Digital communication system. Shannon s separation principle

Size: px
Start display at page:

Download "Digital communication system. Shannon s separation principle"

Transcription

1 Digital communication system Representation of the source signal by a stream of (binary) symbols Adaptation to the properties of the transmission channel information source source coder channel coder modulation binary symbols channel noise information sink source decoder channel decoder demodulation We will be looking at this part digital channel Bernd Girod: EE368b Image and Video Compression Lossless Compression no. Shannon s separation principle Source Assume:. Point-to-point communication 2. Ergodic channel 3. Delay Adapt to source statistics (and distortion measure) Source coder Source decoder Channel Channel Adapt to channel statistics coder decoder Channel Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 2

2 How does compression work? Exploit redundancy. Take advantage of patterns in the signal. Describe frequently occuring events efficiently. Lossless coding: completely reversible Introduce acceptable deviations. Remove information that the humans cannot perceive. Match the signal resolution (in space, time, amplitude) to the application Lossy coding: irreversible distortion of the signal Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 3 Lossless compression in lossy compression systems Almost every lossy compression system contains a lossless compression system Lossy compression system Quantizer Encoder Lossless Encoder Lossless Decoder Lossless compression system Quantizer Decoder We will discuss the basics of lossless compression first, then move on to lossy compression Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 4 2

3 Topics in lossless compression Binary decision trees and variable length coding Entropy and bit-rate Huffman codes Statistical dependencies in image signals Sources with memory Arithmetic coding Redundancy reduction by prediction Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 5 Example: 2 Questions Alice thinks of an outcome (from a finite set), but does not disclose his selection. Bob asks a series of yes-no questions to uniquely determine the outcome chosen. The goal of the game is to ask as few questions as possible on average. Our goal: Design the best strategy for Bob. Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 6 3

4 Example: 2 Questions (cont.) Observation: The collection of questions and answers yield a binary code for each outcome. A B C D E F A B C D E F Which strategy (=code) is better? Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 7 Fixed length codes A B C D E F G H Average description length for K outcomes Optimum for equally likely outcomes Verify by modifying tree l av = log 2 K Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 8 4

5 Variable length codes If outcomes are NOT equally probable: Use shorter descriptions for likely outcomes Use longer descriptions for less likely outcomes Intuition: Optimum balanced code trees, i.e., with equally likely outcomes, can be pruned to yield unbalanced trees with unequal probabilities. The unbalanced code trees such obtained are also optimum. Hence, an outcome of probability p should require about log 2 p bits Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 9 Entropy of a memoryless source Let a memoryless source be characterized by an ensemble with: Alphabet {a,a,a 2,..., a K } Shannon: information conveyed by message : I(a k ) = log(p(a k )) Entropy of the source is the average information contents: H U U Probabilities {P(a ), P(a ), P(a 2 ),..., P(a K )} K ( ) = E{ I( a k )} = P( a k ) log( P( a k )) = P( u ) k = For log = log 2 the unit is bits/symbol log P u u a k ( ( )) Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 5

6 Properties of entropy: Entropy and bit-rate max{h(u )} = log(k) H(U ) with P(a j ) = P(a k ) j, k The entropy H(U ) is a lower bound for the average word length l avu of a decodable variable-length code for the symbols. Conversely, the average wordlength l av can approach H(U ), if sufficiently large blocks of symbols are encoded jointly. Redundancy of a code: R = l av H(U ) Bernd Girod: EE368b Image and Video Compression Lossless Compression no. Encoding with variable word length A code without redundancy, i.e. l av = H(U ) is achieved, if all individual code word length l cw (a k ) = log(p(a k )) For binary code words, all probabilities would have to be binary fractions: P(a k ) = 2 l cw (a k ) a i Example P(a i ) redundant code optimum code a.5 a.25 a 2.25 a 3.25 H(U ) =.75 bits / symbol l av =.75 bits / symbol R = Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 2 6

7 Huffman-Code Design algorithm for variable length codes proposed by Huffman (952) always finds a code with minimum redundancy. Obtain code tree as follows: Pick the two symbols with lowest probabilities and merge them into a new auxiliary symbol. 2 Calculate the probability of the auxiliary symbol. 3 If more than one symbol remains, repeat steps and 2 for the new auxiliary alphabet. 4 Convert the code tree into a prefix code. Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 3 Huffman-Code - Example Fixed length coding: l =3. bits/symbol Huffman code: lav =2.7 bits/symbol Entropy H(U )=2.68 bits/symbol Redundancy of the Huffman code: R=.3 bits/symbol Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 4 7

