PoS(EPS-HEP2017)192. Suppression of heavy quarkonia in pa collisions. B. Kopeliovich, Ivan Schmidt, Marat Siddikov

Size: px
Start display at page:

Download "PoS(EPS-HEP2017)192. Suppression of heavy quarkonia in pa collisions. B. Kopeliovich, Ivan Schmidt, Marat Siddikov"

Transcription

1 Suppression of heav quarkonia in collisions B. Kopeliovich, Ivan Schmidt, Departamento de Física, Universidad Técnica Federico Santa María, Centro Científico - Tecnológico de Valparaíso, Casilla 110-V, Valparaíso, Chile Marat.Siddikov@usm.cl In this proceeding we present results of our studies of quarkonium suppression in collisions. We estimated the nuclear suppression due to absorption, energ loss and gluon shadowing. In addition, we found that at high energies a sizeable additive contribution comes from multinucleon production. We demonstrate that the suggested approach can simultaneousl explain a relativel small nuclear suppression of J/ψ and ϒ, as well as a strong suppression of ψs observed at RHIC and LHC in proton-ion collisions. PoSEPS-HEP01719 EPS-HEP 017, European Phsical Societ conference on High Energ Phsics 5-1 Jul 017 Venice, Ital Speaker. A footnote ma follow. c Copright owned b the authors under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License CC BY-NC-ND

2 1. Introduction The dnamics of the heav quarkonium is described b perturbative CD see [1,, 3] for a review of current situation, for this reason quarkonium propagation inside a medium serves as a clean probe of the gluon content of the target. This motivated extensive theoretical and experimental studies of quarkonium dnamics, which recentl got a new impetus after the discover of various -containing exotic tetraquark and pentaquark candidates [4]. Inside nuclei, it is expected that in a heav quark mass limit the nuclear suppression of quarkonia should vanish, though this behaviour might be modified at forward rapidities due to the energ loss corrections [5, 6, 7]. The small nuclear effects predicted in energ loss based models from the first sight are consistent with almost no suppression of J/ψ and ϒ observed at RHIC. However, in such models it is challenging to explain wh for ψs a considerabl stronger nuclear suppression is observed both at RHIC [8] and LHC [9]. This difference hints that the transverse size of the charmonia formall a higher twist effect should be taken into account. Naivel, the suppression effects should grow with energ [10], reflecting the energ dependence of the underling dipolenucleon cross-section [11]. However, recent result from LHC [1] did not confirm this expectation and found approximatel the same suppression as at RHIC. We revisited the problem and found that the controvers is solved b a novel mechanism in which two nucleons from the heav ion participate in quarkonium production. This additional contribution is enhanced b A 1/3 inside heav nuclei, is growing as a function of energ faster than single-nucleon process, and compensates increasing with energ nuclear suppression expected for single-nucleon term. At the same time, this contribution becomes quite small for the heav bottomonium, and for this reason allows us to construct a consistent description of nuclear suppression for all the aforementioned quarkonia. The paper is structured as follows. In the Section we describe briefl the framework used for evaluations see [13] for mode details. In Section 3 we present our results and draw conclusions.. uarkonium production in a dipole approach Production of the quarkonium on single nucleons up to absorptive corrections coincides with production in pp collisions extensivel studied in the literature [14, 15, 16]. The Color Singlet Model CSM gives a ver reasonable description of data, provided k T -dependent parton distributions are used [17]. The evaluations in the CSM model are performed in a momentum space, neglecting for simplicit the relative motion of the inside quarkonium in the heav quark mass limit. For evaluation of the nuclear suppression, this approximation is not justified since nuclear effects are controlled b the transverse size of the dipole. For evaluations of nuclear effects it is more convinient to work in the coordinate representation and rewrite the k T -factorization results in the framework of the color dipole approach [11, 18]. The cross-section of the quarkonia production in pp collisions in this approach is given b [13] PoSEPS-HEP01719 dσ pp d = 9 8 gx 1 dα G dα 1 d r 1 dα d r d r G Ψ M α 1, r1 Ψ M α, r.1 1

