne October 10, 2014 Abstract Let C be a hyperelliptic curve over a field k of characteristic 0, and let P C(k) be a marked

More information

AN INTRODUCTION TO AFFINE SCHEMES

AN INTRODUCTION TO AFFINE SCHEMES AN INTRODUCTION TO AFFINE SCHEMES BROOKE ULLERY Abstract. This paper gives a basic introduction to modern algebraic geometry. The goal of this paper is to present the basic concepts of algebraic geometry,

More information

Some Remarks on Prill s Problem

Some Remarks on Prill s Problem AFFINE ALGEBRAIC GEOMETRY pp. 287 292 Some Remarks on Prill s Problem Abstract. N. Mohan Kumar If f : X Y is a non-constant map of smooth curves over C and if there is a degree two map π : X C where C

More information

BRIAN OSSERMAN. , let t be a coordinate for the line, and take θ = d. A differential form ω may be written as g(t)dt,

BRIAN OSSERMAN. , let t be a coordinate for the line, and take θ = d. A differential form ω may be written as g(t)dt, CONNECTIONS, CURVATURE, AND p-curvature BRIAN OSSERMAN 1. Classical theory We begin by describing the classical point of view on connections, their curvature, and p-curvature, in terms of maps of sheaves

More information

1.6.1 What are Néron Models?

1.6.1 What are Néron Models? 18 1. Abelian Varieties: 10/20/03 notes by W. Stein 1.6.1 What are Néron Models? Suppose E is an elliptic curve over Q. If is the minimal discriminant of E, then E has good reduction at p for all p, in

More information

THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3

THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3 THE MODULI OF SUBALGEBRAS OF THE FULL MATRIX RING OF DEGREE 3 KAZUNORI NAKAMOTO AND TAKESHI TORII Abstract. There exist 26 equivalence classes of k-subalgebras of M 3 (k) for any algebraically closed field

More information

Another proof of the global F -regularity of Schubert varieties

Another proof of the global F -regularity of Schubert varieties Another proof of the global F -regularity of Schubert varieties Mitsuyasu Hashimoto Abstract Recently, Lauritzen, Raben-Pedersen and Thomsen proved that Schubert varieties are globally F -regular. We give

More information

The Genus Level of a Group

The Genus Level of a Group The Genus Level of a Group Matthew Arbo, University of Oregon Krystin Benkowski, Marquette University Ben Coate, College of Idaho Hans Nordstrom, University of Portland Chris Peterson, Ponoma College Aaron

More information

TitleHYPERELLIPTIC SURFACES WITH K^2 < 4. Author(s) Rito, Carlos; Sánchez, María Martí. Citation Osaka Journal of Mathematics.

TitleHYPERELLIPTIC SURFACES WITH K^2 < 4. Author(s) Rito, Carlos; Sánchez, María Martí. Citation Osaka Journal of Mathematics. TitleHYPERELLIPTIC SURFACES WITH K^2 < 4 Author(s) Rito, Carlos; Sánchez, María Martí Citation Osaka Journal of Mathematics. 52(4) Issue 2015-10 Date Text Version publisher URL http://hdl.handle.net/11094/57673

More information

1. Algebraic vector bundles. Affine Varieties

1. Algebraic vector bundles. Affine Varieties 0. Brief overview Cycles and bundles are intrinsic invariants of algebraic varieties Close connections going back to Grothendieck Work with quasi-projective varieties over a field k Affine Varieties 1.

More information

ALGEBRAIC GROUPS JEROEN SIJSLING

ALGEBRAIC GROUPS JEROEN SIJSLING ALGEBRAIC GROUPS JEROEN SIJSLING The goal of these notes is to introduce and motivate some notions from the theory of group schemes. For the sake of simplicity, we restrict to algebraic groups (as defined

More information

THE EFFECTIVE CONE OF THE KONTSEVICH MODULI SPACE

THE EFFECTIVE CONE OF THE KONTSEVICH MODULI SPACE THE EFFECTIVE CONE OF THE KONTSEVICH MODULI SPACE IZZET COSKUN, JOE HARRIS, AND JASON STARR Abstract. In this paper we prove that the cone of effective divisors on the Kontsevich moduli spaces of stable

More information

TROPICAL SCHEME THEORY

TROPICAL SCHEME THEORY TROPICAL SCHEME THEORY 5. Commutative algebra over idempotent semirings II Quotients of semirings When we work with rings, a quotient object is specified by an ideal. When dealing with semirings (and lattices),