8 Probability density function of the luminance signal Y Images: 3 EBU test slides, 3 SMPTE test slides, uniform quantization with 256 levels (8 bits/pixel) H(U Y ) = 7.34 bits / pixel Image with lowest entropy: H L (U Y ) = 6.97 bits / pixel Image with highest entropy: H H (U Y ) = 7.35 bits /pixel Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 5 Probability density function of the color difference signals R-Y and B-Y H(U R Y ) =5.57 bits/pixel H L (U R Y ) = 4.65 bits/pixel H H (U R Y ) = 5.72 bits / pixel H L (U B Y ) = 4. bits /pixel H H (U B Y ) = 5.34 bits /pixel Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 6 8

9 Joint sources Joint sources generate N symbols simultaneously. A coding gain can be achieved by encoding those symbols jointly. The lower bound for the average code word length is the joint entropy: H(U,U 2,...,U N ) =... P(u,u 2,...,u N )log(p(u,u 2,...,u N )) u 2 u N It generally holds that u H(U,U 2,...,U N ) H(U ) + H(U 2 ) H(U N ) with equality, if U,U 2,...,U N are statistically independent. Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 7 Statistical dependencies between video signal components Y, R-Y, B-Y Data: 3 EBU-, 3 SMPTE test slides, each component Y, R-Y, B-Y uniformly quantized to 64 levels H = 3x6 bits / sample = 8 bits/sample H(U Y,U R Y,U B Y ) = 9.44 bits/sample H(U Y ) + H(U R Y ) + H(U B Y ) =.28 bits/sample H = 2.74 bits/sample Statistical dependency between R, G, B is much stronger. If joint source Y, R-Y, B-Y is treated as a source with memory, the possible gain by joint coding is much smaller. Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 8 9

10 Markov process Neighboring samples of the video signal are not statistically independent: source with memory P(u T ) P(u T u T,u T 2,...,u T N ) A source with memory can be modeled by a Markov random process. Conditional probabilities of the source symbols u T of a Markov source of order N: P(u T, Z T ) = P(u T u T,u T 2,...,u T N ) state of the Markov source at time T Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 9 Entropy of source with memory Markov source of order N: conditional entropy H(U T Z T ) = H(U T U T,U T 2,...,U T N ) = E{ log(p(u T U T,U T 2,...,U T N ))} =... p(u T,u T,u T 2,..., u T N ) log( p(u T u T,u T 2,...,u T N )) ut u T N H(U T Z T ) H(U T ) (equality for memoryless sources) Average code word length can approach with a switched Huffman code. Number of states for an 8-bit video signal: N = N = 2 N = states states states H(U T Z T ) e.g. Bernd Girod: EE368b Image and Video Compression Lossless Compression no. 2

Information and Entropy

Information and Entropy Information and Entropy Shannon s Separation Principle Source Coding Principles Entropy Variable Length Codes Huffman Codes Joint Sources Arithmetic Codes Adaptive Codes Thomas Wiegand: Digital Image Communication

More information

Compression and Coding

Compression and Coding Compression and Coding Theory and Applications Part 1: Fundamentals Gloria Menegaz 1 Transmitter (Encoder) What is the problem? Receiver (Decoder) Transformation information unit Channel Ordering (significance)

More information

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE

Run-length & Entropy Coding. Redundancy Removal. Sampling. Quantization. Perform inverse operations at the receiver EEE General e Image Coder Structure Motion Video x(s 1,s 2,t) or x(s 1,s 2 ) Natural Image Sampling A form of data compression; usually lossless, but can be lossy Redundancy Removal Lossless compression: predictive

More information

Basic Principles of Video Coding

Basic Principles of Video Coding Basic Principles of Video Coding Introduction Categories of Video Coding Schemes Information Theory Overview of Video Coding Techniques Predictive coding Transform coding Quantization Entropy coding Motion

More information

Chapter 9 Fundamental Limits in Information Theory

Chapter 9 Fundamental Limits in Information Theory Chapter 9 Fundamental Limits in Information Theory Information Theory is the fundamental theory behind information manipulation, including data compression and data transmission. 9.1 Introduction o For

More information

Multimedia Communications. Mathematical Preliminaries for Lossless Compression

Multimedia Communications. Mathematical Preliminaries for Lossless Compression Multimedia Communications Mathematical Preliminaries for Lossless Compression What we will see in this chapter Definition of information and entropy Modeling a data source Definition of coding and when

More information

UNIT I INFORMATION THEORY. I k log 2

UNIT I INFORMATION THEORY. I k log 2 UNIT I INFORMATION THEORY Claude Shannon 1916-2001 Creator of Information Theory, lays the foundation for implementing logic in digital circuits as part of his Masters Thesis! (1939) and published a paper

More information

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image

Image Compression. Fundamentals: Coding redundancy. The gray level histogram of an image can reveal a great deal of information about the image Fundamentals: Coding redundancy The gray level histogram of an image can reveal a great deal of information about the image That probability (frequency) of occurrence of gray level r k is p(r k ), p n

