(ii) The search for knowledge is a cooperative enterprise;

Size: px
Start display at page:

Download "(ii) The search for knowledge is a cooperative enterprise;"

Transcription

1 Chapter 1 Introduction Modern physics is founded on two very important discoveries of the last century: quantum physics and relativity. Both of these were developed to deal with major failings of Newtonian physics. One was in the domain of small particles, such as atoms, where Newtonian physics gives completely wrong predictions. The other failure was in the domain of large velocities, where again Newtonian physics cannot explain some very basic experimental results. The first part of this book will be dedicated to quantum physics; the latter part will introduce the theory of relativity. Both theories have radically changed our everyday intuitions of what objects ought to be and how they ought to behave. It has taken physicists a long time and a great deal of effort to come to terms with some of their implications. A few of these are still viewed as controversial and difficult to grasp even though there is overwhelming experimental support in their favour. What this book aims to convey are the most recent and accurate descriptions of nature. In some sense they are very different to anything we have seen before. In another very important way, they are not. Quantum physics and relativity are a natural outgrowth of humanity s two a half millennia old quest to understand the universe in a particular rational way. The principles that were laid down by the Ancient Greek philosopher Socrates, the grandfather of Western philosophy, were 1 : (i) Knowledge can be pursued and is worth pursuing; (ii) The search for knowledge is a cooperative enterprise; (iii) A question is a form of education that draws out what is in a person rather than imposing on him a view from outside; (iv) Knowledge must be pursued with a ruthless intellectual honesty. You will hopefully begin to appreciate these principles more and more as you progress with your studies. Physics, perhaps more than any other human 1 These principles have been taken from the book Socrates by W. K. C. Guthrie (Cambridge, 1971) [1]. 1

2 2 CHAPTER 1. INTRODUCTION activity, embodies this age-old quest for knowledge. This was, in fact, first fully appreciated by the philosopher Karl Popper. We discuss his ideas a bit here, because they provide a perfect setting for introducing two such revolutionary theories as quantum physics and relativity. Popper realised that physics (and science in general) makes progress via the method of conjectures and refutations. What this means is that scientists make a conjecture about how something works and then test it in practice to see if their hypothesis is confirmed. If not, the conjecture is discarded and another one tested. It is clear that this will have to be a cooperative enterprise as well as an open minded and honest quest. No matter how fond scientists become of their pet theories, they still have to abandon them when a contradiction is found with experiments. In this way there is a curious philosophy behind any science. No scientific knowledge can ever be proven right. Any theory, if not falsified by an experiment today, just lives to die another day. Another philospher, David Hume, captured this with a now-famous statement (which we are slightly paraphrasing here): no number of sightings of white swans can ever prove the hypothesis that all swans are white, but observing a single black swan can and does completely invalidate it. And so it is with Newtonian classical mechanics. In this case, there were two black swans of classical physics. One was the theory of relativity and the other quantum physics. By the end of this book (and this is really our main motivation) you will appreciate how quantum physics and relativity together form an important part of our cultural heritage. We start with quantum theory. Objects in everyday world are considered to be positioned somewhere, to exist at some instant of time and to be traveling at a certain velocity. Newtonian physics stipulates that as soon as we know the position and velocity of an object of a given mass, as well as all the forces that act upon it, then Newton s equations of motion fully determine all the future behaviour of that object. For example, if you know the position and velocity of the Sun, the Earth and the Moon at the present time, you can determine exactly when the next eclipse of the Sun by the Moon will take place on Earth. It is truly remarkable that so little seems to be needed in order to deduce so much. But the compression of all facts into a few simple laws of nature is precisely the point of physics. Everyday objects, either in addition to or because of the laws of physics, also obey the laws of Boolean logic 2. It is not clear if logic is something different to physics (probably not!), but let us talk about it as such for the moment. The key law of Boolean logic is the one of excluded middle. An object, such as a chair, is either positioned here or not here, but no other possibility can be allowed. If something exists, but it is not here, then it must be elsewhere. And things either exist or do not, no third option is logically possible according to Boole. 2 George Boole was a 19th century English primary school teacher who was the first person to phrase the laws of thinking in purely mathematical terms something that baffled and eluded people ever since the ancient Greeks thought about it some 24 centuries earlier. These laws have become the foundations of modern computers and all other forms of information processing.

