QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS

Size: px
Start display at page:

Download "QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS"

Transcription

1 QUANTUM SPIN DYNAMICS OF RARE-EARTHS IONS B. Barbara, W. Wernsdorfer, E. Bonet, L. Thomas (IBM), I. Chiorescu (FSU), R. Giraud (LPN) Laboratory Louis Néel, CNRS, Grenoble Collaborations with other groups B. Malkin (Kazan) A.M. Tkachuk (S t Petersburg) H. Suzuki (Tsukuba) D. Gatteschi (Florence) A. Müller (Bielefeld) D. Mailly (LPN, Marcoussis)

2 Nanometer scale S = Single Molecule Magnetic Protein Cluster Nanoparticle nm 2 nm 3 nm 2 nm

3 The molecules are regularly arranged in the crystal

4 Mn2acetate Mn(III) S=2 Mn(IV) S=3/2 Total Spin =

5 SINGLE MOLECULE «MAGNET» Energy barrier in zero field (symmetrical) H= - DS z2 -BS z 4 - E(S +2 + S -2 ) - C(S +4 + S -4 ) Simplified picture of an isolated spin: Landau-Zener model S, m-n > S, -m > Energy S,-S+2> Thermally activated tunneling S,S-2> ² - P S,-S+> S,-S> spin down Ground state tunneling S Z S,S-> S,S> spin up P energy S, -m > magnetic field S, m-n > If applied field // -M non-symmetrical barrier New resonances at gµ B H n = nd Molecular magnets (S. Miyashita) large spins give extremely small splittings Tunneling probability: P LZ = exp[-π( /ħ) 2 /γc] c = dh/dt

6 Tunneling of magnetization in Mn 2 -ac: «Technical» hysteresis loop + resonant tunneling Steps at H n =45.n mt,5 M/M S -, B L (T).5K.6K.9K 2.4K ICM 94 Barbara et al, JMMM (995); NATO-ASI, QTM 94 ed. Gunther and Barbara; Thomas et al Nature (996); Friedman et al, PRL (996);. Slow quantum spin dynamics of molecule magnets.

7 Crossover From Classical to Quantum Regime (Mn 2 -ac) n= 5, 4,5 4, 3,5 3, 2,5 2,,5,,5, B n n=9 n=8 n=7 n=6 n=5 n=4 n=3 n=2 n= n= Ground-state Tunneling (Spin-Bath),5,,5 2, 2,5 3, 3,5 4, T (K) Classical (Thermal Activation) Activated Tunneling (Phonon Bath) Measured ( ) and Calculated ( ) Resonance Fields Barbara et al, JMMM 4-44, 89 (995) and J. Phys. Jpn. 69, 383 (2) Paulsen, et al, JMMM 4-44, 379 (995); NATO, Appl. Sci. 3, Kluwer (995)

8 Resonance width and tunnel window Effects of magnetic couplings and hyperfine Interactions Data points and calculated lines Level Scheme Inhomogeneous dipolar broadening and the electronic spin-bath 4 B n (T) 5, - - 4,5 4, 3,5 3, ,4,6,8,,2,4 T(K) 2 E (K) (n-p) : -S+p S-n-p , 3,5 4, 4,5 5, B (T) Chiorescu et al, PRL, 83, 947 (999) Barbara et al, J. Phys. Jpn. 69, 383 Homogeneous (2) broadening of the tunnel Kent et al, EPL, 49, 52 (2) window by nuclear spins: Wernsdorfer et al, PRL (999) Prokofiev and Stamp (998) dm / db 3 2 n=8 T=.95 K 3,75 3,8 3,85 3,9 3,95 4, 4,5 4, 4,5 B (T) 8-8- t =5s -6-5 t =s 8-6 t =2s 6-6 t =4s µ H(T) Γ sqrt (s - ) t =s M in = -.2 M s Weak HF coupling: Broadens the tunnel window ( 5 ) Decoherence mechanisms

9 Landau-Zener model For For an an ensemble isolated of spin spins energy H= - DS z2 -BS z4 - E(S +2 + S -2 ) - C(S +4 + S -4 ) - gµ B S z H z /2,/2> /2,-/2> S, m-n > ² S, -m > -P - P _ hω H = 2 +(2µ B B ) 2 Tunneling probability: P LZ = exp[-π( /ħ) 2 /γc] c = dh/dt Single Molecule Magnets: large spins very small tunnel splittings: ~ (E/D) -2S P energy /2,-/2> S, -m > magnetic field, P /2,/2> S, m-n > applied field very small tunnel probabilities: P LZ ~ 2 /c ~ (E/D) 4S / - c P PS ~ ( 2 /ω )e - ξ /ξ Larger tunneling rate Strong decoherence

10 energy /2,/2> /2,-/2> /2,-/2> _ hω H = 2 +(2µ B B ) 2, applied field V 5, a molecule with S=/2 Dipolar interactions 3 times smaller but I=7/2 -P P /2,/2> M/M s Absorption of sub-centimetric waves.4 K GHz. T/s µ H (T) M ( B) M ( B) eq 2Γ( B) τ = + 2Γ( B) τ period: ms s. ms.5 ms ms 2 ms 3 ms Γ Max ~ 5 s - I. Chiorescu, W. Wernsdorfer, A. Müller, H. Boggë, and B. Barbara et al, PRL (2) W. Wernsdorfer, D.Mailly, A. Müller, and B. Barbara, EPL, 24

11 Gaussian absorption lines W. Wernsdorfer, D.Mailly, A. Müller, and B. Barbara, EPL, 24 Important broadening by nuclear spins and other molecule spins Loss of coherence Ω R ~ γb ~ 3 khz << /τ 2 ~ γσ ~.2 GHz Rabi oscillations, require much larger b. N = B Max /2πσ = γbτ 2 /2π ~2 Precession ~ 2 turns ( ) [ ] + + = t b B b B b P ) ( 2 sin ) ( ) ( ) ( γ ν γ γ ω γ γ ) ( ) ( 4 2 L B L f b γ ν γ π = = Γ