More information

Wavelet Scalable Video Codec Part 1: image compression by JPEG2000

Wavelet Scalable Video Codec Part 1: image compression by JPEG2000 1 Wavelet Scalable Video Codec Part 1: image compression by JPEG2000 Aline Roumy aline.roumy@inria.fr May 2011 2 Motivation for Video Compression Digital video studio standard ITU-R Rec. 601 Y luminance

More information

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP9519 Multimedia Systems S2 2006 jzhang@cse.unsw.edu.au

More information

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory

Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Digital Communications III (ECE 154C) Introduction to Coding and Information Theory Tara Javidi These lecture notes were originally developed by late Prof. J. K. Wolf. UC San Diego Spring 2014 1 / 8 I

More information

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments. Tutorial 1. Acknowledgement and References for lectures 1 to 5

Lecture 2: Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments. Tutorial 1. Acknowledgement and References for lectures 1 to 5 Lecture : Introduction to Audio, Video & Image Coding Techniques (I) -- Fundaments Dr. Jian Zhang Conjoint Associate Professor NICTA & CSE UNSW COMP959 Multimedia Systems S 006 jzhang@cse.unsw.edu.au Acknowledgement

More information

at Some sort of quantization is necessary to represent continuous signals in digital form

at Some sort of quantization is necessary to represent continuous signals in digital form Quantization at Some sort of quantization is necessary to represent continuous signals in digital form x(n 1,n ) x(t 1,tt ) D Sampler Quantizer x q (n 1,nn ) Digitizer (A/D) Quantization is also used for

More information

CSCI 2570 Introduction to Nanocomputing

CSCI 2570 Introduction to Nanocomputing CSCI 2570 Introduction to Nanocomputing Information Theory John E Savage What is Information Theory Introduced by Claude Shannon. See Wikipedia Two foci: a) data compression and b) reliable communication

More information

Ch 0 Introduction. 0.1 Overview of Information Theory and Coding

Ch 0 Introduction. 0.1 Overview of Information Theory and Coding Ch 0 Introduction 0.1 Overview of Information Theory and Coding Overview The information theory was founded by Shannon in 1948. This theory is for transmission (communication system) or recording (storage

More information

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code

Chapter 3 Source Coding. 3.1 An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code Chapter 3 Source Coding 3. An Introduction to Source Coding 3.2 Optimal Source Codes 3.3 Shannon-Fano Code 3.4 Huffman Code 3. An Introduction to Source Coding Entropy (in bits per symbol) implies in average

More information

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet)

Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Compression Motivation Bandwidth: Communicate large complex & highly detailed 3D models through lowbandwidth connection (e.g. VRML over the Internet) Storage: Store large & complex 3D models (e.g. 3D scanner

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006)

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT V PART-A. 1. What is binary symmetric channel (AUC DEC 2006) MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT V PART-A 1. What is binary symmetric channel (AUC DEC 2006) 2. Define information rate? (AUC DEC 2007)

More information

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols.

Basic Principles of Lossless Coding. Universal Lossless coding. Lempel-Ziv Coding. 2. Exploit dependences between successive symbols. Universal Lossless coding Lempel-Ziv Coding Basic principles of lossless compression Historical review Variable-length-to-block coding Lempel-Ziv coding 1 Basic Principles of Lossless Coding 1. Exploit

More information

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A

MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK. SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A MAHALAKSHMI ENGINEERING COLLEGE QUESTION BANK DEPARTMENT: ECE SEMESTER: IV SUBJECT CODE / Name: EC2252 COMMUNICATION THEORY UNIT-V INFORMATION THEORY PART-A 1. What is binary symmetric channel (AUC DEC

More information

4. Quantization and Data Compression. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak

4. Quantization and Data Compression. ECE 302 Spring 2012 Purdue University, School of ECE Prof. Ilya Pollak 4. Quantization and Data Compression ECE 32 Spring 22 Purdue University, School of ECE Prof. What is data compression? Reducing the file size without compromising the quality of the data stored in the

More information

BASICS OF COMPRESSION THEORY

BASICS OF COMPRESSION THEORY BASICS OF COMPRESSION THEORY Why Compression? Task: storage and transport of multimedia information. E.g.: non-interlaced HDTV: 0x0x0x = Mb/s!! Solutions: Develop technologies for higher bandwidth Find

More information

Multimedia Networking ECE 599

Multimedia Networking ECE 599 Multimedia Networking ECE 599 Prof. Thinh Nguyen School of Electrical Engineering and Computer Science Based on lectures from B. Lee, B. Girod, and A. Mukherjee 1 Outline Digital Signal Representation

More information

Image Compression. Qiaoyong Zhong. November 19, CAS-MPG Partner Institute for Computational Biology (PICB)