3 CHAPTER 1. INTRODUCTION 3 Another important law of Boolean logic states that if we think of a proposition ( That chair is positioned in this room ) and then we think of another proposition ( The chair has zero velocity ), then the order of making these propositions can be reversed and we will still end up with the same overall proposition ( That chair is positioned in this room and it has zero velocity is simply the same as That chair has zero velocity and it is positioned in this room ). This law is called the law of commutativity of propositions. You can easily come up with your own propositions and confirm that you can commute them without any change to their meaning. This all seems fairly reasonable and straightforward. Yet, astonishingly, the world of microscopic objects does not obey Boolean logic and we know this experimentally with a huge degree of certainty. Objects, such as electrons, atoms or photons (particles of light) can, in some sense, exist in many positions (or have many velocities) all at the same time. Furthermore, establishing that an electron is here now and then that it has some velocity subsequently is not the same at all as reversing these statements and saying that an electron has some velocity now and is then located here. In quantum logic, both the law of the excluded middle and the commutativity of propositions are simply violated. How can this possibly be, when these two laws of logic seem extremely fundamental, so fundamental to be beyond any reasonable doubt? We will now present an experiment that illustrates exactly how quantum object behave differently from classical objects 3. The proof for the existence of particles of light (called photons) has built up over the years since Planck made his quantum hypothesis, which we will talk about in detail shortly. Now, however, we want to present a simple experiment to illustrate the basic properties of the quantum behaviour of light 4. This is meant to motivate the rest of the subject without going into too much detail at this stage. The apparatus in Fig. 1.1 is called a Mach Zehnder interferometer. It consists of two mirrors and two beam splitters these are half-silvered mirrors, which pass light with probability 1/2 and reflect it with the same probability. Let us now calculate what happens in this set up to a single photon that enters it. For this we need to know the action of a beam splitter. It is given by the simple rule 5 ψ a ψ b + ψ c (1.1) which means that the state a goes into an equal superposition of states b and c. This is just a formal way of saying that a particle that enters at path a, exits as 3 You may be wondering why we keep talking about logic. You might object that logic is a part of mathematics and not physics. It turns out that this is not quite true. Which logic is appropriate in reality is the same question as what the geometry of the universe is. Both are physical questions. Logic and geometry are branches of physics as you will begin to see in this book. One day, it might turn out, that the whole of mathematics is just a branch of physics! 4...and also, as it happens, matter. 5 Note that this state is not normalised. We need a pre-factor of 1/ 2, but since the normalisation is the same for both states a and b we will omit it throughout. We will learn about normalisation a bit later.

4 4 CHAPTER 1. INTRODUCTION Fig Mach Zehnder interferometer. This is one of the most frequently used interferometers in the spectral study of light. In this book we will use it mainly to illustrate the unusual behaviour of light in quantum mechanics. an equal superposition on paths b and c. With this in mind, the Mach Zehnder interferometer shown in Fig. 1.1 works as follows: ψ 1 BS1 ψ 2 + ψ 3 M1,M2 ψ 5 + ψ 4 (1.2) BS2 ψ 7 ψ 6 + (ψ 6 + ψ 7 ) (1.3) = 2ψ 7. (1.4) Therefore, if everything is arranged properly, and if both of the arms of the interferometer have the same length, then the photon will come out and be detected by detector 2 only 6. This is called interference and is a well known property of waves it s just that in quantum physics every photon behaves in this way. What would happen if we detected light after the first beam splitter and wanted to know which route it took? Then, half of the photons would be detected in arm 2 and the rest of them would be detected in arm 3. So, it seems that photons randomly choose to move one way or the other at a beam splitter. What s more we never detect half the photon in one arm and the other half in the other arm they are particles and come in chunks. Thus it seems that this is the same as tossing a coin and registering heads or tails. Well, not quite. In fact, not at all as we shall now see. Suppose that at the first beam splitter the 6 Because we did not normalise the initial state and the states throughout the interferometer, there is an extra factor of 2 in the final result which should be ignored.

5 CHAPTER 1. INTRODUCTION 5 Absorber Fig This is the set up involving a Mach Zehnder interferometer, which shows how strange quantum mechanics is and exemplifies the weird behaviour of quantum objects. The presence or absence of the absorber can be determined without interacting with it. This leads to the notion of the interaction-free measurement a hot topic in current quantum mechanics research. photon goes either upwards or to the right, but it definitely goes either up or right (as our experience seems to suggest). Then, at the second beam splitter the photon would again face the same choice, i.e. it would definitely move either up or right. So, according to this reasoning we should expect detectors 1 and 2 to click with an equal frequency. But this is not what we saw. In reality, only detector 2 clicks. The amplitude and, therefore, the probability for detector 1 to click is zero. This means that the operation of a beam splitter and the behaviour of the photon is not just like coin tossing. The state after the beam splitter is more than just a statistical (random) mixture of the two probabilities. It is, of course, a superposition, and the photon takes both of the possible routes 7 (in spite of being a particle). This is the true meaning behind writing its state as a mathematical sum of two vectors, say This is why we use vectors to express states of physical systems. But we won t be using this more sophisticated description of physical systems until later in the book. There are several good reasons for delaying it. Firstly, the mathematics used for the full quantum theory is quite advanced. Secondly, there are many important features of quantum systems that can be correctly described using less sophisticated theory. Thirdly, starting with simple things and going towards more complicated stuff has a great pedagogical value. It 7 So photons (and all other physical systems as it turns out) behave according to Yogi Berra s saying: When you come to a fork in the road, take it!.

