The estimation of the m parameter of the Nakagami distribution

Size: px
Start display at page:

Download "The estimation of the m parameter of the Nakagami distribution"

Transcription

1 The estimatio of the m parameter of the Nakagami distributio Li-Fei Huag Mig Chua Uiversity Dept. of Applied Stat. ad Ifo. Sciece 5 Teh-Mig Rd., Gwei-Sha Taoyua City Taiwa lhuag@mail.mcu.edu.tw Je-Je Li Mig Chua Uiversity Dept. of Applied Stat. ad Ifo. Sciece 5 Teh-Mig Rd., Gwei-Sha Taoyua City Taiwa jjli@mail.mcu.edu.tw Abstract: This paper itroduces the Nakagami-m distributio which is usually used to simulate the ultrasoud image. The gamma distributio is used to derive the momet estimator ad the maximum likelihood estimator because the Nakagami distributio has o momet geeratio fuctio ad too complicate likelihood fuctio. The momet estimator of m is ormally distributed with a smaller bias ad a larger stadard deviatio. The secod order maximum likelihood estimator of m is also ormally distributed with a larger bias ad a smaller stadard deviatio. The cofidece iterval for the ratio of medias from two idepedet distributios of Nakagami-m estimators is costructed. The momet estimator provides a quick uderstadig about the m parameter, while the secod order maximum likelihood estimator provides a full uderstadig about the m parameter. Key Words: The Nakagami distributio, The momet estimator, The maximum likelihood estimator, The distributio of the Nakagami-m, The ratio of medias. Itroductio The Nakagami distributio is usually used to simulate the ultrasoud image. Smolikova et al. say that aalysis of backscatter i the ultrasoud echo evelope, i cojuctio with ultrasoud B-scas, ca provide importat iformatio for tissue characterizatio ad pathology diagosis[6]. Pavlovic et al. preset the joit probability desity fuctio (PDF) ad PDF of maximum of ratios mu() = R-/r() ad mu(2) = R-2/r(2) for the cases where R-, R-2, r(), ad r(2) are Rayleigh, Ricia, Nakagami-m., ad Weibull distributed radom variables[4]. Agrawal ad Karmeshu propose a ew composite probability distributio, i. e. Nakagami-geeralized iverse Gaussia distributio (NGIGD) with four parameters[]. Che applies order statistics to aalyze the performace of ordered selectio combiig schemes with differet modulatio receptios operatig i Nakagami-m fadig eviromets ad all the results are validated by comparig the special case Rayleigh distributio with the fadig figure m = i the Nakagami-m distributio[2]. Peppas presets a closed-form expressio for the momets geeratig fuctio of the halfharmoic mea of two idepedet, ot ecessarily idetically distributed gamma radom variables with arbitrary parameters[5]. With the shape parameter m ad the spread parameter Ω, the probability desity fuctio of the Nakagami distributio is as follows. f() = 2 Γ(m) (m Ω )m 2m e m Ω 2 Huag ad Johso [3] provide theorems to costruct a cofidece iterval for ratio of percetiles from two idepedet distributios. 2 The estimators of Nakagami-m 2. The momet estimator If N Nakagami(m, Ω), let G = N 2. The = g /2 ad G = N 2 gamma(m, Ω m ). J = d dg = 2 g 2 f() = 2 Γ(m) (m Ω )m 2m e m Ω 2 f(g) = 2 Γ(m) (m Ω )m g 2m 2 e m Ω g 2 g 2 = Γ(m) (m Ω )m g m e m Ω g With the shape parameter α ad the scale parameter β, the probability desity fuctio of the gamma distributio is as follows. f(g) = Γ(α)β α gα e g β E-ISSN: Volume 3, 206

2 Table : The momet estimator of m m Ω ˆm The momet geeratig fuctio: = = 0 0 M G (t) = E(e tg ) Γ(α)β α gα e ( Γ(α)β α gα e ( = ( βt )α β t)g dg βt β )g dg E(G) = M G(0) = α( βt) α ( β) t=0 = αβ E(G 2 ) = M G(0) = αβ 2 (α + ) = αβ( α )( βt) α 2 ( β) t=0 V ar(g) = E(G 2 ) E(G) 2 = αβ 2 (α+ α) = αβ 2 It ca be show that α = E(G)2 V ar(g), β = V ar(g) E(G) m = E(N 2 ) 2 V ar(n 2 ). Sice the momet geeratio fuctio of the Nakagami distributio does ot exist, it s ecessary to apply the gamma distributio i the process of fidig the momet estimator of m. If a radom sample of, 2,..., 000 is selected spread parameter Ω, the momet estimators of shape parameters are listed i Table. The value of Ω wo t affect the estimatio of m. 2.2 The maximum likelihood estimator Let be the sample size. The likelihood fuctio is L(α, β) = f(g i α, β) = = Γ(α)β α Γ(α)β α gα i The log likelihood fuctio is e g i β g i α e g i β. l L(α, β) = lγ(α)β α +(α ) l g i g i β l L(α, β) = α β β + g i β 2 = 0 ˆΩ g i =, which is the same with its momet estimator. l L(α, β) α = Γ (α) Γ(α) l β + l g i = Γ (α) Γ(α) l g i α + l g i = 0 Γ (α) Γ(α) g i l g i + l α = l The digamma fuctio is defied to be ψ(α) = d dα l Γ(α) = Γ (α) Γ(α). Now we oly eed to deal with the digamma fuctio. The likelihood fuctio of the Nakagami distributio is too complicate to fid the maximum likelihood estimator of m. Let g i l g i ψ(α) + l α = = l. Abramowitz ad Stegu fid that ψ(α) + l α = 2α + 2α 2 20α 4 +. Oe term is used to obtai the first order maximum likelihood estimator. = 2ˆα ˆm = ˆα = 2 E-ISSN: Volume 3, 206

3 Table 2: The st ad 2d order maximum likelihood estimator of m m Ω ˆm ˆm Two terms are used to obtai the secod order maximum likelihood estimator. = 2ˆα 2 + 2ˆα ˆα 2 2 = 6ˆα 2 + Table 3: The bias ad the stadard deviatio of the momet estimator of m m Ω bias of ˆm stdev. of ˆm ˆα 2 2 6ˆα 2 = 0 ˆm 2 = ˆα 2 = If a radom sample of, 2,..., 000 is selected from a Nakagami distributio with the shape parameter m ad the spread parameter Ω, the maximum likelihood estimators of shape parameters are listed i Table 2. Where ˆm 2 is adjusted by its bias. The value of Ω wo t affect the estimatio of m. 3 The distributio of the Nakagamim estimator I order to compare the momet estimator ad the maximum likelihood estimator, their distributios eed to be foud. The Kolmogorov-Smirov test is applied to fid the distributio of the Nakagami-m estimator. 3. The momet estimator The momet estimator is ormally distributed with a smaller bias ad a larger stadard deviatio. Table 4: The bias ad the stadard deviatio of the secod order maximum likelihood estimator of m m Ω bias of ˆm 2 stdev. of ˆm The maximum likelihood estimator The first order maximum likelihood estimator is ot discussed because it s too far away from the theoretical value of m. The secod order maximum likelihood estimator is ormally distributed with a larger bias ad a smaller stadard deviatio. E-ISSN: Volume 3, 206