Image Compression. Qiaoyong Zhong. November 19, CAS-MPG Partner Institute for Computational Biology (PICB) Image Compression Qiaoyong Zhong CAS-MPG Partner Institute for Computational Biology (PICB) November 19, 2012 1 / 53 Image Compression The art and science of reducing the amount of data required to represent

More information

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE)

ECE Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) ECE 74 - Advanced Communication Theory, Spring 2009 Homework #1 (INCOMPLETE) 1. A Huffman code finds the optimal codeword to assign to a given block of source symbols. (a) Show that cannot be a Huffman

More information

Source Coding: Part I of Fundamentals of Source and Video Coding

Source Coding: Part I of Fundamentals of Source and Video Coding Foundations and Trends R in sample Vol. 1, No 1 (2011) 1 217 c 2011 Thomas Wiegand and Heiko Schwarz DOI: xxxxxx Source Coding: Part I of Fundamentals of Source and Video Coding Thomas Wiegand 1 and Heiko

More information

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 3 LOSSY IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 3 LOSSY IMAGE COMPRESSION SYSTEMS Lesson 7 Delta Modulation and DPCM Instructional Objectives At the end of this lesson, the students should be able to: 1. Describe a lossy predictive coding scheme.

More information

Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression

Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression Autumn Coping with NP-completeness (Conclusion) Introduction to Data Compression Kirkpatrick (984) Analogy from thermodynamics. The best crystals are found by annealing. First heat up the material to let

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2013, 29 November 2013 Memoryless Sources Arithmetic Coding Sources with Memory Markov Example 2 / 21 Encoding the output

More information

Coding for Discrete Source

Coding for Discrete Source EGR 544 Communication Theory 3. Coding for Discrete Sources Z. Aliyazicioglu Electrical and Computer Engineering Department Cal Poly Pomona Coding for Discrete Source Coding Represent source data effectively

More information

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code

Chapter 2 Date Compression: Source Coding. 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code Chapter 2 Date Compression: Source Coding 2.1 An Introduction to Source Coding 2.2 Optimal Source Codes 2.3 Huffman Code 2.1 An Introduction to Source Coding Source coding can be seen as an efficient way

More information

L. Yaroslavsky. Fundamentals of Digital Image Processing. Course

L. Yaroslavsky. Fundamentals of Digital Image Processing. Course L. Yaroslavsky. Fundamentals of Digital Image Processing. Course 0555.330 Lec. 6. Principles of image coding The term image coding or image compression refers to processing image digital data aimed at

More information

EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY

EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY EC2252 COMMUNICATION THEORY UNIT 5 INFORMATION THEORY Discrete Messages and Information Content, Concept of Amount of Information, Average information, Entropy, Information rate, Source coding to increase

More information

Chapter 2: Source coding

Chapter 2: Source coding Chapter 2: meghdadi@ensil.unilim.fr University of Limoges Chapter 2: Entropy of Markov Source Chapter 2: Entropy of Markov Source Markov model for information sources Given the present, the future is independent

More information

2018/5/3. YU Xiangyu

2018/5/3. YU Xiangyu 2018/5/3 YU Xiangyu yuxy@scut.edu.cn Entropy Huffman Code Entropy of Discrete Source Definition of entropy: If an information source X can generate n different messages x 1, x 2,, x i,, x n, then the

More information

Image and Multidimensional Signal Processing

Image and Multidimensional Signal Processing Image and Multidimensional Signal Processing Professor William Hoff Dept of Electrical Engineering &Computer Science http://inside.mines.edu/~whoff/ Image Compression 2 Image Compression Goal: Reduce amount

More information

Shannon s A Mathematical Theory of Communication

Shannon s A Mathematical Theory of Communication Shannon s A Mathematical Theory of Communication Emre Telatar EPFL Kanpur October 19, 2016 First published in two parts in the July and October 1948 issues of BSTJ. First published in two parts in the

More information

Lecture 1: Shannon s Theorem

Lecture 1: Shannon s Theorem Lecture 1: Shannon s Theorem Lecturer: Travis Gagie January 13th, 2015 Welcome to Data Compression! I m Travis and I ll be your instructor this week. If you haven t registered yet, don t worry, we ll work

More information

Compression and Coding. Theory and Applications Part 1: Fundamentals

Compression and Coding. Theory and Applications Part 1: Fundamentals Compression and Coding Theory and Applications Part 1: Fundamentals 1 Transmitter (Encoder) What is the problem? Receiver (Decoder) Transformation information unit Channel Ordering (significance) 2 Why

More information

ECE472/572 - Lecture 11. Roadmap. Roadmap. Image Compression Fundamentals and Lossless Compression Techniques 11/03/11.