3 σ 6 n,n =1 [ η n η n Tr Λ M Φ ε n, r n 1 x, b 1 n b n, Φ G δ n, r 1 G,n ] [ ] Tr Λ M Φ ε n, r n Φ G δ n, r G,n where we use notation gx for the projectile gluon densit and x 1, are related to rapidit and transverse momenta p T of quarkonia as x 1, M + p e± / s. The wave function Ψ M α, r of quarkonium is taken form the literature [0], Φ ε n, r n and Φ G δ n, r G are the gluon splitting and emission wave functions matrices in helicit space, σ x, r is the color singlet dipole cross-section [18], and all the other notations are explained in [13]. The dnamics of small dipoles moving inside a nuclear matter depends cruciall on the production time, t and quarkonium formation time t f [1]. For the high energ scattering at central and forward rapidities, the formation time t f significantl exceeds the nuclear size, for this reason the pair traverses the nucleus with frozen transverse size, though might interact via soft gluon exchanges with neighboring nucleons. The mean number of such inelastic interactions for the dipole of transverse quark separation r is given b n coll r, b = σ x, rt A b, where T A b is the nuclear thickness function. The parameter n coll is quite small for RHIC kinematics, however grows with energ and becomes comparable to one in LHC kinematics. This implies that in addition to the CSM mechanism, there could be additional multinucleon contributions to the total crosssections. Figure 1: Color online Multiple color-exchange interaction of a high energ cc pair propagating through a nucleus. For the S-wave quarkonia, the two-nucleon contribution gnn J/ψ X shown in the Figure 1 presents a special concern, since it contributes in the same order over O α s m /m as the single-nucleon term and requires a dedicated stud. Due to difference of final states, the one- and two-nucleon contributions do not interfere and contribute to the nuclear cross-section additivel. For this reason in what follows, we will refer to their contributions to suppression factor as R 1N = dσ 1N /Adσ pp single-nucleon term and R N = dσ N /Adσ pp two-nucleon term respectivel. For the single-nucleon term the cross-section differs from.1 onl b additional absorptive factor in the integrand, d bdzρ A b, z. σ 4 x, α 1,r1,r G + σ 4 x, α,r,r G x, r 1 + σ x, r exp σ T b, z T + b, z, PoSEPS-HEP01719 where b and z are the impact parameter and longitudinal coordinate of the nucleon inside the nucleus, ρ A b, z is the nuclear densit, and the relation of the cross-section σ 4 with color singlet dipole cross-section σx, r is explained in [13]. The cross-section of the two-nucleon mechanism is given b dσ N d = gx 1 d b dz 1 dz dα 1 d r 1 dα d r ρ A b, z 1 ρ A b, z.3

4 Ψ α 1 J/ψ, r1 Ψ J/ψ α, r Σ 8 x, α 1, r1,α, r ] ] Tr [Λ M Φ cc ε n 1, r n 1 Tr [Λ M Φ cc ε n, r n Σ tr x, α 1, r1,α, r σ 3 x, α 1 exp,r1 + σ 3 x, α,r T b, z 1 Σ 8 x, α 1, r1,α, r T A b, z 1, z σ x, r 1 + σ x, r T + b, z, and the expressions for the the cross-sections σ 3, Σ 8 and Σ tr 1 8 +, as well as description of additional corrections due to gluon shadowing and energ loss, ma be found in [13]. 3. Results and discussion As was discussed in previous section, the nuclear suppression factor R gets additive contributions from one- and two-nucleons terms R 1N,N which we will present together with the total result. In the Figure we plot the nuclear suppression factor R for different quarkonia at RHIC and LHC energies. For J/ψ, our framework gives a reasonable description of available LHC data as well as RHIC data at forward rapidities. At central rapidities description of RHIC data in a dipole model slightl overestimates available data. This happens because tpical values of x in this kinematics reach 10, a value where an underling eikonal approximation might be not ver accurate. Although at LHC the found value of R is close to one, we can see that this happens due to compensation of large absorption and contribution from two-nucleon term, rather than due to inherentl weak nuclear effects. For ψs, the nuclear suppression is considerabl larger, in agreement with RHIC [8] and LHC [9] data. This happens due to a node in a radial part of ψs wave function and partial cancellation of contributions of small and large dipoles. For ϒ1S, we can see that our model agrees with available RHIC [] data. Due to higher mass of ϒ and smaller dipole sizes, all nuclear effects are smaller for this meson except energ loss corrections, which leads to sizable suppression at forward rapidities. The two-nucleon mechanism for ϒ production is smaller than for J/ψ because additional gluon interactions is suppressed b smaller dipole size. To summarize, we found that at high energies the nuclear suppression in collisions gets a sizeable contribution from the multinucleon processes. We studied in detail the largest correction of this tpe, which includes the two nucleons from the target, and found that it presents a substantial contribution up to 30% to charmonia production. This contribution explains a weak change of suppression from RHIC [3] to LHC [1], despite of significant increase of the absorptive crosssection. In the same framework we managed to describe a weak suppression of J/ψ and ϒ and a large suppression of ψ S observed at RHIC [8] and LHC [9]. While for ϒ our results ma be interpreted as inherentl weak nuclear effects in heav mass limit, for J/ψ this interpretation is not accurate and happens due to partial compensation of one- and two-nucleon contributions. We expect that at even higher energies the multinucleon contributions will become more pronounced, and the cross-section will remain finite in a black disk limit, despite the fact that a contribution of single-nucleon term vanishes due to absorption. PoSEPS-HEP