6 6 CHAPTER 1. INTRODUCTION shows us how our understanding improves and teaches us never to be dogmatic about our understanding since it is very likely that it will be superseded by some better theory. This is probably the most important part of our scientific culture. And finally, if we started with the complicated theory we would miss out on all the beautiful progress that took place at the beginning of the last century, and it was precisely this progress that made it the Century of Physics. We close with a very bizarre consequence of quantum mechanics, called the interaction free measurement 8, which has been performed experimentally using lasers and beam splitters 9. Suppose that in the Mach Zehnder interferometer we block one of the paths after the first beam splitter, say path 5, by inserting in there an absorbing material as shown in Fig What happens then? Well if the photon is absorbed, then neither of the two detectors will eventually click that s fine. However, if the photon takes the other path, then at the second beam splitter it has an equal chance to be reflected and transmitted so that the two detectors click with equal frequencies. In other words, the interference has been destroyed by the presence of the absorber in path 5. But, here is a very weird conclusion: we can detect the presence of an absorber in path 5 without the photon ever going anywhere near it, hence interaction-free measurement. Thus, if the detector 2 clicks, then the photon has gone to path 6 and that implies that there is an obstacle in path 5 or else only detector 1 would click. This is surely amazing! But that is the basis of the quantum mechanical description of light and all the wonderful phenomena we ll be talking about in this book This notion was introduced by Elitzur and Vaidman [2]. More details can be found in the paper: Elitzur A.C. Vaidman L. (1993). Quantum-mechanical interaction-free measurements. Foundations of Physics 23, The experiment is reported in the paper: Kwiat P. et al. (1995). Interaction-free measurement. Physical Review Letters 74, [3]. 10 This story can be made all the more dramatic by imagining that instead of the absorber we have a box, which may or may not contain a super-bomb. This bomb is so sensitive that it explodes if a single photon hits it. So to check if the box is hiding the bomb or not we cannot lift the lid as the bomb will then be illuminated and hence will explode destroying the world. Here the Mach Zehnder set up and the interaction-free measurement come to rescue.

1 Mach-Zehder Interferometer 1. 2 Elitzur-Vaidman Bombs 6

1 Mach-Zehder Interferometer 1. 2 Elitzur-Vaidman Bombs 6 Chapter : Experiments with photons B. Zwiebach February 9, 6 Contents Mach-Zehder Interferometer Elitzur-Vaidman Bombs 6 Mach-Zehder Interferometer We have discussed before the Mach-Zehnder interferometer,

More information

Hardy s Paradox. Chapter Introduction

Hardy s Paradox. Chapter Introduction Chapter 25 Hardy s Paradox 25.1 Introduction Hardy s paradox resembles the Bohm version of the Einstein-Podolsky-Rosen paradox, discussed in Chs. 23 and 24, in that it involves two correlated particles,

More information

Superposition - World of Color and Hardness

Superposition - World of Color and Hardness Superposition - World of Color and Hardness We start our formal discussion of quantum mechanics with a story about something that can happen to various particles in the microworld, which we generically

More information

MITOCW watch?v=0usje5vtiks

MITOCW watch?v=0usje5vtiks MITOCW watch?v=0usje5vtiks PROFESSOR: Mach-Zehnder-- interferometers. And we have a beam splitter. And the beam coming in, it splits into 2. A mirror-- another mirror. The beams are recombined into another

More information

What is proof? Lesson 1

What is proof? Lesson 1 What is proof? Lesson The topic for this Math Explorer Club is mathematical proof. In this post we will go over what was covered in the first session. The word proof is a normal English word that you might

More information

PHYSICS 107. Lecture 1: The Puzzle of Motion. In American universities there are three main types of physics courses for nonspecialists.

PHYSICS 107. Lecture 1: The Puzzle of Motion. In American universities there are three main types of physics courses for nonspecialists. PHYSICS 107 Lecture 1: The Puzzle of Motion About this course In American universities there are three main types of physics courses for nonspecialists. The first kind teaches about the physics of everyday

More information

Delayed Choice Paradox

Delayed Choice Paradox Chapter 20 Delayed Choice Paradox 20.1 Statement of the Paradox Consider the Mach-Zehnder interferometer shown in Fig. 20.1. The second beam splitter can either be at its regular position B in where the

More information

Introduction. Introductory Remarks

Introduction. Introductory Remarks Introductory Remarks This is probably your first real course in quantum mechanics. To be sure, it is understood that you have encountered an introduction to some of the basic concepts, phenomenology, history,

More information

Quantum Mechanical Interaction-Free Measurements

Quantum Mechanical Interaction-Free Measurements Eoundations of Physics, Vol. 23, No. 7, 1993 Quantum Mechanical Interaction-Free Measurements Avshalom C. Elitzur 1'2 and Lev Vaidman ~ Received August 17, 1992; revised January 2, 1993 A novel manifestation

More information

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States

Quantum Entanglement. Chapter Introduction. 8.2 Entangled Two-Particle States Chapter 8 Quantum Entanglement 8.1 Introduction In our final chapter on quantum mechanics we introduce the concept of entanglement. This is a feature of two-particle states (or multi-particle states) in

More information

37-6 Watching the electrons (matter waves)

37-6 Watching the electrons (matter waves) 37-6 Watching the electrons (matter waves) 1 testing our proposition: the electrons go either through hole 1 or hole 2 add a very strong light source behind walls between two holes, electrons will scatter

More information

An Interference Experiment with Photons Suppose we direct a laser beam at a half-silvered mirror. For intense light beams, such mirrors reflect half

An Interference Experiment with Photons Suppose we direct a laser beam at a half-silvered mirror. For intense light beams, such mirrors reflect half An Interference Experiment with Photons Suppose we direct a laser beam at a half-silvered mirror. For intense light beams, such mirrors reflect half of light striking them and allow half to pass straight

More information

Quantum Measurements: some technical background

Quantum Measurements: some technical background Quantum Measurements: some technical background [From the projection postulate to density matrices & (introduction to) von Neumann measurements] (AKA: the boring lecture) First: One more example I wanted

More information

IDLER DCC SIGNAL SHUTTER

IDLER DCC SIGNAL SHUTTER 1 Interaction-Free Measurements Lev Vaidman School of Physics and Astronomy, Raymond and Beverly Sackler Faculty of Exact Sciences, Tel-Aviv University, Tel-Aviv 69978, Israel 1 The Penrose bomb testing

More information

ACTIVITY 5. Figure 5-1: Simulated electron interference pattern with your prediction for the next electron s position.