More information

FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES

FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES FAMILIES OF ALGEBRAIC CURVES AS SURFACE BUNDLES OF RIEMANN SURFACES MARGARET NICHOLS 1. Introduction In this paper we study the complex structures which can occur on algebraic curves. The ideas discussed

More information

FREE DIVISORS IN A PENCIL OF CURVES

FREE DIVISORS IN A PENCIL OF CURVES Journal of Singularities Volume 11 (2015), 190-197 received: 17 February 2015 in revised form: 26 June 2015 DOI: 10.5427/jsing.2015.11h FREE DIVISORS IN A PENCIL OF CURVES JEAN VALLÈS Abstract. A plane

More information

A smoothing criterion for families of curves

A smoothing criterion for families of curves A smoothing criterion for families of curves E. Sernesi Abstract We study some of the general principles underlying the geometry of families of nodal curves. In particular: i) we prove a smoothing criterion

More information

Pencils on real curves

Pencils on real curves Math. Nachr. 286, No. 8 9, 799 816 (2013) / DOI 10.1002/mana.201100196 Pencils on real curves Marc Coppens 1 and Johannes Huisman 2 1 Katholieke Hogeschool Kempen, Departement Industrieel Ingenieur en

More information

RATIONALLY INEQUIVALENT POINTS ON HYPERSURFACES IN P n

RATIONALLY INEQUIVALENT POINTS ON HYPERSURFACES IN P n RATIONALLY INEQUIVALENT POINTS ON HYPERSURFACES IN P n XI CHEN, JAMES D. LEWIS, AND MAO SHENG Abstract. We prove a conjecture of Voisin that no two distinct points on a very general hypersurface of degree

More information

Corollary. Let X Y be a dominant map of varieties, with general fiber F. If Y and F are rationally connected, then X is.

Corollary. Let X Y be a dominant map of varieties, with general fiber F. If Y and F are rationally connected, then X is. 1 Theorem. Let π : X B be a proper morphism of varieties, with B a smooth curve. If the general fiber F of f is rationally connected, then f has a section. Corollary. Let X Y be a dominant map of varieties,

More information

REVISITED OSAMU FUJINO. Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible.

REVISITED OSAMU FUJINO. Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible. C n,n 1 REVISITED OSAMU FUJINO Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible. 1. Introduction In spite of its importance, the proof of

More information

Projections of Veronese surface and morphisms from projective plane to Grassmannian

Projections of Veronese surface and morphisms from projective plane to Grassmannian Proc. Indian Acad. Sci. (Math. Sci.) Vol. 127, No. 1, February 2017, pp. 59 67. DOI 10.1007/s12044-016-0303-6 Projections of Veronese surface and morphisms from projective plane to Grassmannian A EL MAZOUNI

More information

Projective Images of Kummer Surfaces

Projective Images of Kummer Surfaces Appeared in: Math. Ann. 299, 155-170 (1994) Projective Images of Kummer Surfaces Th. Bauer April 29, 1993 0. Introduction The aim of this note is to study the linear systems defined by the even resp. odd

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 45 RAVI VAKIL CONTENTS 1. Hyperelliptic curves 1 2. Curves of genus 3 3 1. HYPERELLIPTIC CURVES A curve C of genus at least 2 is hyperelliptic if it admits a degree

More information

Moduli of Pointed Curves. G. Casnati, C. Fontanari

Moduli of Pointed Curves. G. Casnati, C. Fontanari Moduli of Pointed Curves G. Casnati, C. Fontanari 1 1. Notation C is the field of complex numbers, GL k the general linear group of k k matrices with entries in C, P GL k the projective linear group, i.e.

More information

REVISITED OSAMU FUJINO. Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible.

REVISITED OSAMU FUJINO. Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible. C n,n 1 REVISITED OSAMU FUJINO Abstract. The main purpose of this paper is to make C n,n 1, which is the main theorem of [Ka1], more accessible. 1. Introduction In spite of its importance, the proof of

More information

GENERIC TORELLI THEOREM FOR QUINTIC-MIRROR FAMILY. Sampei Usui

GENERIC TORELLI THEOREM FOR QUINTIC-MIRROR FAMILY. Sampei Usui GENERIC TORELLI THEOREM FOR QUINTIC-MIRROR FAMILY Sampei Usui Abstract. This article is a geometric application of polarized logarithmic Hodge theory of Kazuya Kato and Sampei Usui. We prove generic Torelli