4 Table 5: The Cramer-Rao lower boud for the momet estimator of m m bias I(m) CRLB stdev Table 6: The Cramer-Rao lower boud for the secod order maximum likelihood estimator of m m bias I(m) CRLB stdev The Cramer-Rao lower boud Ay estimator ˆα whose bias is give by a fuctio b(α) satisfies the Cramer-Rao lower boud V ar(ˆα) [ + b (α)] 2, I(α) where l L(α, β) I(α) = E[ ] 2 α = E[ Γ (α) Γ(α) l g i α + l g i ] 2 = E[ Γ (α) Γ(α) + l α ]2 The square root of Cramer-Rao lower bouds for the momet estimators are summarized i the Table 5. The square root of Cramer-Rao lower bouds for the secod order maximum likelihood estimators are summarized i the Table The media of the Nakagami-m estimators I order to compare populatio medias, the cofidece itervals for the ratio of two medias from idepedet distributios of Nakagami-m estimators are costructed by way of two rewritte theorems based o oparametric methods i Huag ad Johso [3]. m ad i the theorems are just sample sizes. Theorem Let X, X 2,..., X m be a radom sample from F ( ); let Y, Y 2,..., Y from F 2 ( ); ad let samples be idepedet. If the populatio desity fuctio ( ), is positive ad cotiuous i a eighborhood of the media m i, for,2, lim m, m(m + ) = λ, (0 < λ < ), ad m 2 0, the the 00(-α)% cofidece iterval of θ = m /m 2 is F i ˆm ± Z 0.25 ˆm α/2 2 m ˆm 2 2 [ ˆF ( ˆm )] ˆm 2 2 ˆm 4 2 [ ˆF 2 ( ˆm 2)] 2 Theorem 2 Let X, X 2,..., X m be a radom sample from F ( ) which has a positive cotiuous derivative F ( ) i a eighborhood of m, let Y, Y 2,..., Y be a radom sample from F 2 ( ) which has a positive cotiuous derivative F 2 ( ) i a eighborhood of m 2, ad let two samples be idepedet. Let the ratio of medias θ = m /m 2 be ukow but fiite. Uder the coditio that lim m, m(m + ) = λ, (0 < λ < ), θ values of the itersectios of ±Z α/2 ad Z M,NP (θ) = ˆm θ ˆm m[ ˆF ( ˆm )] θ2 [ ˆF 2 ( ˆm 2)] 2 form the 00(-α)% cofidece iterval. Medias are estimated by order statistics, ad ˆF i ( ˆm i) is estimated by the kerel estimator for,2. Oe thousad replicatios of the radom sample X i,, X i,2,..., X i,000 are selected idepedetly from a Nakagami distributio with the shape parameter m ad the spread parameter. Oe thousad replicatios of the radom sample Y i,, Y i,2,..., Y i,000 are selected idepedetly from a Nakagami distributio with the shape parameter ad the spread parameter. The true ratio of medias from two populatios should be m. The simulated 95% cofidece itervals are listed i the Table 7. Where the momet estimator ad the secod order maximum likelihood estimator are adjusted by their bias. 3.5 The advatage ad disadvatage of two kids of estimators The momet estimator has two advatages. At first, it s much easier to fid the momet estimator tha the maximum likelihood estimator. Secodly, the bias of the momet estimator is smaller tha the bias of the maximum likelihood estimator. The maximum likelihood estimator also has two advatages. At first, the stadard deviatio of the maximum likelihood estimator is closer to the Cramer-Rao lower boud tha the stadard deviatio E-ISSN: Volume 3, 206

5 Table 7: The 95% cofidece iterval of m m Thm. Estimator 95% CI MME (0.9967,.009) MLE2 (0.9993,.0078) 2 MME (0.9970,.00) 2 MLE2 (0.9990,.0080) 0.75 MME (0.7487,0.7599) 0.75 MLE2 (0.7479,0.7542) MME (0.7490,0.7600) MLE2 (0.7480,0.7540) 0.5 MME (0.4980,0.5060) 0.5 MLE2 (0.4984,0.5025) MME (0.4980,0.5060) MLE2 (0.4980,0.5030) 0.25 MME (0.2479,0.2523) 0.25 MLE2 (0.2492,0.252) MME (0.2480,0.2520) MLE2 (0.2490,0.250) of the momet estimator. Secodly, the cofidece iterval costructed by the maximum likelihood estimator is shorter tha the cofidece iterval costructed by the momet estimator uder all circumstaces. 4 Coclusio The gamma distributio ca be used to derive ad estimate the shape parameter of the Nakagami distributio. The cofidece iterval for the ratio of medias from two idepedet distributios of the Nakagamim estimators ca be costructed. Because the momet estimator of m is easier to be calculated ad has a smaller bias, a quick uderstadig about m ca be obtaied by fidig its momet estimator. Sice the maximum likelihood estimator of m has a smaller stadard deviatio, a full uderstadig about m ca be obtaied by fidig its maximum likelihood estimator. R programs of the Nakagami variable simulatio ad parameters estimatio ad the cofidece iterval costructio are i the appedix. Refereces: [] R. Agrawal ad Karmeshu, Ultrasoic backscatterig i tissue: characterizatio through Nakagami-geeralized iverse Gaussia distributio, Computers i Biology ad Medicie 37(2), 2007, pp [2] JLZ. Che, Performace aalysis for ordered selectio combiig schemes i Nakagami-m eviromets, Joural of the Frakli Istitute- Egieerig ad Applied Mathematics 342(6), 2005, pp [3] LF. Huag ad RA. Johso, Cofidece regios for the ratio of percetiles, Statistics ad Probability Letters 76(4), 2006, pp [4] DC. Pavlovic, NM. Sekulovic, GV. Milovaovic, AS. Paajotovic, MC. Stefaovic ad ZJ. Popovic, Statistics for Ratios of Rayleigh, Ricia, Nakagami-m, ad Weibull Distributed Radom Variables, Mathematical Problems i Egieerig 203, DOI: 0. 55/203/ [5] K. Peppas, Momets geeratig fuctio of the harmoic mea of two o-idetical gamma radom variables ad its applicatios i wireless commuicatios, Joural of the Frakli Istitute-Egieerig ad Applied Mathematics 349(3), 202, pp [6] R. Smolikova, MP. Wachowiak ad JM. Zurada, A iformatio-theoretic approach to estimatig ultrasoud backscatter characteristics, Computers i Biology ad Medicie 34(4), 2004, pp Appedix A. R program of the Nakagami variable simulatio ad parameters estimatio DistTest=fuctio(Simulated, NM,BigOmega,WriteTo, MMEbias,MMEstdev, MLE2bias,MLE2stdev) data=read.table(simulated) data.mat=as.matrix(data) raw=matrix(0,row(data), col(data)) Be=NM/BigOmega for (i i :row(data)) for (j i :col(data)) raw[i,j]=qgamma(data.mat[i, j], NM, Be) akagami=matrix(0,row(data), col(data)) for (i i :row(data)) for (j i :col(data)) E-ISSN: Volume 3, 206