12 Tunneling of the angular momentum of Isolated Rare-earths ions (ensemble measurements of «paramagnetic» ions) An extention of the slow quantum dynamics studies of SMM to the cases of strong spin-orbit and hyperfine coupling.2 % Ho 3+ in substitution of Y 3+ In YLiF 4 Tetragonal symmetry (Ho in S4); (J = L+S = 8; g J =5/4) Dipolar interactions ~ 2 mk << 2 mk (levels separation)

13 CF levels and energy barrier of Ho 3+ in Y.998 Ho.2 LiF 4 Strong mixing H CF = B O2 + B4O4 + B6 O6 + B4O4 B6 O6 a) E (K) Barrier short-cuts b) E (K) <J z > µ H z (T) R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, and B. Barbara, PRL, 87, (2) Singlet excited state + Doublet ground-state + Large τ (Orbach process) B2 =.66 K, B4 = mk, B44 = mk, B6 =-8.4mK, B64 =- 87.3mK Sh. Gifeisman et al, Opt. Spect. (USSR) 44, 68 (978); N.I. Agladze et al, PRL, 66, 477 (99) Energy barrier ( ~ K)

14 Hysteresis loop of weakly interacting Ho 3+ ions in YLiF 4 Comparison with Mn2-ac Many steps! M/M S,5 -, B L (T).5K.6K.9K 2.4K,,5, -,5 -, M/M S 2 mk 5 mk 5 mk dh/dt=.55 mt/s µ H z (mt) /µ dm/dh z (/T) n= dh/dt > n=2 n= n=- n= L.Thomas, F. Lionti, R. Ballou, R. Sessoli, R. Giraud, W. Wernsdorfer, D. Mailly, A.Tkachuk, D. Gatteschi,and B. Barbara, Nature, 996. and B. Barbara, PRL, 2 Steps at B n = 45.n (mt) Nuclear spins Steps at B n = 23.n (mt) Tunneling of Mn 2 -ac Molecules Tunneling of Ho 3+ ion

15 Quasi-Ising CF Ground-state + Hyperfine Interactions H = H CF-Z + A{J z I z +(J + I - + J - I + )/2} The ground-state doublet 2(2 x 7/2 + ) = 6 states E (K) -78,5-79, -79,5-8, I = 7/2-7/ µ H z (mt) -7/2 g J µ B H n = n.a/2-5/2-5/2 7/2 7/2 5/2 3/2,,5, -,5 -, M/M S 2 mk 5 mk 5 mk µ H z (mt) /µ dm/dh z (/T) n= dh/dt > n=2 n= n=- n= A = 38.6 mk, Linewidth ~ mk ~ Dip. Int. Avoided Level Crossings between Ψ, I z > and Ψ +, I z > if I= (I z -I z )/2= odd Co-Tunneling of electronic and nuclear momenta: Electro-nuclear entanglement (2-bodies)

16 Application of a transverse magnetic field: (slow sweeping field: sample at the cryostat temperature) M/M S H T = mt H T =3 mt H T =5 mt H T =9 mt H T =7 mt H T =5 mt H T =3 mt H T = mt H T =9 mt H T =7 mt T = 3 mk v =.6 mt/s µ H z (mt) Acceleration of quantum dynamics the remanent magnetization vanishes Quantum fluctuations destroy the local moment Transition from «Classical» to Quantum Paramagnet (QPT) Nature of the mixing: entangled electro-nuclear states

17 ,,5, -,5 4 2 a) M/M S 5 mk.3 5 mk T/s.3 T/s E (K) -79, -79, n -, µ H z (mt) 6 b) n= 8 n = 6 /µ dm/dh z (/T) Additional steps at fields: H n = (23/2).n (mt) (single Ho 3+ tunneling being at avoided level crossings at H n = 23.n mt) n= µ H n (mt) , µ H z (mt) 6 linear fit µ H n = n x 23 mt n = 7 integer n half integer n n = 8 n = 9 dh/dt< Giraud et al, PRL 87, 5723 (2) Simultaneous tunneling of Ho 3+ pairs due to dipolar interactions (4-bodies entanglement) Two Ho 3+ Hamiltonian avoided level crossings at H n = (23/2).n H (m

18 Ac susceptibility (SQUID measurements) Single-ion and dipolar-bias Tunneling Co-tunneling Tunneling rates and ac measurement frequency R. Giraud, A. Tkachuk, B. Barbara, PRL, 23.

19 a) Energy (K) I = 7/ m I =+5/2 m I =+7/2 m I =+7/2 m I =+5/2 Single-ion level structure E n = E ± gµ B H n Tunneling: gµ B H n = (n -n)α/2 Co-tunneling: gµ B H n =(n -n+/2)α/2 (A= Ho hyperfine constant) b) Energy (K) -2-2 n=-9 H n=-8 n=3/2 z (Oe) n = n = n = n = /2 n = 3/ H z (Oe) Energy (K) H bias 8 H z (Oe) Two-ions Level structure Electronic Spin-bath: Co-tunneling Biais tunneling Diffusive tunneling Nuclear spin-bath (Li, F, Y): Linewidths R. Giraud, A. Tkachuk, and B. Barbara PRL (23).