More information

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle

Vector bundles in Algebraic Geometry Enrique Arrondo. 1. The notion of vector bundle Vector bundles in Algebraic Geometry Enrique Arrondo Notes(* prepared for the First Summer School on Complex Geometry (Villarrica, Chile 7-9 December 2010 1 The notion of vector bundle In affine geometry,

More information

PROBLEMS, MATH 214A. Affine and quasi-affine varieties

PROBLEMS, MATH 214A. Affine and quasi-affine varieties PROBLEMS, MATH 214A k is an algebraically closed field Basic notions Affine and quasi-affine varieties 1. Let X A 2 be defined by x 2 + y 2 = 1 and x = 1. Find the ideal I(X). 2. Prove that the subset

More information

INTERSECTION THEORY CLASS 19

INTERSECTION THEORY CLASS 19 INTERSECTION THEORY CLASS 19 RAVI VAKIL CONTENTS 1. Recap of Last day 1 1.1. New facts 2 2. Statement of the theorem 3 2.1. GRR for a special case of closed immersions f : X Y = P(N 1) 4 2.2. GRR for closed

More information

DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1

DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1 DEFORMATIONS OF ALGEBRAS IN NONCOMMUTATIVE ALGEBRAIC GEOMETRY EXERCISE SHEET 1 TRAVIS SCHEDLER Note: it is possible that the numbers referring to the notes here (e.g., Exercise 1.9, etc.,) could change

More information

Reductive group actions and some problems concerning their quotients

Reductive group actions and some problems concerning their quotients Reductive group actions and some problems concerning their quotients Brandeis University January 2014 Linear Algebraic Groups A complex linear algebraic group G is an affine variety such that the mappings

More information

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43

FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 FOUNDATIONS OF ALGEBRAIC GEOMETRY CLASS 43 RAVI VAKIL CONTENTS 1. Facts we ll soon know about curves 1 1. FACTS WE LL SOON KNOW ABOUT CURVES We almost know enough to say a lot of interesting things about

More information

Algebraic Curves and Riemann Surfaces

Algebraic Curves and Riemann Surfaces Algebraic Curves and Riemann Surfaces Rick Miranda Graduate Studies in Mathematics Volume 5 If American Mathematical Society Contents Preface xix Chapter I. Riemann Surfaces: Basic Definitions 1 1. Complex

More information

GENERIC ABELIAN VARIETIES WITH REAL MULTIPLICATION ARE NOT JACOBIANS

GENERIC ABELIAN VARIETIES WITH REAL MULTIPLICATION ARE NOT JACOBIANS GENERIC ABELIAN VARIETIES WITH REAL MULTIPLICATION ARE NOT JACOBIANS JOHAN DE JONG AND SHOU-WU ZHANG Contents Section 1. Introduction 1 Section 2. Mapping class groups and hyperelliptic locus 3 Subsection

More information

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra

Algebraic Varieties. Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic Varieties Notes by Mateusz Micha lek for the lecture on April 17, 2018, in the IMPRS Ringvorlesung Introduction to Nonlinear Algebra Algebraic varieties represent solutions of a system of polynomial

More information

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let:

div(f ) = D and deg(d) = deg(f ) = d i deg(f i ) (compare this with the definitions for smooth curves). Let: Algebraic Curves/Fall 015 Aaron Bertram 4. Projective Plane Curves are hypersurfaces in the plane CP. When nonsingular, they are Riemann surfaces, but we will also consider plane curves with singularities.

More information

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra

ORAL QUALIFYING EXAM QUESTIONS. 1. Algebra ORAL QUALIFYING EXAM QUESTIONS JOHN VOIGHT Below are some questions that I have asked on oral qualifying exams (starting in fall 2015). 1.1. Core questions. 1. Algebra (1) Let R be a noetherian (commutative)

More information

Demushkin s Theorem in Codimension One

Demushkin s Theorem in Codimension One Universität Konstanz Demushkin s Theorem in Codimension One Florian Berchtold Jürgen Hausen Konstanzer Schriften in Mathematik und Informatik Nr. 176, Juni 22 ISSN 143 3558 c Fachbereich Mathematik und

More information

A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE

A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE Bull. Korean Math. Soc. 47 (2010), No. 1, pp. 211 219 DOI 10.4134/BKMS.2010.47.1.211 A POLAR, THE CLASS AND PLANE JACOBIAN CONJECTURE Dosang Joe Abstract. Let P be a Jacobian polynomial such as deg P =