6 akagami[i,j]=sqrt(raw[i,j]) mesti=matrix(0,row(data),7) TmEsti=matrix(0,2,row(data)) for (i i :row(data)) mesti[i,]=mea(raw[i,])ˆ2/ var(raw[i,])-mmebias mesti[i,5]=/(2*(log(mea(raw[ i,]))-mea(log(raw[i,])))) mesti[i,6]=(3+sqrt(9+2*(log( mea(raw[i,]))-mea(log(raw[i, ])))) )/(2*(log(mea(raw[i,]))-mea( log(raw[i,]))))-mle2bias mesti[i,7]=-col(data)*digamma( NM)/gamma(NM)-col(data)*log( /Be)+sum(log(raw[i,])) for (i i :row(data)) TmEsti[,i]=mEsti[i,] TmEsti[2,i]=mEsti[i,6] write.table(tmesti,writeto, col.ames=false, row.ames=false, sep=" ") out4=mea(mesti[,]) out7=sqrt(var(mesti[,])) ksres=ks.test(mesti[,]," porm",nm,mmestdev) out8=ksres$p.value out3=mea(mesti[,5]) out4=mea(mesti[,6]) out5=sqrt(var(mesti[,5])) out6=sqrt(var(mesti[,6])) ksres2=ks.test(mesti[,6], "porm",nm,mle2stdev) out8=ksres2$p.value out9=mea((mesti[,7])ˆ2) list(meamme=out4, sdmme=out7,normalp=out8,meamle=out3,meamle2= out4,sdmle=out5,sdmle2=out6,normalp2=out8,fisheri=out9 ) A.2 R program of the cofidece iterval costructio RoMCI=fuctio(trueRatio,umer, deom, WriteTo, WriteTo2 ###, Thm, Thm2 ) mal=read.table(umer,header= FALSE, sep=" ") be=read.table(deom,header= FALSE, sep=" ") malsize=col(mal) besize=col(be) pairs=row(mal) malmat=as.matrix(mal) bemat=as.matrix(be) malker=matrix(0,pairs,+ malsize) beker=matrix(0,pairs,+ besize) Thm32=matrix(0,pairs,4) Thm42=matrix(0,pairs,4) ztheta=rep(0,) for (i i :pairs) malker[i,+malsize]=media( malmat[i,]) beker[i,+besize]=media( bemat[i,]) sortmal=sort(malmat[i,]) sortbe=sort(bemat[i,]) malup=sortmal[ceilig(malsize/ 2)+:malsize] mallow=sortmal[:floor(malsize/ 2)] beup=sortbe[ceilig(besize/ 2)+:besize] below=sortbe[:floor(besize/ 2)] a=c(sqrt(apply(mal[i,],,var)), (media(malup[:floor(malsize/ 2)])-media(mallow))/.34) A=mi(a) a2=c(sqrt(apply(be[i,],,var)), (media(beup[:floor(besize/ 2)])-media(below))/.34) A2=mi(a2) h=0.9*a*malsizeˆ(-0.2) h2=0.9*a2*besizeˆ(-0.2) for (j i :malsize) malker[i,j]=exp(-((malker[i, +malsize]-malmat[i,j])/h)ˆ2/ 2)/(sqrt(2*pi)*malsize*h) for (k i :besize) beker[i,k]=exp(-((beker[i, E-ISSN: Volume 3, 206

7 +besize]-bemat[i,k])/h2)ˆ2/ 2)/(sqrt(2*pi)*besize*h2) Thm32[i,2]=malker[i,+malsize]/ beker[i,+besize] Thm32[i,]=Thm32[i,2]-.96* sqrt(0.25/(malsize*beker[i, +besize]ˆ2 *sum(malker[i,:malsize])ˆ2)+ 0.25*malker[i,+malsize]ˆ2/ (besize*beker[i,+besize]ˆ4 *sum(beker[i,:besize])ˆ2)) Thm32[i,3]=Thm32[i,2]+(Thm32[ i,2]-thm32[i,]) Thm32[i,4]=Thm32[i,]<trueRatio & Thm32[i,3]>trueRatio Thm42[i,2]=Thm32[i,2] for (l i :) theta=0.*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i, :malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[i, :besize])ˆ2)) ltheta=ztheta[ztheta>.96] utheta=ztheta[ztheta>-.96] lback=legth(ltheta)- uback=legth(utheta)- for (l i :) theta=0.*lback+0.0*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[i, :besize])ˆ2)) ltheta=ztheta[ztheta>.96] lback2=legth(ltheta)- for (l i :) theta=0.*lback+0.0*lback *(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) ltheta=ztheta[ztheta>.96] judge= ztheta[legth(ltheta)]-.96<.96-ztheta[legth(ltheta )+] lback3=legth(ltheta)-judge Thm42[i,]=0.*lback+0.0* lback2+0.00*lback3 for (l i :) theta=0.*uback+0.0*(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) utheta=ztheta[ztheta>-.96] uback2=legth(utheta)- for (l i :) theta=0.*uback+0.0*uback *(l-) ztheta[l]=(malker[i,+malsize]- theta*beker[i,+besize])/ i,:malsize])ˆ2)+0.25 *thetaˆ2/(besize*sum(beker[ i,:besize])ˆ2)) utheta=ztheta[ztheta>-.96] judge= ztheta[legth(utheta)]+.96< -.96-ztheta[legth(utheta )+] uback3=legth(utheta)-judge Thm42[i,3]=0.*uback+0.0* uback2+0.00*uback3 Thm42[i,4]=Thm42[i,]<trueRatio & Thm42[i,3]>trueRatio write.table(thm32, WriteTo, col.ames=false, row.ames=false, sep=" ") write.table(thm42, WriteTo2, col.ames=false, row.ames=false, sep=" ") E-ISSN: Volume 3, 206