ECE472/572 - Lecture 11. Roadmap. Roadmap. Image Compression Fundamentals and Lossless Compression Techniques 11/03/11. ECE47/57 - Lecture Image Compression Fundamentals and Lossless Compression Techniques /03/ Roadmap Preprocessing low level Image Enhancement Image Restoration Image Segmentation Image Acquisition Image

More information

CMPT 365 Multimedia Systems. Lossless Compression

CMPT 365 Multimedia Systems. Lossless Compression CMPT 365 Multimedia Systems Lossless Compression Spring 2017 Edited from slides by Dr. Jiangchuan Liu CMPT365 Multimedia Systems 1 Outline Why compression? Entropy Variable Length Coding Shannon-Fano Coding

More information

Information Sources. Professor A. Manikas. Imperial College London. EE303 - Communication Systems An Overview of Fundamentals

Information Sources. Professor A. Manikas. Imperial College London. EE303 - Communication Systems An Overview of Fundamentals Information Sources Professor A. Manikas Imperial College London EE303 - Communication Systems An Overview of Fundamentals Prof. A. Manikas (Imperial College) EE303: Information Sources 24 Oct. 2011 1

More information

Entropies & Information Theory

Entropies & Information Theory Entropies & Information Theory LECTURE I Nilanjana Datta University of Cambridge,U.K. See lecture notes on: http://www.qi.damtp.cam.ac.uk/node/223 Quantum Information Theory Born out of Classical Information

More information

3F1 Information Theory, Lecture 3

3F1 Information Theory, Lecture 3 3F1 Information Theory, Lecture 3 Jossy Sayir Department of Engineering Michaelmas 2011, 28 November 2011 Memoryless Sources Arithmetic Coding Sources with Memory 2 / 19 Summary of last lecture Prefix-free

More information

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur

Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS. Version 2 ECE IIT, Kharagpur Module 2 LOSSLESS IMAGE COMPRESSION SYSTEMS Lesson 5 Other Coding Techniques Instructional Objectives At the end of this lesson, the students should be able to:. Convert a gray-scale image into bit-plane

More information

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy

Information Theory. Coding and Information Theory. Information Theory Textbooks. Entropy Coding and Information Theory Chris Williams, School of Informatics, University of Edinburgh Overview What is information theory? Entropy Coding Information Theory Shannon (1948): Information theory is

More information

Compression methods: the 1 st generation

Compression methods: the 1 st generation Compression methods: the 1 st generation 1998-2017 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Still1g 2017 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 32 Basic

More information

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG

Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Fault Tolerance Technique in Huffman Coding applies to Baseline JPEG Cung Nguyen and Robert G. Redinbo Department of Electrical and Computer Engineering University of California, Davis, CA email: cunguyen,

More information

Predictive Coding. Prediction Prediction in Images

Predictive Coding. Prediction Prediction in Images Prediction Prediction in Images Predictive Coding Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

Entropy as a measure of surprise

Entropy as a measure of surprise Entropy as a measure of surprise Lecture 5: Sam Roweis September 26, 25 What does information do? It removes uncertainty. Information Conveyed = Uncertainty Removed = Surprise Yielded. How should we quantify

More information

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1

An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if. 2 l i. i=1 Kraft s inequality An instantaneous code (prefix code, tree code) with the codeword lengths l 1,..., l N exists if and only if N 2 l i 1 Proof: Suppose that we have a tree code. Let l max = max{l 1,...,

More information

1 Introduction to information theory

1 Introduction to information theory 1 Introduction to information theory 1.1 Introduction In this chapter we present some of the basic concepts of information theory. The situations we have in mind involve the exchange of information through

More information

Motivation for Arithmetic Coding

Motivation for Arithmetic Coding Motivation for Arithmetic Coding Motivations for arithmetic coding: 1) Huffman coding algorithm can generate prefix codes with a minimum average codeword length. But this length is usually strictly greater

More information

Multimedia. Multimedia Data Compression (Lossless Compression Algorithms)

Multimedia. Multimedia Data Compression (Lossless Compression Algorithms) Course Code 005636 (Fall 2017) Multimedia Multimedia Data Compression (Lossless Compression Algorithms) Prof. S. M. Riazul Islam, Dept. of Computer Engineering, Sejong University, Korea E-mail: riaz@sejong.ac.kr

More information

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University

Huffman Coding. C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University Huffman Coding C.M. Liu Perceptual Lab, College of Computer Science National Chiao-Tung University http://www.csie.nctu.edu.tw/~cmliu/courses/compression/ Office: EC538 (03)573877 cmliu@cs.nctu.edu.tw

More information

ELEMENT OF INFORMATION THEORY

ELEMENT OF INFORMATION THEORY History Table of Content ELEMENT OF INFORMATION THEORY O. Le Meur olemeur@irisa.fr Univ. of Rennes 1 http://www.irisa.fr/temics/staff/lemeur/ October 2010 1 History Table of Content VERSION: 2009-2010:

More information

CSEP 521 Applied Algorithms Spring Statistical Lossless Data Compression

CSEP 521 Applied Algorithms Spring Statistical Lossless Data Compression CSEP 52 Applied Algorithms Spring 25 Statistical Lossless Data Compression Outline for Tonight Basic Concepts in Data Compression Entropy Prefix codes Huffman Coding Arithmetic Coding Run Length Coding

More information

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar

Introduction to Information Theory. By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction to Information Theory By Prof. S.J. Soni Asst. Professor, CE Department, SPCE, Visnagar Introduction [B.P. Lathi] Almost in all the means of communication, none produces error-free communication.