20 Ho-dimer satellites in the EPR signal in 7 LiYF4 (% Ho): Bias-tunneling transitions only Boris Malkin group, Kazan ν=75 GHz ν=25 GHz,2,4 Magnetic field (T),4,6 Magnetic field (T) In the 7 Li.% sample the width of single ions ~3.5 mt and of dimers ~ 2mT G. Shakurov, B. Malkin, B. Barbara, Appl. Magn. Res. 25

21 Toy model of two coupled effective spins, with g z /g x >> H/J = Σ ij S i z S j z + ασ ij (S i + S j - + S j + S i - )/2 + βσ ij (S i + S j + + S j - S i - ) with α = (J x + J y )/4J β = (J x -J y )/4J Diffusive tunneling Co-tunneling This is why dipolar interactions induce co-tunneling

22 Direct check of hyperfine sublevels from EPR In Ho:YLiF 4 (B. Malkin group) J 24 frequency GHz 3,5 3, Hyperfine sublevels of Ho 3+ ion in LiYF Energy (GHz) 2,5 2,,5,,5, -, m= Γ 2 Γ 34 ν, GHz LiYF4:Ho.% B B c ,8 3,2 3,6 4, 4,4 4,8 5,2 5,6 6, 6,4 6,8 7,2 7,6 Magnetic field (koe) m=2,,5,,5,2,25,3 Magnetic field B (T) B, KGs G. Shakurov, B. Malkin, B. Barbara, Appl. Magn. Res. 25

23 Direct observation of levels repulsions Hyperfine sublevels ( m=2) in the EPR spectra 7 ν (GHz) ,,5,,5 Magnetic field B (T) G. Shakurov, B. Malkin, B.Barbara, Appl. Magn. Res. 25

24 9 F_NMRM. J. Graf, A. Lascialfari, F. Borsa, A. M. Tkachuk, and B. Barbara (cond-ma.2 (b) /T (msec - ) H z (m T) Phenomenological fit: /T = B 2 W/ [W 2 + (ω N - ) 2 ], = [.3x 8 (H-23n) 2 + n2 ] /2 with n ~2 mk, Levels broadening at crossing is extremely small (~ 2 mt): Decoherence strongly suppressed : possible to measure directly level repulsion

25 Case of a metallic matrix: Ho 3+ ions in Y.999 Ho. Ru 2 Si 2.5 n=2 n= n=.4 K M/M s.36 mt/s.68 mt/s.34 mt/s.7 mt/s µ H (T) These steps come from tunneling transitions of J+I of single Ho 3+ ions, in a sea of free electrons. B. Barbara, R. Giraud, W. Wernsdorfer, D. Mailly, A. Tkachuk, H. Suzuki, ICM-Rome, JMMM (24)

26 CONCLUSION Molecular magnets Coexistence of classical hysteresis loop and resonant quantum tunneling non-adiabatic Landau-Zener (single-ion picture) Observation of tunneling made possible by environmental spins (nuclear spins) Spin tunneling asssited by photons (photons bath) Strong decohrence by environmental spins (nuclear spins) Highly diluted Ho 3+ in LiYF 4 Tunneling of the total angular momentum J = L+S of Ho 3+ single ions two-bodies entanglement Quasi-isolated Ho 3+ ions: J and I tunnel simultaneously (in a metal also: Ho in YSi 2 Ru 2 ). Relevant quantum number of Ho 3+ is not J but I+J (Kramers, QPT ). Co-tunneling, bias-tunneling, spin-diffusion in Ho 3+ dimmers four-bodies entanglements, Co-tunneling of dimmers is observed. Crucial role of the anisotropic character of dipolar interactions. Microscopic basis for the study of QPT (concentrated systems) and coherent quantum dynamics.. Molecular magnets with Rare-Earths R-E Double-Deckers also show single-ion tunneling on electro-nuclear states (M. Ruben)

27 Some perspectives Higher order many-body tunneling and decoherence by the environment (quantum phase transitions) Spin-echo experiment and Rabi oscillations on electronic states of - Molecular magnets (intra-molecules hyperfine interactions ~ mk) - Entangled E-N pairs of Ho 3+ (dipolar interactions, hyperfine interactions ~ mk) Metallic systems : Decoherence by free carriers on spin tunneling in meta Injection of polarized spins.. (Tunneling, Kondo, Heavy fermions, Spintronics) Spin qubits manipulated by photons

28 Manipulating the exchange interactions between two spins Qubit de spins coupled by the injection of an electron and manipulated by transfert of photo-electrons Photon hν 3 e- Photon hν Photon hν 2 Far infra-red : variations of charges (S) Sub-centimeter: variations of spin projections(m S ) Collaborations: J. Bonvoisin e t C. Joachim (CEMES, Toulouse F. Ciontu et Ph. Jorrand (IMAG, Grenoble) Remerciements: J.P. Sutter, M. Kahn.

29 MANY THANKS FOR YOUR ATTENTION!

30 Mesoscopic Magnetism Nano-magnetism Tunneling of narrow DWs in highly anisotropic systems (Dy 3 Al 2, SmCoCu) Nanomagnetism on distributions (deposited clusters, BaFeO nanoparticles ) Single-particles nano-magnetism (micro-squids) nanoparticles, clusters ( nm): thermally activated reversal (SW, NB models ) Quantum nano-magnetism single molecule magnets ( nm): reversal by tunneling, slow quantum dynamics with different environments: inhomogeneous and homogeneous baths (spin, phonon, radiation, free carriers...) Sub-nanometer scale Atomic magnets (Quantum) Rare-Earths ions (. nm): Crucial role of nuclear spins

Recent Developments in Quantum Dynamics of Spins

Recent Developments in Quantum Dynamics of Spins Recent Developments in Quantum Dynamics of Spins B. Barbara, R. Giraud*, I. Chiorescu*, W. Wernsdorfer, Lab. Louis Néel, CNRS, Grenoble. Collaborations with other groups: D. Mailly (Marcoussis) D. Gatteschi

More information

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion

B. Barbara, Institut Néel, CNRS, Grenoble. Brief history. Quantum nanomagnetism. Conclusion Quantum tunnelling and coherence of mesoscopic spins B. Barbara, Institut Néel, CNRS, Grenoble Brief history From classical to quantum nanomagnetism Quantum nanomagnetism From relaxation to coherence Ensemble