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan

G. R. Pasha Department of Statistics Bahauddin Zakariya University Multan, Pakistan Deviatio of the Variaces of Classical Estimators ad Negative Iteger Momet Estimator from Miimum Variace Boud with Referece to Maxwell Distributio G. R. Pasha Departmet of Statistics Bahauddi Zakariya Uiversity

More information

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values

Confidence interval for the two-parameter exponentiated Gumbel distribution based on record values Iteratioal Joural of Applied Operatioal Research Vol. 4 No. 1 pp. 61-68 Witer 2014 Joural homepage: www.ijorlu.ir Cofidece iterval for the two-parameter expoetiated Gumbel distributio based o record values

More information

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n.

Resampling Methods. X (1/2), i.e., Pr (X i m) = 1/2. We order the data: X (1) X (2) X (n). Define the sample median: ( n. Jauary 1, 2019 Resamplig Methods Motivatio We have so may estimators with the property θ θ d N 0, σ 2 We ca also write θ a N θ, σ 2 /, where a meas approximately distributed as Oce we have a cosistet estimator

More information

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes.

Direction: This test is worth 250 points. You are required to complete this test within 50 minutes. Term Test October 3, 003 Name Math 56 Studet Number Directio: This test is worth 50 poits. You are required to complete this test withi 50 miutes. I order to receive full credit, aswer each problem completely

More information

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4

MATH 320: Probability and Statistics 9. Estimation and Testing of Parameters. Readings: Pruim, Chapter 4 MATH 30: Probability ad Statistics 9. Estimatio ad Testig of Parameters Estimatio ad Testig of Parameters We have bee dealig situatios i which we have full kowledge of the distributio of a radom variable.

More information

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State

R. van Zyl 1, A.J. van der Merwe 2. Quintiles International, University of the Free State Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio if the Locatio Parameter Ca Take o Ay Value Betwee Mius Iity ad Plus Iity R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com

More information

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE

MOMENT-METHOD ESTIMATION BASED ON CENSORED SAMPLE Vol. 8 o. Joural of Systems Sciece ad Complexity Apr., 5 MOMET-METHOD ESTIMATIO BASED O CESORED SAMPLE I Zhogxi Departmet of Mathematics, East Chia Uiversity of Sciece ad Techology, Shaghai 37, Chia. Email:

More information

1.010 Uncertainty in Engineering Fall 2008

1.010 Uncertainty in Engineering Fall 2008 MIT OpeCourseWare http://ocw.mit.edu.00 Ucertaity i Egieerig Fall 2008 For iformatio about citig these materials or our Terms of Use, visit: http://ocw.mit.edu.terms. .00 - Brief Notes # 9 Poit ad Iterval

More information

Lecture 19: Convergence

Lecture 19: Convergence Lecture 19: Covergece Asymptotic approach I statistical aalysis or iferece, a key to the success of fidig a good procedure is beig able to fid some momets ad/or distributios of various statistics. I may

More information

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution

Introducing a Novel Bivariate Generalized Skew-Symmetric Normal Distribution Joural of mathematics ad computer Sciece 7 (03) 66-7 Article history: Received April 03 Accepted May 03 Available olie Jue 03 Itroducig a Novel Bivariate Geeralized Skew-Symmetric Normal Distributio Behrouz

More information

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function

Bayesian and E- Bayesian Method of Estimation of Parameter of Rayleigh Distribution- A Bayesian Approach under Linex Loss Function Iteratioal Joural of Statistics ad Systems ISSN 973-2675 Volume 12, Number 4 (217), pp. 791-796 Research Idia Publicatios http://www.ripublicatio.com Bayesia ad E- Bayesia Method of Estimatio of Parameter

More information

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett

Lecture Note 8 Point Estimators and Point Estimation Methods. MIT Spring 2006 Herman Bennett Lecture Note 8 Poit Estimators ad Poit Estimatio Methods MIT 14.30 Sprig 2006 Herma Beett Give a parameter with ukow value, the goal of poit estimatio is to use a sample to compute a umber that represets

More information

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1

EECS564 Estimation, Filtering, and Detection Hwk 2 Solns. Winter p θ (z) = (2θz + 1 θ), 0 z 1 EECS564 Estimatio, Filterig, ad Detectio Hwk 2 Sols. Witer 25 4. Let Z be a sigle observatio havig desity fuctio where. p (z) = (2z + ), z (a) Assumig that is a oradom parameter, fid ad plot the maximum

More information

Expectation and Variance of a random variable

Expectation and Variance of a random variable Chapter 11 Expectatio ad Variace of a radom variable The aim of this lecture is to defie ad itroduce mathematical Expectatio ad variace of a fuctio of discrete & cotiuous radom variables ad the distributio

More information

A statistical method to determine sample size to estimate characteristic value of soil parameters

A statistical method to determine sample size to estimate characteristic value of soil parameters A statistical method to determie sample size to estimate characteristic value of soil parameters Y. Hojo, B. Setiawa 2 ad M. Suzuki 3 Abstract Sample size is a importat factor to be cosidered i determiig

More information

MATH/STAT 352: Lecture 15

MATH/STAT 352: Lecture 15 MATH/STAT 352: Lecture 15 Sectios 5.2 ad 5.3. Large sample CI for a proportio ad small sample CI for a mea. 1 5.2: Cofidece Iterval for a Proportio Estimatig proportio of successes i a biomial experimet

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2016 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

STATISTICAL INFERENCE

STATISTICAL INFERENCE STATISTICAL INFERENCE POPULATION AND SAMPLE Populatio = all elemets of iterest Characterized by a distributio F with some parameter θ Sample = the data X 1,..., X, selected subset of the populatio = sample

More information

32 estimating the cumulative distribution function

32 estimating the cumulative distribution function 32 estimatig the cumulative distributio fuctio 4.6 types of cofidece itervals/bads Let F be a class of distributio fuctios F ad let θ be some quatity of iterest, such as the mea of F or the whole fuctio

More information

Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation

Approximate Confidence Interval for the Reciprocal of a Normal Mean with a Known Coefficient of Variation Metodološki zvezki, Vol. 13, No., 016, 117-130 Approximate Cofidece Iterval for the Reciprocal of a Normal Mea with a Kow Coefficiet of Variatio Wararit Paichkitkosolkul 1 Abstract A approximate cofidece

More information

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors

ECONOMETRIC THEORY. MODULE XIII Lecture - 34 Asymptotic Theory and Stochastic Regressors ECONOMETRIC THEORY MODULE XIII Lecture - 34 Asymptotic Theory ad Stochastic Regressors Dr. Shalabh Departmet of Mathematics ad Statistics Idia Istitute of Techology Kapur Asymptotic theory The asymptotic

More information

Lecture 7: Properties of Random Samples

Lecture 7: Properties of Random Samples Lecture 7: Properties of Radom Samples 1 Cotiued From Last Class Theorem 1.1. Let X 1, X,...X be a radom sample from a populatio with mea µ ad variace σ

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample.