More information

Information Theory with Applications, Math6397 Lecture Notes from September 30, 2014 taken by Ilknur Telkes

Information Theory with Applications, Math6397 Lecture Notes from September 30, 2014 taken by Ilknur Telkes Information Theory with Applications, Math6397 Lecture Notes from September 3, 24 taken by Ilknur Telkes Last Time Kraft inequality (sep.or) prefix code Shannon Fano code Bound for average code-word length

More information

Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source

Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source Implementation of Lossless Huffman Coding: Image compression using K-Means algorithm and comparison vs. Random numbers and Message source Ali Tariq Bhatti 1, Dr. Jung Kim 2 1,2 Department of Electrical

More information

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition

Review of Quantization. Quantization. Bring in Probability Distribution. L-level Quantization. Uniform partition Review of Quantization UMCP ENEE631 Slides (created by M.Wu 004) Quantization UMCP ENEE631 Slides (created by M.Wu 001/004) L-level Quantization Minimize errors for this lossy process What L values to

More information

Objectives of Image Coding

Objectives of Image Coding Objectives of Image Coding Representation of an image with acceptable quality, using as small a number of bits as possible Applications: Reduction of channel bandwidth for image transmission Reduction

More information

Distributed Arithmetic Coding

Distributed Arithmetic Coding Distributed Arithmetic Coding Marco Grangetto, Member, IEEE, Enrico Magli, Member, IEEE, Gabriella Olmo, Senior Member, IEEE Abstract We propose a distributed binary arithmetic coder for Slepian-Wolf coding

More information

ASYMMETRIC NUMERAL SYSTEMS: ADDING FRACTIONAL BITS TO HUFFMAN CODER

ASYMMETRIC NUMERAL SYSTEMS: ADDING FRACTIONAL BITS TO HUFFMAN CODER ASYMMETRIC NUMERAL SYSTEMS: ADDING FRACTIONAL BITS TO HUFFMAN CODER Huffman coding Arithmetic coding fast, but operates on integer number of bits: approximates probabilities with powers of ½, getting inferior

More information

Multimedia Communications. Scalar Quantization

Multimedia Communications. Scalar Quantization Multimedia Communications Scalar Quantization Scalar Quantization In many lossy compression applications we want to represent source outputs using a small number of code words. Process of representing

More information

CSEP 590 Data Compression Autumn Arithmetic Coding

CSEP 590 Data Compression Autumn Arithmetic Coding CSEP 590 Data Compression Autumn 2007 Arithmetic Coding Reals in Binary Any real number x in the interval [0,1) can be represented in binary as.b 1 b 2... where b i is a bit. x 0 0 1 0 1... binary representation

More information

Exercise 1. = P(y a 1)P(a 1 )

Exercise 1. = P(y a 1)P(a 1 ) Chapter 7 Channel Capacity Exercise 1 A source produces independent, equally probable symbols from an alphabet {a 1, a 2 } at a rate of one symbol every 3 seconds. These symbols are transmitted over a

More information

COMM901 Source Coding and Compression. Quiz 1

COMM901 Source Coding and Compression. Quiz 1 German University in Cairo - GUC Faculty of Information Engineering & Technology - IET Department of Communication Engineering Winter Semester 2013/2014 Students Name: Students ID: COMM901 Source Coding

More information

Shannon-Fano-Elias coding

Shannon-Fano-Elias coding Shannon-Fano-Elias coding Suppose that we have a memoryless source X t taking values in the alphabet {1, 2,..., L}. Suppose that the probabilities for all symbols are strictly positive: p(i) > 0, i. The

More information

Digital Image Processing Lectures 25 & 26

Digital Image Processing Lectures 25 & 26 Lectures 25 & 26, Professor Department of Electrical and Computer Engineering Colorado State University Spring 2015 Area 4: Image Encoding and Compression Goal: To exploit the redundancies in the image

More information

Lecture 6: Kraft-McMillan Inequality and Huffman Coding

Lecture 6: Kraft-McMillan Inequality and Huffman Coding EE376A/STATS376A Information Theory Lecture 6-0/25/208 Lecture 6: Kraft-McMillan Inequality and Huffman Coding Lecturer: Tsachy Weissman Scribe: Akhil Prakash, Kai Yee Wan In this lecture, we begin with