More information

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006

Quantum Tunneling of Magnetization in Molecular Magnets. Department of Physics, New York University. Tutorial T2: Molecular Magnets, March 12, 2006 Quantum Tunneling of Magnetization in Molecular Magnets ANDREW D. KENT Department of Physics, New York University Tutorial T2: Molecular Magnets, March 12, 2006 1 Outline 1. Introduction Nanomagnetism

More information

Spins Dynamics in Nanomagnets. Andrew D. Kent

Spins Dynamics in Nanomagnets. Andrew D. Kent Spins Dynamics in Nanomagnets Andrew D. Kent Department of Physics, New York University Lecture 1: Magnetic Interactions and Classical Magnetization Dynamics Lecture 2: Spin Current Induced Magnetization

More information

Intermolecular interactions (dipolar and exchange)

Intermolecular interactions (dipolar and exchange) Intermolecular interactions (dipolar and exchange) SMM ideal Mn 2 ac Mn 4 (SB) spin chains, etc. MM...? doped Fe 6 Fe 5 Ga Fe 8 [Mn 4 ] 2 J/D Mn 4 singlemolecule magnet Mn 4 O 3 (OSiMe 3 )(O 2 CMe) 3 (dbm)

More information

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent

NYU Spin Dynamics in Single Molecule Magnets. Andrew D. Kent Spin Dynamics in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University Collaborators: Gregoire de Loubens, Enrique del Barco Stephen Hill Dmitry Garanin Myriam Sarachik, Yosi

More information

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)-

Quantum tunneling of magnetization in lanthanide single-molecule. magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- Quantum tunneling of magnetization in lanthanide single-molecule magnets, bis(phthalocyaninato)terbium and bis(phthalocyaninato)- dysprosium anions** Naoto Ishikawa, * Miki Sugita and Wolfgang Wernsdorfer

More information

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy

Andrea Morello. Nuclear spin dynamics in quantum regime of a single-molecule. magnet. UBC Physics & Astronomy Nuclear spin dynamics in quantum regime of a single-molecule magnet Andrea Morello UBC Physics & Astronomy Kamerlingh Onnes Laboratory Leiden University Nuclear spins in SMMs Intrinsic source of decoherence

More information

Decoherence in molecular magnets: Fe 8 and Mn 12

Decoherence in molecular magnets: Fe 8 and Mn 12 Decoherence in molecular magnets: Fe 8 and Mn 12 I.S. Tupitsyn (with P.C.E. Stamp) Pacific Institute of Theoretical Physics (UBC, Vancouver) Early 7-s: Fast magnetic relaxation in rare-earth systems (Dy

More information

Quantum dynamics in Single-Molecule Magnets

Quantum dynamics in Single-Molecule Magnets Quantum dynamics in Single-Molecule Magnets Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 permanent magnets macroscopic micron particles Magnetic

More information

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain.

Centro Universitario de la Defensa. Academia General Militar, Zaragoza, Spain. This journal is The Royal Society of Chemistry 13 Electronic Supplementary Information {Dy(α-fur) 3 } n : from double relaxation Single-Ion Magnet behavior to 3D ordering E.Bartolomé, a J. Bartolomé, b

More information

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of

Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of 1 Supplementary Figure 1: Spin noise spectra of 55 Mn in bulk sample at BL =10.5 mt, before subtraction of the zero-frequency line. a, Contour plot of the spin noise spectra calculated with Eq. (2) for

More information

Chapter 8 Magnetic Resonance

Chapter 8 Magnetic Resonance Chapter 8 Magnetic Resonance 9.1 Electron paramagnetic resonance 9.2 Ferromagnetic resonance 9.3 Nuclear magnetic resonance 9.4 Other resonance methods TCD March 2007 1 A resonance experiment involves

More information

Electron spins in nonmagnetic semiconductors

Electron spins in nonmagnetic semiconductors Electron spins in nonmagnetic semiconductors Yuichiro K. Kato Institute of Engineering Innovation, The University of Tokyo Physics of non-interacting spins Optical spin injection and detection Spin manipulation

More information

The First Cobalt Single-Molecule Magnet

The First Cobalt Single-Molecule Magnet The First Cobalt Single-Molecule Magnet En-Che Yang and David N Hendrickson Department of Chemistry and Biochemistry, University of California at San Diego, La Jolla, CA 92037, USA Wolfgang Wernsdorfer

More information

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets

Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets Landau-Zener tunneling in the presence of weak intermolecular interactions in a crystal of Mn 4 single-molecule magnets W. Wernsdorfer, 1 S. Bhaduri, 2 A. Vinslava, 2 and G. Christou 2 1 Laboratoire L.

More information

Beyond the Giant Spin Approximation: The view from EPR

Beyond the Giant Spin Approximation: The view from EPR Beyond the Giant Spin Approximation: The view from EPR Simple is Stephen Hill, NHMFL and Florida State University At UF: Saiti Datta, Jon Lawrence, Junjie Liu, Erica Bolin better In collaboration with:

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ.

Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. Joint Project between Japan and Korea M. Jeong, M. Song, S. Lee (KAIST, Korea) +KBSI T. Ueno, M. Matsubara (Kyoto University, Japan)+Fukui Univ. +Vasiliev(Turku) 31 P NMR at low temperatures ( down to

More information

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego

Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego Michigan Quantum Summer School Ann Arbor, June 16-27, 2008. Lecture2: Quantum Decoherence and Maxwell Angels L. J. Sham, University of California San Diego 1. Motivation: Quantum superiority in superposition

More information

Magnetism and Magnetic Switching

Magnetism and Magnetic Switching Magnetism and Magnetic Switching Robert Stamps SUPA-School of Physics and Astronomy University of Glasgow A story from modern magnetism: The Incredible Shrinking Disk Instead of this: (1980) A story from

More information

Lecture 2: Double quantum dots

Lecture 2: Double quantum dots Lecture 2: Double quantum dots Basics Pauli blockade Spin initialization and readout in double dots Spin relaxation in double quantum dots Quick Review Quantum dot Single spin qubit 1 Qubit states: 450

More information

Quantum step heights in hysteresis loops of molecular magnets

Quantum step heights in hysteresis loops of molecular magnets PHYSICAL REVIEW B, VOLUME 65, 224401 Quantum step heights in hysteresis loops of molecular magnets Jie Liu, 1 Biao Wu, 1 Libin Fu, 2 Roberto B. Diener, 1 and Qian iu 1 1 Department of Physics, The University

More information

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants

MolNanoSpin: Spintronique moléculaire avec des molécules-aimants MolNanoSpin: Spintronique moléculaire avec des molécules-aimants W. Wernsdorfer : Institut Néel T. Mallah : Institut de Chimie Moléculaire et des Matériaux d'orsay P. Mialane : Institut Lavoisier Journées

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots

Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots Influence of hyperfine interaction on optical orientation in self-assembled InAs/GaAs quantum dots O. Krebs, B. Eble (PhD), S. Laurent (PhD), K. Kowalik (PhD) A. Kudelski, A. Lemaître, and P. Voisin Laboratoire

More information

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble

Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble Hybrid Quantum Circuit with a Superconducting Qubit coupled to a Spin Ensemble, Cécile GREZES, Andreas DEWES, Denis VION, Daniel ESTEVE, & Patrice BERTET Quantronics Group, SPEC, CEA- Saclay Collaborating

More information

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University

Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Shallow Donors in Silicon as Electron and Nuclear Spin Qubits Johan van Tol National High Magnetic Field Lab Florida State University Overview Electronics The end of Moore s law? Quantum computing Spin

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet

Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet April 28 EPL, 82 (28) 175 doi: 1.129/295-575/82/175 www.epljournal.org Radiation- and phonon-bottleneck induced tunneling in the Fe 8 single-molecule magnet M. Bal 1, Jonathan R. Friedman 1(a),W.Chen 2,

More information

Voyage dans le nanomonde des aimants

Voyage dans le nanomonde des aimants Voyage dans le nanomonde des aimants Wolfgang Wernsdorfer Laboratoire de Magnétisme Louis Néel C.N.R.S. - Grenoble S = 10 2 to 10 6 S = 1/2 to 30 Magnets nanoworld 10 6 10 3 10 0 10-3 10-6 10-9 1 Mm 1

More information

Nuclear spin spectroscopy for semiconductor hetero and nano structures

Nuclear spin spectroscopy for semiconductor hetero and nano structures (Interaction and Nanostructural Effects in Low-Dimensional Systems) November 16th, Kyoto, Japan Nuclear spin spectroscopy for semiconductor hetero and nano structures Yoshiro Hirayama Tohoku University

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation

Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation OFFPRINT Magnetization relaxation in the single-molecule magnet Ni 4 under continuous microwave irradiation G. de Loubens, D. A. Garanin, C. C. Beedle, D. N. Hendrickson and A. D. Kent EPL, 83 (2008) 37006

More information

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent

NYU An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets. Andrew D. Kent An Introduction to Quantum Tunneling of the Magnetization and Magnetic Ordering in Single Molecule Magnets Andrew D. Kent Department of Physics, New York University 1 Outline I. Introduction Quantum tunneling

More information

I. Molecular magnetism and single-molecule magnets

I. Molecular magnetism and single-molecule magnets Research: I. Molecular magnetism and single-molecule magnets The research in the area of molecular magnetism is focused on molecular assemblies containing a finite number of exchange coupled magnetic ions

More information

Non-linear driving and Entanglement of a quantum bit with a quantum readout

Non-linear driving and Entanglement of a quantum bit with a quantum readout Non-linear driving and Entanglement of a quantum bit with a quantum readout Irinel Chiorescu Delft University of Technology Quantum Transport group Prof. J.E. Mooij Kees Harmans Flux-qubit team visitors

More information

arxiv:cond-mat/ v1 1 Dec 1999

arxiv:cond-mat/ v1 1 Dec 1999 Impurity relaxation mechanism for dynamic magnetization reversal in a single domain grain Vladimir L. Safonov and H. Neal Bertram Center for Magnetic Recording Research, University of California San arxiv:cond-mat/9912014v1

More information

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology

Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology Quantum technologies based on nitrogen-vacancy centers in diamond: towards applications in (quantum) biology 3 E 532 nm 1 2δω 1 Δ ESR 0 1 A 1 3 A 2 Microwaves 532 nm polarization Pulse sequence detection

More information

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies

Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies Coherent spin manipulations in Yb 3+ : CaWO_4 at X - and W -band EPR frequencies R. Rakhmatullin, I. N. Kurkin, G. V. Mamin, S.B. Orlinskii, E. I. Baibekov, B. Malkin, S. Gambarelli, S. Bertaina, B. Barbara,

More information

Introduction to Relaxation Theory James Keeler

Introduction to Relaxation Theory James Keeler EUROMAR Zürich, 24 Introduction to Relaxation Theory James Keeler University of Cambridge Department of Chemistry What is relaxation? Why might it be interesting? relaxation is the process which drives

More information

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan

Kondo effect in multi-level and multi-valley quantum dots. Mikio Eto Faculty of Science and Technology, Keio University, Japan Kondo effect in multi-level and multi-valley quantum dots Mikio Eto Faculty of Science and Technology, Keio University, Japan Outline 1. Introduction: next three slides for quantum dots 2. Kondo effect