Statistical Inference (Chapter 10) Statistical inference = learn about a population based on the information provided by a sample. Statistical Iferece (Chapter 10) Statistical iferece = lear about a populatio based o the iformatio provided by a sample. Populatio: The set of all values of a radom variable X of iterest. Characterized

More information

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator

Economics 241B Relation to Method of Moments and Maximum Likelihood OLSE as a Maximum Likelihood Estimator Ecoomics 24B Relatio to Method of Momets ad Maximum Likelihood OLSE as a Maximum Likelihood Estimator Uder Assumptio 5 we have speci ed the distributio of the error, so we ca estimate the model parameters

More information

Lecture 33: Bootstrap

Lecture 33: Bootstrap Lecture 33: ootstrap Motivatio To evaluate ad compare differet estimators, we eed cosistet estimators of variaces or asymptotic variaces of estimators. This is also importat for hypothesis testig ad cofidece

More information

Modied moment estimation for the two-parameter Birnbaum Saunders distribution

Modied moment estimation for the two-parameter Birnbaum Saunders distribution Computatioal Statistics & Data Aalysis 43 (23) 283 298 www.elsevier.com/locate/csda Modied momet estimatio for the two-parameter Birbaum Sauders distributio H.K.T. Ng a, D. Kudu b, N. Balakrisha a; a Departmet

More information

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation

Confidence Interval for Standard Deviation of Normal Distribution with Known Coefficients of Variation Cofidece Iterval for tadard Deviatio of Normal Distributio with Kow Coefficiets of Variatio uparat Niwitpog Departmet of Applied tatistics, Faculty of Applied ciece Kig Mogkut s Uiversity of Techology

More information

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain

Since X n /n P p, we know that X n (n. Xn (n X n ) Using the asymptotic result above to obtain an approximation for fixed n, we obtain Assigmet 9 Exercise 5.5 Let X biomial, p, where p 0, 1 is ukow. Obtai cofidece itervals for p i two differet ways: a Sice X / p d N0, p1 p], the variace of the limitig distributio depeds oly o p. Use the

More information

Bayesian Control Charts for the Two-parameter Exponential Distribution

Bayesian Control Charts for the Two-parameter Exponential Distribution Bayesia Cotrol Charts for the Two-parameter Expoetial Distributio R. va Zyl, A.J. va der Merwe 2 Quitiles Iteratioal, ruaavz@gmail.com 2 Uiversity of the Free State Abstract By usig data that are the mileages

More information

Stat 421-SP2012 Interval Estimation Section

Stat 421-SP2012 Interval Estimation Section Stat 41-SP01 Iterval Estimatio Sectio 11.1-11. We ow uderstad (Chapter 10) how to fid poit estimators of a ukow parameter. o However, a poit estimate does ot provide ay iformatio about the ucertaity (possible

More information

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY

EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY EXAMINATIONS OF THE ROYAL STATISTICAL SOCIETY GRADUATE DIPLOMA, 016 MODULE : Statistical Iferece Time allowed: Three hours Cadidates should aswer FIVE questios. All questios carry equal marks. The umber

More information

Module 1 Fundamentals in statistics

Module 1 Fundamentals in statistics Normal Distributio Repeated observatios that differ because of experimetal error ofte vary about some cetral value i a roughly symmetrical distributio i which small deviatios occur much more frequetly

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution

Maximum likelihood estimation from record-breaking data for the generalized Pareto distribution METRON - Iteratioal Joural of Statistics 004, vol. LXII,. 3, pp. 377-389 NAGI S. ABD-EL-HAKIM KHALAF S. SULTAN Maximum likelihood estimatio from record-breakig data for the geeralized Pareto distributio

More information

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10

DS 100: Principles and Techniques of Data Science Date: April 13, Discussion #10 DS 00: Priciples ad Techiques of Data Sciece Date: April 3, 208 Name: Hypothesis Testig Discussio #0. Defie these terms below as they relate to hypothesis testig. a) Data Geeratio Model: Solutio: A set

More information

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution

Double Stage Shrinkage Estimator of Two Parameters. Generalized Exponential Distribution Iteratioal Mathematical Forum, Vol., 3, o. 3, 3-53 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/.9/imf.3.335 Double Stage Shrikage Estimator of Two Parameters Geeralized Expoetial Distributio Alaa M.

More information

Random Variables, Sampling and Estimation

Random Variables, Sampling and Estimation Chapter 1 Radom Variables, Samplig ad Estimatio 1.1 Itroductio This chapter will cover the most importat basic statistical theory you eed i order to uderstad the ecoometric material that will be comig

More information

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ),

Interval Estimation (Confidence Interval = C.I.): An interval estimate of some population parameter is an interval of the form (, ), Cofidece Iterval Estimatio Problems Suppose we have a populatio with some ukow parameter(s). Example: Normal(,) ad are parameters. We eed to draw coclusios (make ifereces) about the ukow parameters. We

More information

Topic 9: Sampling Distributions of Estimators

Topic 9: Sampling Distributions of Estimators Topic 9: Samplig Distributios of Estimators Course 003, 2018 Page 0 Samplig distributios of estimators Sice our estimators are statistics (particular fuctios of radom variables), their distributio ca be

More information

There is no straightforward approach for choosing the warmup period l.

There is no straightforward approach for choosing the warmup period l. B. Maddah INDE 504 Discrete-Evet Simulatio Output Aalysis () Statistical Aalysis for Steady-State Parameters I a otermiatig simulatio, the iterest is i estimatig the log ru steady state measures of performace.