5 0. 0. R 1N +R N R 1N R N J/ψ, RHIC 0 1 R 1N R N R 1N +R N J/Ψ, LHC R N R 1N +R N R 1N ψs, RHIC 0 1 R 1N R N R 1N +R N ψs, LHC R 1N +R N R 1N R N Υ1S, RHIC 0 1 R 1N +R N R 1N R N Υ1S, LHC Figure : Color online Suppression of different quarkonia in heav ion collisions for s=00 GeV upper row, and s=5 TeV lower row. Blue and green lines correspond to contribution of one- and two-nucleon terms, black line top is a total suppression. Data are from [1, 3, 8, 9, ]. Acknowledgements We thank our colleagues at UTFSM universit for encouraging discussions. This research was partiall supported b the Fondect Chile grants , and , CONICYT Chile grants PIA ACT1406 and ACT1413, and Proecto Basal FB 081 Chile. Powered@NLHPC: This research was partiall supported b the supercomputing infrastructure of the NLHPC ECM-0. Also, we thank Yuri Ivanov for technical support of the USM HPC cluster where part of evaluations were done. Also, we thank William Brooks for providing the link [4]. References PoSEPS-HEP01719 [1] N. Brambilla et al. [uarkonium Working Group Collaboration], hep-ph/ [] M. Bedjidian et al., hep-ph/ [3] S. J. Brodsk and J. P. Lansberg, Phs. Rev. D 81, [arxiv: [hep-ph]] [4] C. Patrignani et al. [Particle Data Group Collaboration], Chin. Phs. C 40, no. 10, [5] B.Z. Kopeliovich, F. Niedermaer, Nuclear screening in J/ψ and Drell-Yan pair production, JINR-E , Dubna, 1984; KEK librar: hep.net/record/ [6] S. J. Brodsk and P. Hoer, Phs. Lett. B 98, [7] F. Arleo, S. Peigne and T. Sami, Phs. Rev. D 83,