More information

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010)

LARGE-SCALE QUANTUM PHENOMENA COURSE. UNIVERSITY of INNSBRUCK. (June 2010) LARGE-SCALE QUANTUM PHENOMENA COURSE to be given at the UNIVERSITY of INNSBRUCK (June 2010) INTRODUCTION 1.BASIC PHENOMENA 2.EXPERIMENTAL OBSERVATIONS 3.THEORETICAL FRAMEWORK LARGE-SCALE QUANTUM PHENOMENA:

More information

NMR: Formalism & Techniques

NMR: Formalism & Techniques NMR: Formalism & Techniques Vesna Mitrović, Brown University Boulder Summer School, 2008 Why NMR? - Local microscopic & bulk probe - Can be performed on relatively small samples (~1 mg +) & no contacts

More information

Supplementary Information

Supplementary Information Supplementary Information I. Sample details In the set of experiments described in the main body, we study an InAs/GaAs QDM in which the QDs are separated by 3 nm of GaAs, 3 nm of Al 0.3 Ga 0.7 As, and

More information

Electronic Spectra of Complexes

Electronic Spectra of Complexes Electronic Spectra of Complexes Interpret electronic spectra of coordination compounds Correlate with bonding Orbital filling and electronic transitions Electron-electron repulsion Application of MO theory

More information

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets

Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Origin (and control?) of the anisotropy in tetranuclear star shaped molecular nanomagnets Lorenzo Sorace, Roberta Sessoli, Andrea Cornia Department of Chemistry & INSTM, University of Florence, Italy Department

More information

Photon-induced magnetization changes in single-molecule magnets invited

Photon-induced magnetization changes in single-molecule magnets invited JOURNAL OF APPLIED PHYSICS 99, 08D103 2006 Photon-induced magnetization changes in single-molecule magnets invited M. Bal and Jonathan R. Friedman a Department of Physics, Amherst College, Amherst, Massachusetts

More information

Quantum phase transitions

Quantum phase transitions Quantum phase transitions Thomas Vojta Department of Physics, University of Missouri-Rolla Phase transitions and critical points Quantum phase transitions: How important is quantum mechanics? Quantum phase

More information

Magnetic Resonance in magnetic materials

Magnetic Resonance in magnetic materials Ferdinando Borsa, Dipartimento di Fisica, Universita di Pavia Magnetic Resonance in magnetic materials Information on static and dynamic magnetic properties from Nuclear Magnetic Resonance and Relaxation

More information

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER

J 12 J 23 J 34. Driving forces in the nano-magnetism world. Intra-atomic exchange, electron correlation effects: Inter-atomic exchange: MAGNETIC ORDER Driving forces in the nano-magnetism world Intra-atomic exchange, electron correlation effects: LOCAL (ATOMIC) MAGNETIC MOMENTS m d or f electrons Inter-atomic exchange: MAGNETIC ORDER H exc J S S i j

More information

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels

High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels High Frequency Electron Paramagnetic Resonance Studies of Mn 12 Wheels Gage Redler and Stephen Hill Department of Physics, University of Florida Abstract High Frequency Electron Paramagnetic Resonance

More information

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation

Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity microwave radiation EUROPHYSICS LETTERS 1 July 2005 Europhys. Lett., 71 (1), pp. 110 116 (2005) DOI: 10.1209/epl/i2005-10069-3 Non-equilibrium magnetization dynamics in the Fe 8 single-molecule magnet induced by high-intensity

More information

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin

Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin Supplemental Material to the Manuscript Radio frequency magnetometry using a single electron spin M. Loretz, T. Rosskopf, C. L. Degen Department of Physics, ETH Zurich, Schafmattstrasse 6, 8093 Zurich,

More information

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine

Condon domains in the de Haas van Alphen effect. Magnetic domains of non-spin origine in the de Haas van Alphen effect Magnetic domains of non-spin origine related to orbital quantization Jörg Hinderer, Roman Kramer, Walter Joss Grenoble High Magnetic Field laboratory Ferromagnetic domains

More information

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1

We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 We have already demonstrated polarization of a singular nanodiamond (or bulk diamond) via Nitrogen-Vacancy (NV) centers 1 Flip-flops Bath narrowing Experiment Source Power (dbm) 10.8 10.6 10.4 10.2 0 5

More information

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations

CONTENTS. 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon 2.2 The vector picture for pulse EPR experiments 2.3 Relaxation and the Bloch equations CONTENTS Preface Acknowledgements Symbols Abbreviations 1 INTRODUCTION 1.1 Scope of pulse EPR 1.2 A short history of pulse EPR 1.3 Examples of Applications 2 CLASSICAL DESCRIPTION 2.1 The resonance phenomenon

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems

Decoherence in Josephson and Spin Qubits. Lecture 3: 1/f noise, two-level systems Decoherence in Josephson and Spin Qubits Alexander Shnirman University of Innsbruck Lecture 3: 1/f noise, two-level systems 1. Phenomenology of 1/f noise 2. Microscopic models 3. Relation between T1 relaxation

More information

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots

Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots International School of Physics "Enrico Fermi : Quantum Spintronics and Related Phenomena June 22-23, 2012 Varenna, Italy Single Spin Qubits, Qubit Gates and Qubit Transfer with Quantum Dots Seigo Tarucha

More information

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University

D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University Molecular production at broad Feshbach resonance in cold Fermi-gas D. Sun, A. Abanov, and V. Pokrovsky Department of Physics, Texas A&M University College Station, Wednesday, Dec 5, 007 OUTLINE Alkali

More information

Towards Landau-Zener-Stückelberg Interferometry on Single-molecule Magnets

Towards Landau-Zener-Stückelberg Interferometry on Single-molecule Magnets Towards Landau-Zener-Stückelberg Interferometry on Single-molecule Magnets Changyun Yoo Advisor: Professor Jonathan Friedman May 5, 2015 Submitted to the Department of Physics and Astronomy in partial