More information

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c

A New Simulation Model of Rician Fading Channel Xinxin Jin 1,2,a, Yu Zhang 1,3,b, Changyong Pan 4,c 6 Iteratioal Coferece o Iformatio Egieerig ad Commuicatios Techology (IECT 6 ISB: 978--6595-375-5 A ew Simulatio Model of Ricia Fadig Chael Xixi Ji,,a, Yu Zhag,3,b, Chagyog Pa 4,c Tsighua atioal Laboratory

More information

Bayesian Methods: Introduction to Multi-parameter Models

Bayesian Methods: Introduction to Multi-parameter Models Bayesia Methods: Itroductio to Multi-parameter Models Parameter: θ = ( θ, θ) Give Likelihood p(y θ) ad prior p(θ ), the posterior p proportioal to p(y θ) x p(θ ) Margial posterior ( θ, θ y) is Iterested

More information

THE DATA-BASED CHOICE OF BANDWIDTH FOR KERNEL QUANTILE ESTIMATOR OF VAR

THE DATA-BASED CHOICE OF BANDWIDTH FOR KERNEL QUANTILE ESTIMATOR OF VAR Iteratioal Joural of Iovative Maagemet, Iformatio & Productio ISME Iteratioal c2013 ISSN 2185-5439 Volume 4, Number 1, Jue 2013 PP. 17-24 THE DATA-BASED CHOICE OF BANDWIDTH FOR KERNEL QUANTILE ESTIMATOR

More information

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov

BIOSTATISTICS. Lecture 5 Interval Estimations for Mean and Proportion. dr. Petr Nazarov Microarray Ceter BIOSTATISTICS Lecture 5 Iterval Estimatios for Mea ad Proportio dr. Petr Nazarov 15-03-013 petr.azarov@crp-sate.lu Lecture 5. Iterval estimatio for mea ad proportio OUTLINE Iterval estimatios

More information

Estimation of Gumbel Parameters under Ranked Set Sampling

Estimation of Gumbel Parameters under Ranked Set Sampling Joural of Moder Applied Statistical Methods Volume 13 Issue 2 Article 11-2014 Estimatio of Gumbel Parameters uder Raked Set Samplig Omar M. Yousef Al Balqa' Applied Uiversity, Zarqa, Jorda, abuyaza_o@yahoo.com

More information

Introductory statistics

Introductory statistics CM9S: Machie Learig for Bioiformatics Lecture - 03/3/06 Itroductory statistics Lecturer: Sriram Sakararama Scribe: Sriram Sakararama We will provide a overview of statistical iferece focussig o the key

More information

Basis for simulation techniques

Basis for simulation techniques Basis for simulatio techiques M. Veeraraghava, March 7, 004 Estimatio is based o a collectio of experimetal outcomes, x, x,, x, where each experimetal outcome is a value of a radom variable. x i. Defiitios

More information

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution

The Sampling Distribution of the Maximum. Likelihood Estimators for the Parameters of. Beta-Binomial Distribution Iteratioal Mathematical Forum, Vol. 8, 2013, o. 26, 1263-1277 HIKARI Ltd, www.m-hikari.com http://d.doi.org/10.12988/imf.2013.3475 The Samplig Distributio of the Maimum Likelihood Estimators for the Parameters

More information

Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for

Sample questions. 8. Let X denote a continuous random variable with probability density function f(x) = 4x 3 /15 for Sample questios Suppose that humas ca have oe of three bloodtypes: A, B, O Assume that 40% of the populatio has Type A, 50% has type B, ad 0% has Type O If a perso has type A, the probability that they

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

An Introduction to Randomized Algorithms

An Introduction to Randomized Algorithms A Itroductio to Radomized Algorithms The focus of this lecture is to study a radomized algorithm for quick sort, aalyze it usig probabilistic recurrece relatios, ad also provide more geeral tools for aalysis

More information

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable.

It should be unbiased, or approximately unbiased. Variance of the variance estimator should be small. That is, the variance estimator is stable. Chapter 10 Variace Estimatio 10.1 Itroductio Variace estimatio is a importat practical problem i survey samplig. Variace estimates are used i two purposes. Oe is the aalytic purpose such as costructig

More information

1 Inferential Methods for Correlation and Regression Analysis

1 Inferential Methods for Correlation and Regression Analysis 1 Iferetial Methods for Correlatio ad Regressio Aalysis I the chapter o Correlatio ad Regressio Aalysis tools for describig bivariate cotiuous data were itroduced. The sample Pearso Correlatio Coefficiet

More information

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches

Estimating Confidence Interval of Mean Using. Classical, Bayesian, and Bootstrap Approaches Iteratioal Joural of Mathematical Aalysis Vol. 8, 2014, o. 48, 2375-2383 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.12988/ijma.2014.49287 Estimatig Cofidece Iterval of Mea Usig Classical, Bayesia,

More information

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function

Bayesian inference for Parameter and Reliability function of Inverse Rayleigh Distribution Under Modified Squared Error Loss Function Australia Joural of Basic ad Applied Scieces, (6) November 26, Pages: 24-248 AUSTRALIAN JOURNAL OF BASIC AND APPLIED SCIENCES ISSN:99-878 EISSN: 239-844 Joural home page: www.ajbasweb.com Bayesia iferece

More information

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests

Bootstrap Intervals of the Parameters of Lognormal Distribution Using Power Rule Model and Accelerated Life Tests Joural of Moder Applied Statistical Methods Volume 5 Issue Article --5 Bootstrap Itervals of the Parameters of Logormal Distributio Usig Power Rule Model ad Accelerated Life Tests Mohammed Al-Ha Ebrahem

More information

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading

Comparing Two Populations. Topic 15 - Two Sample Inference I. Comparing Two Means. Comparing Two Pop Means. Background Reading Topic 15 - Two Sample Iferece I STAT 511 Professor Bruce Craig Comparig Two Populatios Research ofte ivolves the compariso of two or more samples from differet populatios Graphical summaries provide visual

More information

Element sampling: Part 2

Element sampling: Part 2 Chapter 4 Elemet samplig: Part 2 4.1 Itroductio We ow cosider uequal probability samplig desigs which is very popular i practice. I the uequal probability samplig, we ca improve the efficiecy of the resultig

More information

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting

Lecture 6 Chi Square Distribution (χ 2 ) and Least Squares Fitting Lecture 6 Chi Square Distributio (χ ) ad Least Squares Fittig Chi Square Distributio (χ ) Suppose: We have a set of measuremets {x 1, x, x }. We kow the true value of each x i (x t1, x t, x t ). We would

More information

Chapter 6 Sampling Distributions

Chapter 6 Sampling Distributions Chapter 6 Samplig Distributios 1 I most experimets, we have more tha oe measuremet for ay give variable, each measuremet beig associated with oe radomly selected a member of a populatio. Hece we eed to

More information

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date:

Mathacle. PSet Stats, Concepts In Statistics Level Number Name: Date: PSet ----- Stats, Cocepts I Statistics 7.3. Cofidece Iterval for a Mea i Oe Sample [MATH] The Cetral Limit Theorem. Let...,,, be idepedet, idetically distributed (i.i.d.) radom variables havig mea µ ad

More information

1 Introduction to reducing variance in Monte Carlo simulations

1 Introduction to reducing variance in Monte Carlo simulations Copyright c 010 by Karl Sigma 1 Itroductio to reducig variace i Mote Carlo simulatios 11 Review of cofidece itervals for estimatig a mea I statistics, we estimate a ukow mea µ = E(X) of a distributio by

More information

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9

BIOS 4110: Introduction to Biostatistics. Breheny. Lab #9 BIOS 4110: Itroductio to Biostatistics Brehey Lab #9 The Cetral Limit Theorem is very importat i the realm of statistics, ad today's lab will explore the applicatio of it i both categorical ad cotiuous

More information

Summary. Recap ... Last Lecture. Summary. Theorem

Summary. Recap ... Last Lecture. Summary. Theorem Last Lecture Biostatistics 602 - Statistical Iferece Lecture 23 Hyu Mi Kag April 11th, 2013 What is p-value? What is the advatage of p-value compared to hypothesis testig procedure with size α? How ca

More information

This is a author produced versio of a paper published i Commuicatios i Statistics - Theory ad Methods. This paper has bee peer-reviewed ad is proof-corrected, but does ot iclude the joural pagiatio. Citatio

More information

Access to the published version may require journal subscription. Published with permission from: Elsevier.

Access to the published version may require journal subscription. Published with permission from: Elsevier. This is a author produced versio of a paper published i Statistics ad Probability Letters. This paper has bee peer-reviewed, it does ot iclude the joural pagiatio. Citatio for the published paper: Forkma,

More information

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15

17. Joint distributions of extreme order statistics Lehmann 5.1; Ferguson 15 17. Joit distributios of extreme order statistics Lehma 5.1; Ferguso 15 I Example 10., we derived the asymptotic distributio of the maximum from a radom sample from a uiform distributio. We did this usig

More information

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY

ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY ANOTHER WEIGHTED WEIBULL DISTRIBUTION FROM AZZALINI S FAMILY Sulema Nasiru, MSc. Departmet of Statistics, Faculty of Mathematical Scieces, Uiversity for Developmet Studies, Navrogo, Upper East Regio, Ghaa,

More information

Statistical Theory MT 2008 Problems 1: Solution sketches

Statistical Theory MT 2008 Problems 1: Solution sketches Statistical Theory MT 008 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. a) Let 0 < θ < ad put fx, θ) = θ)θ x ; x = 0,,,... b) c) where α

More information

Department of Mathematics

Department of Mathematics Departmet of Mathematics Ma 3/103 KC Border Itroductio to Probability ad Statistics Witer 2017 Lecture 19: Estimatio II Relevat textbook passages: Larse Marx [1]: Sectios 5.2 5.7 19.1 The method of momets

More information

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT

Introduction to Extreme Value Theory Laurens de Haan, ISM Japan, Erasmus University Rotterdam, NL University of Lisbon, PT Itroductio to Extreme Value Theory Laures de Haa, ISM Japa, 202 Itroductio to Extreme Value Theory Laures de Haa Erasmus Uiversity Rotterdam, NL Uiversity of Lisbo, PT Itroductio to Extreme Value Theory

More information

Statistical Theory MT 2009 Problems 1: Solution sketches

Statistical Theory MT 2009 Problems 1: Solution sketches Statistical Theory MT 009 Problems : Solutio sketches. Which of the followig desities are withi a expoetial family? Explai your reasoig. (a) Let 0 < θ < ad put f(x, θ) = ( θ)θ x ; x = 0,,,... (b) (c) where

More information

On an Application of Bayesian Estimation

On an Application of Bayesian Estimation O a Applicatio of ayesia Estimatio KIYOHARU TANAKA School of Sciece ad Egieerig, Kiki Uiversity, Kowakae, Higashi-Osaka, JAPAN Email: ktaaka@ifokidaiacjp EVGENIY GRECHNIKOV Departmet of Mathematics, auma

More information

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions

Overview. p 2. Chapter 9. Pooled Estimate of. q = 1 p. Notation for Two Proportions. Inferences about Two Proportions. Assumptions Chapter 9 Slide Ifereces from Two Samples 9- Overview 9- Ifereces about Two Proportios 9- Ifereces about Two Meas: Idepedet Samples 9-4 Ifereces about Matched Pairs 9-5 Comparig Variatio i Two Samples

More information

Stat 319 Theory of Statistics (2) Exercises

Stat 319 Theory of Statistics (2) Exercises Kig Saud Uiversity College of Sciece Statistics ad Operatios Research Departmet Stat 39 Theory of Statistics () Exercises Refereces:. Itroductio to Mathematical Statistics, Sixth Editio, by R. Hogg, J.

More information

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f.

Let us give one more example of MLE. Example 3. The uniform distribution U[0, θ] on the interval [0, θ] has p.d.f. Lecture 5 Let us give oe more example of MLE. Example 3. The uiform distributio U[0, ] o the iterval [0, ] has p.d.f. { 1 f(x =, 0 x, 0, otherwise The likelihood fuctio ϕ( = f(x i = 1 I(X 1,..., X [0,

More information

Confidence Intervals

Confidence Intervals Cofidece Itervals Berli Che Deartmet of Comuter Sciece & Iformatio Egieerig Natioal Taiwa Normal Uiversity Referece: 1. W. Navidi. Statistics for Egieerig ad Scietists. Chater 5 & Teachig Material Itroductio

More information

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation

Chapter 11 Output Analysis for a Single Model. Banks, Carson, Nelson & Nicol Discrete-Event System Simulation Chapter Output Aalysis for a Sigle Model Baks, Carso, Nelso & Nicol Discrete-Evet System Simulatio Error Estimatio If {,, } are ot statistically idepedet, the S / is a biased estimator of the true variace.