More information

TWO LECTURES ON APOLARITY AND THE VARIETY OF SUMS OF POWERS

TWO LECTURES ON APOLARITY AND THE VARIETY OF SUMS OF POWERS TWO LECTURES ON APOLARITY AND THE VARIETY OF SUMS OF POWERS KRISTIAN RANESTAD (OSLO), LUKECIN, 5.-6.SEPT 2013 1. Apolarity, Artinian Gorenstein rings and Arithmetic Gorenstein Varieties 1.1. Motivating

More information

REPRESENTATIONS OF S n AND GL(n, C)

REPRESENTATIONS OF S n AND GL(n, C) REPRESENTATIONS OF S n AND GL(n, C) SEAN MCAFEE 1 outline For a given finite group G, we have that the number of irreducible representations of G is equal to the number of conjugacy classes of G Although

More information

MATH 233B, FLATNESS AND SMOOTHNESS.

MATH 233B, FLATNESS AND SMOOTHNESS. MATH 233B, FLATNESS AND SMOOTHNESS. The discussion of smooth morphisms is one place were Hartshorne doesn t do a very good job. Here s a summary of this week s material. I ll also insert some (optional)

More information

Diangle groups. by Gunther Cornelissen

Diangle groups. by Gunther Cornelissen Kinosaki talk, X 2000 Diangle groups by Gunther Cornelissen This is a report on joint work with Fumiharu Kato and Aristides Kontogeorgis which is to appear in Math. Ann., DOI 10.1007/s002080000183. Diangle

More information

JOHAN S PROBLEM SEMINAR

JOHAN S PROBLEM SEMINAR JOHAN S PROBLEM SEMINAR SHIZHANG LI I m writing this as a practice of my latex and my english (maybe also my math I guess?). So please tell me if you see any mistake of these kinds... 1. Remy s question

More information

Chern classes à la Grothendieck

Chern classes à la Grothendieck Chern classes à la Grothendieck Theo Raedschelders October 16, 2014 Abstract In this note we introduce Chern classes based on Grothendieck s 1958 paper [4]. His approach is completely formal and he deduces

More information

Representation Theory. Ricky Roy Math 434 University of Puget Sound

Representation Theory. Ricky Roy Math 434 University of Puget Sound Representation Theory Ricky Roy Math 434 University of Puget Sound May 2, 2010 Introduction In our study of group theory, we set out to classify all distinct groups of a given order up to isomorphism.

More information

The moduli stack of vector bundles on a curve

The moduli stack of vector bundles on a curve The moduli stack of vector bundles on a curve Norbert Hoffmann norbert.hoffmann@fu-berlin.de Abstract This expository text tries to explain briefly and not too technically the notions of stack and algebraic

More information

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES

VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES VARIETIES WITHOUT EXTRA AUTOMORPHISMS II: HYPERELLIPTIC CURVES BJORN POONEN Abstract. For any field k and integer g 2, we construct a hyperelliptic curve X over k of genus g such that #(Aut X) = 2. We

More information

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998

CHAPTER 0 PRELIMINARY MATERIAL. Paul Vojta. University of California, Berkeley. 18 February 1998 CHAPTER 0 PRELIMINARY MATERIAL Paul Vojta University of California, Berkeley 18 February 1998 This chapter gives some preliminary material on number theory and algebraic geometry. Section 1 gives basic

More information

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11

AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11 AUTOMORPHISMS OF X(11) OVER CHARACTERISTIC 3, AND THE MATHIEU GROUP M 11 C. S. RAJAN Abstract. We show that the automorphism group of the curve X(11) is the Mathieu group M 11, over a field of characteristic

More information

Math 249B. Geometric Bruhat decomposition

Math 249B. Geometric Bruhat decomposition Math 249B. Geometric Bruhat decomposition 1. Introduction Let (G, T ) be a split connected reductive group over a field k, and Φ = Φ(G, T ). Fix a positive system of roots Φ Φ, and let B be the unique

More information

Wild ramification and the characteristic cycle of an l-adic sheaf

Wild ramification and the characteristic cycle of an l-adic sheaf Wild ramification and the characteristic cycle of an l-adic sheaf Takeshi Saito March 14 (Chicago), 23 (Toronto), 2007 Abstract The graded quotients of the logarithmic higher ramification groups of a local

More information