More information

Quantum computation and quantum information

Quantum computation and quantum information Quantum computation and quantum information Chapter 7 - Physical Realizations - Part 2 First: sign up for the lab! do hand-ins and project! Ch. 7 Physical Realizations Deviate from the book 2 lectures,

More information

Solid-state NMR of spin > 1/2

Solid-state NMR of spin > 1/2 Solid-state NMR of spin > 1/2 Nuclear spins with I > 1/2 possess an electrical quadrupole moment. Anisotropic Interactions Dipolar Interaction 1 H- 1 H, 1 H- 13 C: typically 50 khz Anisotropy of the chemical

More information

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt

Spin Dynamics Basics of Nuclear Magnetic Resonance. Malcolm H. Levitt Spin Dynamics Basics of Nuclear Magnetic Resonance Second edition Malcolm H. Levitt The University of Southampton, UK John Wiley &. Sons, Ltd Preface xxi Preface to the First Edition xxiii Introduction

More information

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008).

Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Lecture 9 Superconducting qubits Ref: Clarke and Wilhelm, Nature 453, 1031 (2008). Newcomer in the quantum computation area ( 2000, following experimental demonstration of coherence in charge + flux qubits).

More information

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube

Chapter 5 Nanomanipulation. Chapter 5 Nanomanipulation. 5.1: With a nanotube. Cutting a nanotube. Moving a nanotube Objective: learn about nano-manipulation techniques with a STM or an AFM. 5.1: With a nanotube Moving a nanotube Cutting a nanotube Images at large distance At small distance : push the NT Voltage pulse

More information

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo)

Electron Spin Resonance and Quantum Dynamics. Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance and Quantum Dynamics Masaki Oshikawa (ISSP, University of Tokyo) Electron Spin Resonance (ESR) E-M wave electron spins H measure the absorption intensity Characteristic of ESR single

More information

Giant Enhancement of Quantum Decoherence by Frustrated Environments

Giant Enhancement of Quantum Decoherence by Frustrated Environments ISSN 0021-3640, JETP Letters, 2006, Vol. 84, No. 2, pp. 99 103. Pleiades Publishing, Inc., 2006.. Giant Enhancement of Quantum Decoherence by Frustrated Environments S. Yuan a, M. I. Katsnelson b, and

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION Supramolecular Spin Valves M. Urdampilleta, 1 J.-P. Cleuziou, 1 S. Klyatskaya, 2 M. Ruben, 2,3* W. Wernsdorfer 1,* 1 Institut Néel, associé á l Université Joseph Fourier, CNRS, BP 166, 38042 Grenoble Cedex

More information

Concepts in Spin Electronics

Concepts in Spin Electronics Concepts in Spin Electronics Edited by Sadamichi Maekawa Institutefor Materials Research, Tohoku University, Japan OXFORD UNIVERSITY PRESS Contents List of Contributors xiii 1 Optical phenomena in magnetic

More information

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate

Herre van der Zant. interplay between molecular spin and electron transport (molecular spintronics) Gate transport through the single molecule magnet Mn12 Herre van der Zant H.B. Heersche, Z. de Groot (Delft) C. Romeike, M. Wegewijs (RWTH Aachen) D. Barreca, E. Tondello (Padova) L. Zobbi, A. Cornia (Modena)

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK

Nuclear spins in semiconductor quantum dots. Alexander Tartakovskii University of Sheffield, UK Nuclear spins in semiconductor quantum dots Alexander Tartakovskii University of Sheffield, UK Electron and nuclear spin systems in a quantum dot Confined electron and hole in a dot 5 nm Electron/hole

More information

Universal Post-quench Dynamics at a Quantum Critical Point

Universal Post-quench Dynamics at a Quantum Critical Point Universal Post-quench Dynamics at a Quantum Critical Point Peter P. Orth University of Minnesota, Minneapolis, USA Rutgers University, 10 March 2016 References: P. Gagel, P. P. Orth, J. Schmalian Phys.

More information

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum

9. Transitions between Magnetic Levels Spin Transitions Between Spin States. Conservation of Spin Angular Momentum 9. Transitions between Magnetic Levels pin Transitions Between pin tates. Conservation of pin Angular Momentum From the magnetic energy diagram derived in the previous sections (Figures 14, 15 and 16),

More information

Geometrical frustration, phase transitions and dynamical order

Geometrical frustration, phase transitions and dynamical order Geometrical frustration, phase transitions and dynamical order The Tb 2 M 2 O 7 compounds (M = Ti, Sn) Yann Chapuis PhD supervisor: Alain Yaouanc September 2009 ann Chapuis (CEA/Grenoble - Inac/SPSMS)

More information

Quantum Confinement in Graphene

Quantum Confinement in Graphene Quantum Confinement in Graphene from quasi-localization to chaotic billards MMM dominikus kölbl 13.10.08 1 / 27 Outline some facts about graphene quasibound states in graphene numerical calculation of

More information

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures

Spins and spin-orbit coupling in semiconductors, metals, and nanostructures B. Halperin Spin lecture 1 Spins and spin-orbit coupling in semiconductors, metals, and nanostructures Behavior of non-equilibrium spin populations. Spin relaxation and spin transport. How does one produce

More information

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes

New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Polyhedron 22 (2003) 1783/1788 www.elsevier.com/locate/poly New example of Jahn-Teller isomerism in [Mn 12 O 12 (O 2 CR) 16 (H 2 O) 4 ] complexes Mònica Soler a, Wolfgang Wernsdorfer b, *, Ziming Sun c,