More information

Multimedia Information Systems

Multimedia Information Systems Multimedia Information Systems Samson Cheung EE 639, Fall 2004 Lecture 3 & 4: Color, Video, and Fundamentals of Data Compression 1 Color Science Light is an electromagnetic wave. Its color is characterized

More information

Lecture 10 : Basic Compression Algorithms

Lecture 10 : Basic Compression Algorithms Lecture 10 : Basic Compression Algorithms Modeling and Compression We are interested in modeling multimedia data. To model means to replace something complex with a simpler (= shorter) analog. Some models

More information

18.2 Continuous Alphabet (discrete-time, memoryless) Channel

18.2 Continuous Alphabet (discrete-time, memoryless) Channel 0-704: Information Processing and Learning Spring 0 Lecture 8: Gaussian channel, Parallel channels and Rate-distortion theory Lecturer: Aarti Singh Scribe: Danai Koutra Disclaimer: These notes have not

More information

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding

SIGNAL COMPRESSION Lecture Shannon-Fano-Elias Codes and Arithmetic Coding SIGNAL COMPRESSION Lecture 3 4.9.2007 Shannon-Fano-Elias Codes and Arithmetic Coding 1 Shannon-Fano-Elias Coding We discuss how to encode the symbols {a 1, a 2,..., a m }, knowing their probabilities,

More information

Information Theory and Coding Techniques

Information Theory and Coding Techniques Information Theory and Coding Techniques Lecture 1.2: Introduction and Course Outlines Information Theory 1 Information Theory and Coding Techniques Prof. Ja-Ling Wu Department of Computer Science and

More information

Uncertainity, Information, and Entropy

Uncertainity, Information, and Entropy Uncertainity, Information, and Entropy Probabilistic experiment involves the observation of the output emitted by a discrete source during every unit of time. The source output is modeled as a discrete

More information

A Mathematical Theory of Communication

A Mathematical Theory of Communication A Mathematical Theory of Communication Ben Eggers Abstract This paper defines information-theoretic entropy and proves some elementary results about it. Notably, we prove that given a few basic assumptions

More information

Lecture 4 Noisy Channel Coding

Lecture 4 Noisy Channel Coding Lecture 4 Noisy Channel Coding I-Hsiang Wang Department of Electrical Engineering National Taiwan University ihwang@ntu.edu.tw October 9, 2015 1 / 56 I-Hsiang Wang IT Lecture 4 The Channel Coding Problem

More information

Chapter 2 Source Models and Entropy. Any information-generating process can be viewed as. computer program in executed form: binary 0

Chapter 2 Source Models and Entropy. Any information-generating process can be viewed as. computer program in executed form: binary 0 Part II Information Theory Concepts Chapter 2 Source Models and Entropy Any information-generating process can be viewed as a source: { emitting a sequence of symbols { symbols from a nite alphabet text:

More information

ITCT Lecture IV.3: Markov Processes and Sources with Memory

ITCT Lecture IV.3: Markov Processes and Sources with Memory ITCT Lecture IV.3: Markov Processes and Sources with Memory 4. Markov Processes Thus far, we have been occupied with memoryless sources and channels. We must now turn our attention to sources with memory.

More information

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016

Midterm Exam Information Theory Fall Midterm Exam. Time: 09:10 12:10 11/23, 2016 Midterm Exam Time: 09:10 12:10 11/23, 2016 Name: Student ID: Policy: (Read before You Start to Work) The exam is closed book. However, you are allowed to bring TWO A4-size cheat sheet (single-sheet, two-sided).

More information

Objective: Reduction of data redundancy. Coding redundancy Interpixel redundancy Psychovisual redundancy Fall LIST 2

Objective: Reduction of data redundancy. Coding redundancy Interpixel redundancy Psychovisual redundancy Fall LIST 2 Image Compression Objective: Reduction of data redundancy Coding redundancy Interpixel redundancy Psychovisual redundancy 20-Fall LIST 2 Method: Coding Redundancy Variable-Length Coding Interpixel Redundancy

More information

ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS

ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS EC 32 (CR) Total No. of Questions :09] [Total No. of Pages : 02 III/IV B.Tech. DEGREE EXAMINATIONS, APRIL/MAY- 207 Second Semester ELECTRONICS & COMMUNICATIONS DIGITAL COMMUNICATIONS Time: Three Hours

More information

Predictive Coding. Prediction

Predictive Coding. Prediction Predictive Coding Prediction Prediction in Images Principle of Differential Pulse Code Modulation (DPCM) DPCM and entropy-constrained scalar quantization DPCM and transmission errors Adaptive intra-interframe

More information

Information Theory, Statistics, and Decision Trees

Information Theory, Statistics, and Decision Trees Information Theory, Statistics, and Decision Trees Léon Bottou COS 424 4/6/2010 Summary 1. Basic information theory. 2. Decision trees. 3. Information theory and statistics. Léon Bottou 2/31 COS 424 4/6/2010