ACTIVITY 5. Figure 5-1: Simulated electron interference pattern with your prediction for the next electron s position. Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 5 Interpr preting Wave Functions Goal We will return to the two- slit experiment for electrons. Using this experiment we will see how matter

More information

How to use the simulator

How to use the simulator How to use the simulator Overview The application allows for the exploration of four quantum circuits in all. Each simulator grants the user a large amount of freedom in experments they wish to conduct.

More information

Introduction To Mathematical Modeling

Introduction To Mathematical Modeling CHAPTER 1 Introduction To Mathematical Modeling In his book The Possible and the Actual, published by the University of Washington Press as a part of the Jessie and John Danz Lectures, Françis Jacob 1920-2013),

More information

Enter Heisenberg, Exit Common Sense

Enter Heisenberg, Exit Common Sense Enter Heisenberg, Exit Common Sense W. Blaine Dowler July 10, 2010 1 Unanswered Questions The questions raised to date which still have not been answered are as follows: 1. The basic building blocks of

More information

Analog Computing: a different way to think about building a (quantum) computer

Analog Computing: a different way to think about building a (quantum) computer Analog Computing: a different way to think about building a (quantum) computer November 24, 2016 1 What is an analog computer? Most of the computers we have around us today, such as desktops, laptops,

More information

about Quantum Physics Bill Poirier MVJS Mini-Conference Lawrence Hall of Science July 9, 2015

about Quantum Physics Bill Poirier MVJS Mini-Conference Lawrence Hall of Science July 9, 2015 about Quantum Physics Bill Poirier MVJS Mini-Conference Lawrence Hall of Science July 9, 2015 Some Notable Quotes If we knew what we were doing, it wouldn't be called 'research Albert Einstein The paradox

More information

PHYSICS 107. Lecture 10 Relativity: The Postulates

PHYSICS 107. Lecture 10 Relativity: The Postulates PHYSICS 107 Lecture 10 Relativity: The Postulates Introduction Relativity represents yet a further step in the direction of abstraction and mathematization of the laws of motion. We are getting further

More information

THE DELAYED CHOICE QUANTUM EXPERIMENT

THE DELAYED CHOICE QUANTUM EXPERIMENT Project optic physics 2008 Professor: Andres La Rosa THE DELAYED CHOICE QUANTUM EXPERIMENT by THOMAS BENJAMIN 1 st of June, 2008 1 Introduction The delayed choice quantum experiment, and electron coupling.

More information

Lecture 8: Wave-Particle Duality. Lecture 8, p 2

Lecture 8: Wave-Particle Duality. Lecture 8, p 2 We choose to examine a phenomenon which is impossible, absolutely impossible, to explain in any classical way, and which has in it the heart of quantum mechanics. In reality, it contains the only mystery.

More information

Our Ultimate Reality Newsletter 1 May 2011

Our Ultimate Reality Newsletter 1 May 2011 Our Ultimate Reality Newsletter 1 May 2011 First of all I am absolutely delighted to let you know that my son, Declan, successfully completed his cycle ride last Sunday. Due to an unexpected and complete

More information

To Infinity and Beyond. To Infinity and Beyond 1/43

To Infinity and Beyond. To Infinity and Beyond 1/43 To Infinity and Beyond To Infinity and Beyond 1/43 Infinity The concept of infinity has both fascinated and frustrated people for millennia. We will discuss some historical problems about infinity, some

More information

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1

Discrete Mathematics and Probability Theory Fall 2013 Vazirani Note 1 CS 70 Discrete Mathematics and Probability Theory Fall 013 Vazirani Note 1 Induction Induction is a basic, powerful and widely used proof technique. It is one of the most common techniques for analyzing

More information

Physicists' Epistemologies of Quantum Mechanics

Physicists' Epistemologies of Quantum Mechanics Physicists' Epistemologies of Quantum Mechanics Raymond A. Hodges Physics Education Research Group University of Maryland College Park AAPT Summer Meeting Madison, Wisconsin August 4, 2003 Supported in

More information

Resonance Interaction Free. Measurement. International Journal of Theoretical Physics, 35, (1996) Harry Paul and Mladen Pavičić, 1

Resonance Interaction Free. Measurement. International Journal of Theoretical Physics, 35, (1996) Harry Paul and Mladen Pavičić, 1 1 International Journal of Theoretical Physics, 35, 2085 2091 (1996) Resonance Interaction Free Measurement Harry Paul and Mladen Pavičić, 1 We show that one can use a single optical cavity as a simplest

More information

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement

226 My God, He Plays Dice! Entanglement. Chapter This chapter on the web informationphilosopher.com/problems/entanglement 226 My God, He Plays Dice! Entanglement Chapter 29 20 This chapter on the web informationphilosopher.com/problems/entanglement Entanglement 227 Entanglement Entanglement is a mysterious quantum phenomenon