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information

Spin electric coupling and coherent quantum control of molecular nanomagnets

Spin electric coupling and coherent quantum control of molecular nanomagnets Spin electric coupling and coherent quantum control of molecular nanomagnets Dimitrije Stepanenko Department of Physics University of Basel Institute of Physics, Belgrade February 15. 2010 Collaborators:

More information

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe

Magnetism of Atoms and Ions. Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D Karlsruhe Magnetism of Atoms and Ions Wulf Wulfhekel Physikalisches Institut, Karlsruhe Institute of Technology (KIT) Wolfgang Gaede Str. 1, D-76131 Karlsruhe 1 0. Overview Literature J.M.D. Coey, Magnetism and

More information

NMR in Strongly Correlated Electron Systems

NMR in Strongly Correlated Electron Systems NMR in Strongly Correlated Electron Systems Vesna Mitrović, Brown University Journée Claude Berthier, Grenoble, September 211 C. Berthier, M. H. Julien, M. Horvatić, and Y. Berthier, J. Phys. I France

More information

Magnetic domain theory in dynamics

Magnetic domain theory in dynamics Chapter 3 Magnetic domain theory in dynamics Microscale magnetization reversal dynamics is one of the hot issues, because of a great demand for fast response and high density data storage devices, for

More information

arxiv:cond-mat/ Jan 2000

arxiv:cond-mat/ Jan 2000 arxiv:cond-mat/0001144 11 Jan 000 Macroscopic Quantum Phase Interference in Antiferromagnetic Particles Yi-Hang Nie 1,Yan-Hong Jin 1 5, J.-Q.Liang 1 3,H.J.W.Muller-Kirsten 3,D.K.Park 3 4,F.-C.Pu 5 6 1

More information

Mesoscopic field state superpositions in Cavity QED: present status and perspectives

Mesoscopic field state superpositions in Cavity QED: present status and perspectives Mesoscopic field state superpositions in Cavity QED: present status and perspectives Serge Haroche, Ein Bokek, February 21 st 2005 Entangling single atoms with larger and larger fields: an exploration

More information

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime

Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Quantum Noise of a Carbon Nanotube Quantum Dot in the Kondo Regime Exp : J. Basset, A.Yu. Kasumov, H. Bouchiat, and R. Deblock Laboratoire de Physique des Solides Orsay (France) Theory : P. Simon (LPS),

More information

Splitting of a Cooper pair by a pair of Majorana bound states

Splitting of a Cooper pair by a pair of Majorana bound states Chapter 7 Splitting of a Cooper pair by a pair of Majorana bound states 7.1 Introduction Majorana bound states are coherent superpositions of electron and hole excitations of zero energy, trapped in the

More information

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions

7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions 7.2 Dipolar Interactions and Single Ion Anisotropy in Metal Ions Up to this point, we have been making two assumptions about the spin carriers in our molecules: 1. There is no coupling between the 2S+1

More information

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids

Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids Physica B 280 (2000) 264}268 Classical and quantum magnetisation reversal studied in single nanometer-sized particles and clusters using micro-squids W. Wernsdorfer *, E. Bonet Orozco, B. Barbara, A. Benoit,

More information

Cristaux dopés terres rares pour les mémoires quantiques

Cristaux dopés terres rares pour les mémoires quantiques Cristaux dopés terres rares pour les mémoires quantiques A. Ferrier, M. Lovric, Ph. Goldner D. Suter M.F. Pascual-Winter, R. Cristopher Tongning, Th. Chanelière et J.-L. Le Gouët Quantum Memory? Storage

More information

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents

Semiclassical limit and longtime asymptotics of the central spin problem. Gang Chen Doron Bergman Leon Balents Semiclassical limit and longtime asymptotics of the central spin problem Gang Chen Doron Bergman Leon Balents Trieste, June 2007 Outline The problem electron-nuclear interactions in a quantum dot Experiments

More information

Hyperfine interaction

Hyperfine interaction Hyperfine interaction The notion hyperfine interaction (hfi) comes from atomic physics, where it is used for the interaction of the electronic magnetic moment with the nuclear magnetic moment. In magnetic

More information

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble

X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals. Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble X-Ray Magnetic Circular Dichroism: basic concepts and applications for 3d transition metals Stefania PIZZINI Laboratoire Louis Néel CNRS- Grenoble I) - Basic concepts of XAS and XMCD - XMCD at L 2,3 edges

More information

Cooperative Phenomena

Cooperative Phenomena Cooperative Phenomena Frankfurt am Main Kaiserslautern Mainz B1, B2, B4, B6, B13N A7, A9, A12 A10, B5, B8 Materials Design - Synthesis & Modelling A3, A8, B1, B2, B4, B6, B9, B11, B13N A5, A7, A9, A12,

More information

The Physical Basis of the NMR Experiment

The Physical Basis of the NMR Experiment The Physical Basis of the NMR Experiment 1 Interaction of Materials with Magnetic Fields F F S N S N Paramagnetism Diamagnetism 2 Microscopic View: Single Spins an electron has mass and charge in addition

More information

Spinon magnetic resonance. Oleg Starykh, University of Utah

Spinon magnetic resonance. Oleg Starykh, University of Utah Spinon magnetic resonance Oleg Starykh, University of Utah May 17-19, 2018 Examples of current literature 200 cm -1 = 6 THz Spinons? 4 mev = 1 THz The big question(s) What is quantum spin liquid? No broken

More information

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR)

Nomenclature: Electron Paramagnetic Resonance (EPR) Electron Magnetic Resonance (EMR) Electron Spin Resonance (ESR) Introduction to EPR Spectroscopy EPR allows paramagnetic species to be identified and their electronic and geometrical structures to be characterised Interactions with other molecules, concentrations,

More information

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid

Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid Correlations between spin accumulation and degree of time-inverse breaking for electron gas in solid V.Zayets * Spintronic Research Center, National Institute of Advanced Industrial Science and Technology

More information