6 [8] A. Adare et al. [PHENIX Collaboration], Phs. Rev. Lett , 0301 [arxiv: [nucl-ex]]. [9] B. B. Abelev et al. [ALICE Collaboration], JHEP [arxiv: [nucl-ex]]. [10] B. Z. Kopeliovich, I. K. Potashnikova and I. Schmidt, Nucl. Phs. A 864, [arxiv: [hep- ph]]. [11] K. J. Golec-Biernat and M. Wusthoff, Phs. Rev. D 60, [hep-ph/ ]. [1] B. B. Abelev et al. [ALICE Collaboration], JHEP [arxiv: [nucl-ex]]. [13] B. Z. Kopeliovich, I. Schmidt and M. Siddikov, Phs. Rev. C 95, no. 6, [arxiv: [hep-ph]]. [14] W. K. Tang and M. Vanttinen, Phs. Rev. D 54, [15] E. L. Berger and D. L. Jones, Phs. Rev. D 3, [16] R. Baier and R. Ruckl, Z. Phs. C 19, [17] S. P. Baranov, Phs. Rev. D 93, no. 5, [18] K. Golec-Biernat and M. Wuesthoff, Phs. Rev. D 59, [19] J. Huefner, B. Kopeliovich and A. B. Zamolodchikov, Z. Phs. A 357, [0] E. Eichten, K. Gottfried, T. Kinoshita, K. D. Lane and T. M. Yan, Phs. Rev. D 1, [1] S. J. Brodsk and A. H. Mueller, Phs. Lett. B 06, [] A. Adare et al. [PHENIX Collaboration], Phs. Rev. C 87, [arxiv: [nucl-ex]] [3] A. Adare et al. [PHENIX Collaboration], Phs. Rev. Lett [arxiv: [nucl-ex]]. [4] LHCC HI discussion summar , PoSEPS-HEP

Heavy-ion collisions in a fixed target mode at the LHC beams

Heavy-ion collisions in a fixed target mode at the LHC beams Heavy-ion collisions in a fixed target mode at the LHC beams Alexey Kurepin 1, and Nataliya Topilskaya 1, 1 Institute for Nuclear Research, RAS, Moscow, Russia Abstract. The interaction of high-energy

More information

arxiv: v1 [nucl-ex] 29 Sep 2014

arxiv: v1 [nucl-ex] 29 Sep 2014 Inclusive J/ψ and ψ(s) production in and p-pb collisions at forward rapidit with ALICE at the LHC arxiv:49.877v [nucl-ex] 9 Sep 4 Biswarup Paul (for the ALICE Collaboration) Saha Institute of Nuclear Phsics,

More information

J/Ψ production off nuclei: a detour from SPS to LHC

J/Ψ production off nuclei: a detour from SPS to LHC EP J Web of Conferences 70, 00067 (204) DOI: 0.05/ ep jconf/ 2047000067 C Owned by the authors, published by EDP Sciences, 204 J/Ψ production off nuclei: a detour from SPS to LHC e-mail: boris.kopeliovich@usm.cl

More information

arxiv: v1 [hep-ex] 9 Jan 2019

arxiv: v1 [hep-ex] 9 Jan 2019 Quarkonium production as a function of charged-particle multiplicity in pp and p Pb collisions measured by ALICE at the LHC arxiv:1901.02627v1 [hep-ex] 9 Jan 2019 Discipline of Physics, School of Basic

More information

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions

Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions Matching collinear and small x factorization calculations for inclusive hadron production in pa collisions The Pennsylvania State University, Physics Department, University Park, PA 16802 H. Niewodniczański

More information

arxiv: v2 [hep-ph] 27 Aug 2010

arxiv: v2 [hep-ph] 27 Aug 2010 Puzzles of J/Ψ production off nuclei arxiv:007.453v2 [hep-ph] 27 Aug 200 Abstract B. Z. Kopeliovich Departamento de Física, Universidad Técnica Federico Santa María, and Instituto de Estudios Avanzados

More information

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April

Quarkonia physics in Heavy Ion Collisions. Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April Quarkonia physics in Heavy Ion Collisions Hugo Pereira Da Costa CEA/IRFU Rencontres LHC France Friday, April 5 2013 1 2 Contents Introduction (QGP, Heavy Ion Collisions, Quarkonia) Quarkonia at the SPS

More information

ALICE Results on Vector Meson Photoproduction in Ultra-peripheral p Pb and Pb Pb Collisions

ALICE Results on Vector Meson Photoproduction in Ultra-peripheral p Pb and Pb Pb Collisions ALICE Results on Vector Meson Photoproduction in Ultra-peripheral p Pb and Pb Pb Collisions Evgen Krshen for the ALICE Collaboration CERN, 111 Geneva, Switzerland DOI: http://dx.doi.org/.4/desy-proc-14-4/198

More information

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target

COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target COMPASS Measurements of Asymmetry Amplitudes in the Drell-Yan Process Observed from Scattering Pions off a Transversely Polarized Proton Target University of Illinois E-mail: rsheitz2@illinois.edu On behalf

More information

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions

PoS(DIS2015)084. Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions Saturation and geometrical scaling from small x deep inelastic ep scattering to high energy proton-proton and heavy ion collisions M. Smoluchowski Institute of Physics, Jagiellonian University, ul. S.