More information

Physical Systems. Chapter 11

Physical Systems. Chapter 11 Chapter 11 Physical Systems Until now we have ignored most aspects of physical systems by dealing only with abstract ideas such as information. Although we assumed that each bit stored or transmitted was

More information

MITOCW watch?v=byeau9ilhmw

MITOCW watch?v=byeau9ilhmw MITOCW watch?v=byeau9ilhmw PROFESSOR: Last time, we spoke about photons in the context of an interferometer. The Mach-Zehnder interferometer. And we saw the very unusual properties of photons and interference,

More information

Looking at Scripture with New Eyes: A Chance Conversation Between Faith and Science

Looking at Scripture with New Eyes: A Chance Conversation Between Faith and Science 1 Looking at Scripture with New Eyes: A Chance Conversation Between Faith and Science William K. Lewis Fairmont Presbyterian Church College Ministry Team One of the things I really enjoy about education

More information

Introduction. Introductory Remarks

Introduction. Introductory Remarks Introductory Remarks This is probably your first real course in quantum mechanics. To be sure, it is understood that you have encountered an introduction to some of the basic concepts, phenomenology, history,

More information

Paradoxes of special relativity

Paradoxes of special relativity Paradoxes of special relativity Today we are turning from metaphysics to physics. As we ll see, certain paradoxes about the nature of space and time result not from philosophical speculation, but from

More information

Counterfactual quantum protocols

Counterfactual quantum protocols Counterfactual quantum protocols L. Vaidman Raymond and Beverly Sackler School of Physics and Astronomy Tel-Aviv University, Tel-Aviv 69978, Israel The counterfactuality of recently proposed protocols

More information

LECTURE 3: SPACETIME AND GEOMETRY: AN INTRODUCTION TO SPECIAL RELATIVITY. AS204 February

LECTURE 3: SPACETIME AND GEOMETRY: AN INTRODUCTION TO SPECIAL RELATIVITY. AS204 February LECTURE 3: SPACETIME AND GEOMETRY: AN INTRODUCTION TO SPECIAL RELATIVITY I. The Geometry of Space AS204 February 11 2008 You are used to dealing with vectors in ordinary 3-dimensional space, and to specify

More information

It Was Probably Heisenberg

It Was Probably Heisenberg Name Partners Date Visual Quantum Mechanics The Next Generation It Was Probably Heisenberg Goal We will use our knowledge of wave functions to create wave packets to describe an electron. We will discover

More information

LECTURE 15: SIMPLE LINEAR REGRESSION I

LECTURE 15: SIMPLE LINEAR REGRESSION I David Youngberg BSAD 20 Montgomery College LECTURE 5: SIMPLE LINEAR REGRESSION I I. From Correlation to Regression a. Recall last class when we discussed two basic types of correlation (positive and negative).

More information

Incompatibility Paradoxes

Incompatibility Paradoxes Chapter 22 Incompatibility Paradoxes 22.1 Simultaneous Values There is never any difficulty in supposing that a classical mechanical system possesses, at a particular instant of time, precise values of

More information

Cambridge University Press Quantum Physics: Illusion or Reality?, Second Edition Alastair I. M. Rae Excerpt More information

Cambridge University Press Quantum Physics: Illusion or Reality?, Second Edition Alastair I. M. Rae Excerpt More information 1 Quantum physics God, said Albert Einstein, does not play dice. This famous remark by the author of the theory of relativity was not intended as an analysis of the recreational habits of a supreme being

More information

Cosmology Lecture 2 Mr. Kiledjian

Cosmology Lecture 2 Mr. Kiledjian Cosmology Lecture 2 Mr. Kiledjian Lecture 2: Quantum Mechanics & Its Different Views and Interpretations a) The story of quantum mechanics begins in the 19 th century as the physicists of that day were

More information

Understanding Quantum Physics An Interview with Anton Zeilinger

Understanding Quantum Physics An Interview with Anton Zeilinger Understanding Quantum Physics An Interview with Anton Zeilinger Igor DOTSENKO and Guillaume KASPERSKI Anton Zeilinger is an Austrian quantum physicist. His research focuses on the fundamental aspects and

More information

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008

Part I Electrostatics. 1: Charge and Coulomb s Law July 6, 2008 Part I Electrostatics 1: Charge and Coulomb s Law July 6, 2008 1.1 What is Electric Charge? 1.1.1 History Before 1600CE, very little was known about electric properties of materials, or anything to do

More information

Introduction to Quantum Mechanics: Syllabus

Introduction to Quantum Mechanics: Syllabus Introduction to Quantum Mechanics: Syllabus... 2 Introduction and History... 3 Introduction to Quantum Mechanics... 3 Historical Background... 4 A little digression on relativity theory... 5 Introduction

More information

Vocabulary atom atomos Dalton's atomic theory law of constant composition law of definite proportions law of multiple proportions matter.

Vocabulary atom atomos Dalton's atomic theory law of constant composition law of definite proportions law of multiple proportions matter. 1.3 Early Atomic Theory Lesson Objectives The student will: define matter and explain how it is composed of building blocks known as atoms. give a short history of how the concept of the atom developed.