More information

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur

Module 5 EMBEDDED WAVELET CODING. Version 2 ECE IIT, Kharagpur Module 5 EMBEDDED WAVELET CODING Lesson 13 Zerotree Approach. Instructional Objectives At the end of this lesson, the students should be able to: 1. Explain the principle of embedded coding. 2. Show the

More information

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256

encoding without prediction) (Server) Quantization: Initial Data 0, 1, 2, Quantized Data 0, 1, 2, 3, 4, 8, 16, 32, 64, 128, 256 General Models for Compression / Decompression -they apply to symbols data, text, and to image but not video 1. Simplest model (Lossless ( encoding without prediction) (server) Signal Encode Transmit (client)

More information

Compression and Coding. Theory and Applications Part 1: Fundamentals

Compression and Coding. Theory and Applications Part 1: Fundamentals Compression and Coding Theory and Applications Part 1: Fundamentals 1 What is the problem? Transmitter (Encoder) Receiver (Decoder) Transformation information unit Channel Ordering (significance) 2 Why

More information

Quantization. Introduction. Roadmap. Optimal Quantizer Uniform Quantizer Non Uniform Quantizer Rate Distorsion Theory. Source coding.

Quantization. Introduction. Roadmap. Optimal Quantizer Uniform Quantizer Non Uniform Quantizer Rate Distorsion Theory. Source coding. Roadmap Quantization Optimal Quantizer Uniform Quantizer Non Uniform Quantizer Rate Distorsion Theory Source coding 2 Introduction 4 1 Lossy coding Original source is discrete Lossless coding: bit rate

More information

! Where are we on course map? ! What we did in lab last week. " How it relates to this week. ! Compression. " What is it, examples, classifications

! Where are we on course map? ! What we did in lab last week.  How it relates to this week. ! Compression.  What is it, examples, classifications Lecture #3 Compression! Where are we on course map?! What we did in lab last week " How it relates to this week! Compression " What is it, examples, classifications " Probability based compression # Huffman

More information

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5.

Channel capacity. Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Channel capacity Outline : 1. Source entropy 2. Discrete memoryless channel 3. Mutual information 4. Channel capacity 5. Exercices Exercise session 11 : Channel capacity 1 1. Source entropy Given X a memoryless

More information

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions

3F1: Signals and Systems INFORMATION THEORY Examples Paper Solutions Engineering Tripos Part IIA THIRD YEAR 3F: Signals and Systems INFORMATION THEORY Examples Paper Solutions. Let the joint probability mass function of two binary random variables X and Y be given in the

More information

Source Coding for Compression

Source Coding for Compression Source Coding for Compression Types of data compression: 1. Lossless -. Lossy removes redundancies (reversible) removes less important information (irreversible) Lec 16b.6-1 M1 Lossless Entropy Coding,

More information

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding

SIGNAL COMPRESSION. 8. Lossy image compression: Principle of embedding SIGNAL COMPRESSION 8. Lossy image compression: Principle of embedding 8.1 Lossy compression 8.2 Embedded Zerotree Coder 161 8.1 Lossy compression - many degrees of freedom and many viewpoints The fundamental

More information

ECE Information theory Final

ECE Information theory Final ECE 776 - Information theory Final Q1 (1 point) We would like to compress a Gaussian source with zero mean and variance 1 We consider two strategies In the first, we quantize with a step size so that the

More information

Information Theory (Information Theory by J. V. Stone, 2015)

Information Theory (Information Theory by J. V. Stone, 2015) Information Theory (Information Theory by J. V. Stone, 2015) Claude Shannon (1916 2001) Shannon, C. (1948). A mathematical theory of communication. Bell System Technical Journal, 27:379 423. A mathematical

More information

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy

Information Theory CHAPTER. 5.1 Introduction. 5.2 Entropy Haykin_ch05_pp3.fm Page 207 Monday, November 26, 202 2:44 PM CHAPTER 5 Information Theory 5. Introduction As mentioned in Chapter and reiterated along the way, the purpose of a communication system is

More information

Lecture 22: Final Review

Lecture 22: Final Review Lecture 22: Final Review Nuts and bolts Fundamental questions and limits Tools Practical algorithms Future topics Dr Yao Xie, ECE587, Information Theory, Duke University Basics Dr Yao Xie, ECE587, Information

More information

CMPT 365 Multimedia Systems. Final Review - 1

CMPT 365 Multimedia Systems. Final Review - 1 CMPT 365 Multimedia Systems Final Review - 1 Spring 2017 CMPT365 Multimedia Systems 1 Outline Entropy Lossless Compression Shannon-Fano Coding Huffman Coding LZW Coding Arithmetic Coding Lossy Compression

More information