More information

Lecture Stat Maximum Likelihood Estimation

Lecture Stat Maximum Likelihood Estimation Lecture Stat 461-561 Maximum Likelihood Estimatio A.D. Jauary 2008 A.D. () Jauary 2008 1 / 63 Maximum Likelihood Estimatio Ivariace Cosistecy E ciecy Nuisace Parameters A.D. () Jauary 2008 2 / 63 Parametric

More information

Estimation for Complete Data

Estimation for Complete Data Estimatio for Complete Data complete data: there is o loss of iformatio durig study. complete idividual complete data= grouped data A complete idividual data is the oe i which the complete iformatio of

More information

POWER AKASH DISTRIBUTION AND ITS APPLICATION

POWER AKASH DISTRIBUTION AND ITS APPLICATION POWER AKASH DISTRIBUTION AND ITS APPLICATION Rama SHANKER PhD, Uiversity Professor, Departmet of Statistics, College of Sciece, Eritrea Istitute of Techology, Asmara, Eritrea E-mail: shakerrama009@gmail.com

More information

GUIDELINES ON REPRESENTATIVE SAMPLING

GUIDELINES ON REPRESENTATIVE SAMPLING DRUGS WORKING GROUP VALIDATION OF THE GUIDELINES ON REPRESENTATIVE SAMPLING DOCUMENT TYPE : REF. CODE: ISSUE NO: ISSUE DATE: VALIDATION REPORT DWG-SGL-001 002 08 DECEMBER 2012 Ref code: DWG-SGL-001 Issue

More information

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population

A quick activity - Central Limit Theorem and Proportions. Lecture 21: Testing Proportions. Results from the GSS. Statistics and the General Population A quick activity - Cetral Limit Theorem ad Proportios Lecture 21: Testig Proportios Statistics 10 Coli Rudel Flip a coi 30 times this is goig to get loud! Record the umber of heads you obtaied ad calculate

More information

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons

Statistical Analysis on Uncertainty for Autocorrelated Measurements and its Applications to Key Comparisons Statistical Aalysis o Ucertaity for Autocorrelated Measuremets ad its Applicatios to Key Comparisos Nie Fa Zhag Natioal Istitute of Stadards ad Techology Gaithersburg, MD 0899, USA Outlies. Itroductio.

More information

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality

A goodness-of-fit test based on the empirical characteristic function and a comparison of tests for normality A goodess-of-fit test based o the empirical characteristic fuctio ad a compariso of tests for ormality J. Marti va Zyl Departmet of Mathematical Statistics ad Actuarial Sciece, Uiversity of the Free State,

More information

Section 14. Simple linear regression.

Section 14. Simple linear regression. Sectio 14 Simple liear regressio. Let us look at the cigarette dataset from [1] (available to dowload from joural s website) ad []. The cigarette dataset cotais measuremets of tar, icotie, weight ad carbo

More information

Power Comparison of Some Goodness-of-fit Tests

Power Comparison of Some Goodness-of-fit Tests Florida Iteratioal Uiversity FIU Digital Commos FIU Electroic Theses ad Dissertatios Uiversity Graduate School 7-6-2016 Power Compariso of Some Goodess-of-fit Tests Tiayi Liu tliu019@fiu.edu DOI: 10.25148/etd.FIDC000750

More information

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula

Journal of Multivariate Analysis. Superefficient estimation of the marginals by exploiting knowledge on the copula Joural of Multivariate Aalysis 102 (2011) 1315 1319 Cotets lists available at ScieceDirect Joural of Multivariate Aalysis joural homepage: www.elsevier.com/locate/jmva Superefficiet estimatio of the margials

More information

Chapter 6 Principles of Data Reduction

Chapter 6 Principles of Data Reduction Chapter 6 for BST 695: Special Topics i Statistical Theory. Kui Zhag, 0 Chapter 6 Priciples of Data Reductio Sectio 6. Itroductio Goal: To summarize or reduce the data X, X,, X to get iformatio about a

More information

Lecture 3. Properties of Summary Statistics: Sampling Distribution

Lecture 3. Properties of Summary Statistics: Sampling Distribution Lecture 3 Properties of Summary Statistics: Samplig Distributio Mai Theme How ca we use math to justify that our umerical summaries from the sample are good summaries of the populatio? Lecture Summary

More information

TAMS24: Notations and Formulas

TAMS24: Notations and Formulas TAMS4: Notatios ad Formulas Basic otatios ad defiitios X: radom variable stokastiska variabel Mea Vätevärde: µ = X = by Xiagfeg Yag kpx k, if X is discrete, xf Xxdx, if X is cotiuous Variace Varias: =

More information

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos

A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES. Dennis D. Boos .- A NEW METHOD FOR CONSTRUCTING APPROXIMATE CONFIDENCE INTERVALS FOR M-ESTU1ATES by Deis D. Boos Departmet of Statistics North Carolia State Uiversity Istitute of Statistics Mimeo Series #1198 September,

More information

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates

Investigating the Significance of a Correlation Coefficient using Jackknife Estimates Iteratioal Joural of Scieces: Basic ad Applied Research (IJSBAR) ISSN 2307-4531 (Prit & Olie) http://gssrr.org/idex.php?joural=jouralofbasicadapplied ---------------------------------------------------------------------------------------------------------------------------

More information

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS

AAEC/ECON 5126 FINAL EXAM: SOLUTIONS AAEC/ECON 5126 FINAL EXAM: SOLUTIONS SPRING 2015 / INSTRUCTOR: KLAUS MOELTNER This exam is ope-book, ope-otes, but please work strictly o your ow. Please make sure your ame is o every sheet you re hadig

More information

An Introduction to Asymptotic Theory

An Introduction to Asymptotic Theory A Itroductio to Asymptotic Theory Pig Yu School of Ecoomics ad Fiace The Uiversity of Hog Kog Pig Yu (HKU) Asymptotic Theory 1 / 20 Five Weapos i Asymptotic Theory Five Weapos i Asymptotic Theory Pig Yu

More information

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract

Goodness-Of-Fit For The Generalized Exponential Distribution. Abstract Goodess-Of-Fit For The Geeralized Expoetial Distributio By Amal S. Hassa stitute of Statistical Studies & Research Cairo Uiversity Abstract Recetly a ew distributio called geeralized expoetial or expoetiated

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 21 11/27/2013 Fuctioal Law of Large Numbers. Costructio of the Wieer Measure Cotet. 1. Additioal techical results o weak covergece

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem

MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/15.070J Fall 2013 Lecture 3 9/11/2013. Large deviations Theory. Cramér s Theorem MASSACHUSETTS INSTITUTE OF TECHNOLOGY 6.265/5.070J Fall 203 Lecture 3 9//203 Large deviatios Theory. Cramér s Theorem Cotet.. Cramér s Theorem. 2. Rate fuctio ad properties. 3. Chage of measure techique.

More information

The standard deviation of the mean

The standard deviation of the mean Physics 6C Fall 20 The stadard deviatio of the mea These otes provide some clarificatio o the distictio betwee the stadard deviatio ad the stadard deviatio of the mea.. The sample mea ad variace Cosider

More information