More information

1 Introduction. 1.1 Stuff we associate with quantum mechanics Schrödinger s Equation

1 Introduction. 1.1 Stuff we associate with quantum mechanics Schrödinger s Equation 1 Introduction Quantum Theory and quantum mechanics belong to the greatest success stories of science. In a number of ways. First, quantum theories are among the most successful in terms of predicting

More information

Decoherence and The Collapse of Quantum Mechanics. A Modern View

Decoherence and The Collapse of Quantum Mechanics. A Modern View Decoherence and The Collapse of Quantum Mechanics A Modern View It s time to make decoherence mainstream QM is ~90 years old But it is still taught like the 1930s Modern textbooks still ignore measurement

More information

Orientation: what is physical chemistry about?

Orientation: what is physical chemistry about? 1 Orientation: what is physical chemistry about? Chemistry is traditionally divided into a small number of subfields, namely organic, inorganic, analytical and physical chemistry. It s fairly easy to say

More information

What Is Classical Physics?

What Is Classical Physics? Lecture : The Nature of Classical Physics Somewhere in Steinbeck country two tired men sit down at the side of the road. Lenny combs his beard with his fingers and says, Tell me about the laws of physics,

More information

Outer space: A matter of gravity

Outer space: A matter of gravity 1997 2009, Millennium Mathematics Project, University of Cambridge. Permission is granted to print and copy this page on paper for non commercial use. For other uses, including electronic redistribution,

More information

1 Propositional Logic

1 Propositional Logic CS 2800, Logic and Computation Propositional Logic Lectures Pete Manolios Version: 384 Spring 2011 1 Propositional Logic The study of logic was initiated by the ancient Greeks, who were concerned with

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction A typical Modern Geometry course will focus on some variation of a set of axioms for Euclidean geometry due to Hilbert. At the end of such a course, non-euclidean geometries (always

More information

Coherent states, beam splitters and photons

Coherent states, beam splitters and photons Coherent states, beam splitters and photons S.J. van Enk 1. Each mode of the electromagnetic (radiation) field with frequency ω is described mathematically by a 1D harmonic oscillator with frequency ω.

More information

Light Quantum Hypothesis

Light Quantum Hypothesis 50 My God, He Plays Dice! Light Quantum Hypothesis Light Quantum Hypothesis 51 Light Quantum Hypothesis In his miracle year of 1905, Einstein wrote four extraordinary papers, one of which won him the 1921

More information

Uncertainty. Michael Peters December 27, 2013

Uncertainty. Michael Peters December 27, 2013 Uncertainty Michael Peters December 27, 20 Lotteries In many problems in economics, people are forced to make decisions without knowing exactly what the consequences will be. For example, when you buy

More information

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve

ASTRO 114 Lecture Okay. What we re going to discuss today are what we call radiation laws. We ve ASTRO 114 Lecture 15 1 Okay. What we re going to discuss today are what we call radiation laws. We ve been spending a lot of time talking about laws. We ve talked about gravitational laws, we ve talked

More information

ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran

ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran ALBERT EINSTEIN AND THE FABRIC OF TIME by Gevin Giorbran Surprising as it may be to most non-scientists and even to some scientists, Albert Einstein concluded in his later years that the past, present,

More information

What were Saturday s BIG ideas?

What were Saturday s BIG ideas? What were Saturday s BIG ideas? 1. NEED REPLACING 2. 3. 4. 5. 6. There is no single scientific method (multiple ways including empirical & theoretical) Scientific Ways of Knowing Induction -> Approach

More information

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1

Proseminar on Semantic Theory Fall 2013 Ling 720 Propositional Logic: Syntax and Natural Deduction 1 Propositional Logic: Syntax and Natural Deduction 1 The Plot That Will Unfold I want to provide some key historical and intellectual context to the model theoretic approach to natural language semantics,

More information

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis

THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE. by Miles Mathis THE SIMPLE PROOF OF GOLDBACH'S CONJECTURE by Miles Mathis miles@mileswmathis.com Abstract Here I solve Goldbach's Conjecture by the simplest method possible. I do this by first calculating probabilites

More information

Coins and Counterfactuals

Coins and Counterfactuals Chapter 19 Coins and Counterfactuals 19.1 Quantum Paradoxes The next few chapters are devoted to resolving a number of quantum paradoxes in the sense of giving a reasonable explanation of a seemingly paradoxical

More information

Boscovich s theory: strict Newtonian physics, by Roger J. Anderton

Boscovich s theory: strict Newtonian physics, by Roger J. Anderton Boscovich s theory: strict Newtonian physics, by Roger J. Anderton R.J.Anderton@btinternet.com I will now look at Boscovich s theory according to Bertrand Russell. Bertrand Russell was one of the pro-einstein

More information

Physics The study of the energy, matter, and forces in the Universe Why do stars move in the sky? How can heat be changed into electricity? What is the difference between an atom of one substance and an

More information

What is Quantum Mechanics?

What is Quantum Mechanics? Quantum Worlds, session 1 1 What is Quantum Mechanics? Quantum mechanics is the theory, or picture of the world, that physicists use to describe and predict the behavior of the smallest elements of matter.

More information

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À

FRAME S : u = u 0 + FRAME S. 0 : u 0 = u À Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Velocity, Energy and Matter (Ch..6-.7) SteveSekula, 9 January 010 (created 13 December 009) CHAPTERS.6-.7 Review of last

More information

2 The Failure of Classical Mechanics and Wave-Particle Duality

2 The Failure of Classical Mechanics and Wave-Particle Duality 2 The Failure of Classical Mechanics and Wave-Particle Duality This lecture is more qualitative than the rest of the class. Very roughly speaking, in Classical Mechanics, one can describe motion in terms

More information

Special Relativity: Derivations

Special Relativity: Derivations Special Relativity: Derivations Exploring formulae in special relativity Introduction: Michelson-Morley experiment In the 19 th century, physicists thought that since sound waves travel through air, light

More information

Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv pages

Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv pages Critical Notice: Bas van Fraassen, Scientific Representation: Paradoxes of Perspective Oxford University Press, 2008, xiv + 408 pages by Bradley Monton June 24, 2009 It probably goes without saying that

More information

Discrete Mathematics for CS Spring 2008 David Wagner Note 4

Discrete Mathematics for CS Spring 2008 David Wagner Note 4 CS 70 Discrete Mathematics for CS Spring 008 David Wagner Note 4 Induction Induction is an extremely powerful tool in mathematics. It is a way of proving propositions that hold for all natural numbers,

More information

ACTIVITY 3. Light and Waves. Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave.

ACTIVITY 3. Light and Waves. Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave. Name: WAVES of matter Class: Visual Quantum Mechanics ACTIVITY 3 Light and Waves Goal We will look at a property of light and learn how scientists conclude that light behaves as a wave. The light from

More information

Sub atomic Mass in a.m.u. Relative Position in the

Sub atomic Mass in a.m.u. Relative Position in the IDEAS ABOUT ATOMS In chapter one we looked briefly at the ideas of the Ancient Greeks about atoms. You will remember that the main idea involved tiny particles of matter that could not be broken down.

More information

Space, Time and Simultaneity

Space, Time and Simultaneity PHYS419 Lecture 11: Space, Time & Simultaneity 1 Space, Time and Simultaneity Recall that (a) in Newtonian mechanics ( Galilean space-time ): time is universal and is agreed upon by all observers; spatial

More information

Quantum Mechanics: Interpretation and Philosophy

Quantum Mechanics: Interpretation and Philosophy Quantum Mechanics: Interpretation and Philosophy Significant content from: Quantum Mechanics and Experience by David Z. Albert, Harvard University Press (1992). Main Concepts: -- complementarity -- the

More information

If classical physics is wrong, why do we still use it?

If classical physics is wrong, why do we still use it? If classical physics is wrong, why do we still use it? Introduction The word quantum came from the Latin word which means "how great" or "how much." In quantum mechanics, it refers to a discrete unit that

More information

Alan Mortimer PhD. Ideas of Modern Physics

Alan Mortimer PhD. Ideas of Modern Physics Alan Mortimer PhD Ideas of Modern Physics Electromagnetic Waves Last Week Special Relativity General Relativity The Quantum World Index Planck s Law Atomic Structure and emission lines Matter waves Uncertainty

More information

Atomic Theory. Introducing the Atomic Theory:

Atomic Theory. Introducing the Atomic Theory: Atomic Theory Chemistry is the science of matter. Matter is made up of things called atoms, elements, and molecules. But have you ever wondered if atoms and molecules are real? Would you be surprised to

More information

MATH10040: Chapter 0 Mathematics, Logic and Reasoning

MATH10040: Chapter 0 Mathematics, Logic and Reasoning MATH10040: Chapter 0 Mathematics, Logic and Reasoning 1. What is Mathematics? There is no definitive answer to this question. 1 Indeed, the answer given by a 21st-century mathematician would differ greatly

More information

Quantum Computing. Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract HISTORY OF QUANTUM COMPUTING-

Quantum Computing. Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract HISTORY OF QUANTUM COMPUTING- Quantum Computing Vraj Parikh B.E.-G.H.Patel College of Engineering & Technology, Anand (Affiliated with GTU) Abstract Formerly, Turing Machines were the exemplar by which computability and efficiency

More information

Introduction to Logic and Axiomatic Set Theory

Introduction to Logic and Axiomatic Set Theory Introduction to Logic and Axiomatic Set Theory 1 Introduction In mathematics, we seek absolute rigor in our arguments, and a solid foundation for all of the structures we consider. Here, we will see some

More information

Measurement Independence, Parameter Independence and Non-locality

Measurement Independence, Parameter Independence and Non-locality Measurement Independence, Parameter Independence and Non-locality Iñaki San Pedro Department of Logic and Philosophy of Science University of the Basque Country, UPV/EHU inaki.sanpedro@ehu.es Abstract

More information

The Philosophy of Quantum Mechanics (Handout Eight) between the microphysical and the macrophysical. The macrophysical world could be understood

The Philosophy of Quantum Mechanics (Handout Eight) between the microphysical and the macrophysical. The macrophysical world could be understood The Philosophy of Quantum Mechanics (Handout Eight) 1. The Copenhagen Interpretation Bohr interpreted quantum theory as showing that there is a fundamental partition in nature, between the microphysical

More information

We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world.

We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world. We saw last time how the development of accurate clocks in the 18 th and 19 th centuries transformed human cultures over the world. They also allowed for the precise physical measurements of time needed

More information

Introduction to the strange world of Quantum Physics

Introduction to the strange world of Quantum Physics Introduction to the strange world of Quantum Physics Terminology Note: Quantum physics, quantum theory, quantum mechanics and wave mechanics all refer to the same field of study in physics. Quantum physics

More information

Introduction to Algebra: The First Week

Introduction to Algebra: The First Week Introduction to Algebra: The First Week Background: According to the thermostat on the wall, the temperature in the classroom right now is 72 degrees Fahrenheit. I want to write to my friend in Europe,

More information

from Euclid to Einstein

from Euclid to Einstein WorkBook 2. Space from Euclid to Einstein Roy McWeeny Professore Emerito di Chimica Teorica, Università di Pisa, Pisa (Italy) A Pari New Learning Publication Book 2 in the Series WorkBooks in Science (Last

More information

M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli. Qudit Spaces and a Many-valued Approach to Quantum Comp

M.L. Dalla Chiara, R. Giuntini, R. Leporini, G. Sergioli. Qudit Spaces and a Many-valued Approach to Quantum Comp Qudit Spaces and a Many-valued Approach to Quantum Computational Logics Quantum computational logics are special examples of quantum logic based on the following semantic idea: linguistic formulas are

More information

Quantum theory appendix 4: Three options for the future on quantum theory

Quantum theory appendix 4: Three options for the future on quantum theory Quantum theory appendix 4: Three options for the future on quantum theory As we described earlier, to apply the method of physics in a box, we have to identify a subsystem of the world and consider it

More information

In defence of classical physics

In defence of classical physics In defence of classical physics Abstract Classical physics seeks to find the laws of nature. I am of the opinion that classical Newtonian physics is real physics. This is in the sense that it relates to

More information

Lecture 4-1 Force, Mass, Newton's Laws Throughout this semester we have been talking about Classical Mechanics which studies motion of objects at

Lecture 4-1 Force, Mass, Newton's Laws Throughout this semester we have been talking about Classical Mechanics which studies motion of objects at Lecture 4-1 orce, Mass, Newton's Laws Throughout this semester we have been talking about Classical Mechanics which studies motion of objects at every-day scale. Classical mechanics can be subdivided into

More information

11 Newton s Law of Universal Gravitation

11 Newton s Law of Universal Gravitation Physics 1A, Fall 2003 E. Abers 11 Newton s Law of Universal Gravitation 11.1 The Inverse Square Law 11.1.1 The Moon and Kepler s Third Law Things fall down, not in some other direction, because that s

More information

Atomic Pudding Models of the Atom

Atomic Pudding Models of the Atom Atomic Pudding Models of the Atom Think About It The drawing depicts a very tiny sample of gold taken from a gold ring. The spheres in the cube of gold are so small that they cannot be seen. What are the

More information

Quadratic Equations Part I

Quadratic Equations Part I Quadratic Equations Part I Before proceeding with this section we should note that the topic of solving quadratic equations will be covered in two sections. This is done for the benefit of those viewing

More information

Modern Physics notes Spring 2005 Paul Fendley Lecture 1

Modern Physics notes Spring 2005 Paul Fendley Lecture 1 Modern Physics notes Spring 2005 Paul Fendley fendley@virginia.edu Lecture 1 What is Modern Physics? Topics in this class The books and their authors Quantum mechanics Feynman 1.1 What is Modern Physics?

More information

Cosets and Lagrange s theorem

Cosets and Lagrange s theorem Cosets and Lagrange s theorem These are notes on cosets and Lagrange s theorem some of which may already have been lecturer. There are some questions for you included in the text. You should write the

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh

Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh Michelson and Morley expected the wrong result from their experiment Cyrus Master-Khodabakhsh School of Computing, Engineering and Mathematics Western Sydney University cyrs.master@westernsydney.edu.au;

More information

The Inductive Proof Template

The Inductive Proof Template CS103 Handout 24 Winter 2016 February 5, 2016 Guide to Inductive Proofs Induction gives a new way to prove results about natural numbers and discrete structures like games, puzzles, and graphs. All of

More information

Wave Mechanics Relevant sections in text: , 2.1

Wave Mechanics Relevant sections in text: , 2.1 Wave Mechanics Relevant sections in text: 1.1 1.6, 2.1 The wave function We will now create a model for the system that we call a particle in one dimension. To do this we should define states and observables.

More information

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem

The Einstein-Podolsky-Rosen thought experiment and Bell s theorem PHYS419 Lecture 0 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem 1 The Einstein-Podolsky-Rosen thought experiment and Bell s theorem As first shown by Bell (1964), the force of the arguments

More information

Ian Jarvie, Karl Milford and David Miller (eds.): Karl Popper - A Centenary Assessment. Volume III: Science. Ashgate Pub., Aldershot 2006,

Ian Jarvie, Karl Milford and David Miller (eds.): Karl Popper - A Centenary Assessment. Volume III: Science. Ashgate Pub., Aldershot 2006, Ian Jarvie, Karl Milford and David Miller (eds.): Karl Popper - A Centenary Assessment. Volume III: Science. Ashgate Pub., Aldershot 2006, 105-112. Section 1: Philosophy of the Physical Sciences Karl Popper

More information