More information

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions.

Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Experimental Overview on Heavy Flavor Production in Heavy Ion Collisions. Cesar L. da Silva 1, 1 Los Alamos National Lab - USA Abstract. The use of probes containing heavy quarks is one of the pillars

More information

arxiv: v1 [hep-ph] 4 Jul 2016

arxiv: v1 [hep-ph] 4 Jul 2016 Photoproduction of J/ψ and ϒ states in exclusive and proton-dissociative diffractive events arxiv:7.9v [hep-ph] Jul Institute of Nuclear Phsics, Krakow E-mail: wolfgang.schafer@ifj.edu.pl Antoni Szczurek

More information

Dilepton distributions at backward rapidities

Dilepton distributions at backward rapidities PHYSICAL REVIEW D 7, 09010 (200) Dilepton distributions at backward rapidities M. A. Betemps, 1,2, * M. B. Ga Ducati, 1, and E. G. de Oliveira 1, 1 High Energ Phsics Phenomenolog Group (GFPAE), Instituto

More information

Results on heavy ion collisions at LHCb

Results on heavy ion collisions at LHCb Results on heavy ion collisions at LHCb Marcin Kucharczyk on behalf of LHCb collaboration HNI Krakow 28th Rencontres de Blois 29.05-03.06 2016 Outline LHCb - general purpose forward experiment Physics

More information

Flavor Asymmetry of the Nucleon Sea and W-Boson Production*

Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Flavor Asymmetry of the Nucleon Sea and W-Boson Production* Department of Physics University of Illinois 7 December 2012 *R. Yang, J.C. Peng, M. Grosse-Perdekamp, Phys. Lett. B 680 (2009) 231-234 What

More information

arxiv: v2 [hep-ex] 9 Oct 2014

arxiv: v2 [hep-ex] 9 Oct 2014 J/ψ and ψ(2s) production in p-pb collisions with ALICE at the LHC arxiv:1410.1761v2 [hep-ex] 9 Oct 2014 for the ALICE Collaboration INFN and University, Torino E-mail: leoncino@to.infn.it The ALICE collaboration

More information

Associated production with onia, double onia production at the LHC

Associated production with onia, double onia production at the LHC Associated production with onia, double onia production at the LHC Lancaster University E-mail: e.bouhova@cern.ch The most recent results on associated production with onia and double onia production at

More information

arxiv: v1 [hep-ph] 22 Sep 2017

arxiv: v1 [hep-ph] 22 Sep 2017 arxiv:709.0776v [hep-ph] 22 Sep 207 Institut für heoretische Physik, Westfälische Wilhelms-Universität Münster, Wilhelm-Klemm-Straße 9, D-4849 Münster, Germany E-mail: michael.klasen@uni-muenster.de We

More information

Dilepton transverse momentum in the color dipole approach

Dilepton transverse momentum in the color dipole approach Dilepton transverse momentum in the color dipole approach M. B. Gay Ducati gay@if.ufrgs.br Instituto de Física, Universidade Federal do Rio Grande do Sul, Porto Alegre, Brazil Seminar based on work with

More information

Cold Nuclear Effects in J/ψ Production

Cold Nuclear Effects in J/ψ Production Stéphane Peigné SUBATECH, Nantes, France Quarkonium 3 Beijing, China, April 3 Talk based on Arleo, S.P., Sami, PRD 83 () 36 Arleo, S.P., PRL 9 () 3 Arleo, S.P., JHEP 33 (3) Arleo, Kolevatov, S.P., Rustamova,

More information

arxiv: v1 [hep-ex] 8 Sep 2017

arxiv: v1 [hep-ex] 8 Sep 2017 Quarkonium production in proton-proton collisions with ALICE at the LHC arxiv:1709.02545v1 [hep-ex] 8 Sep 2017, on behalf of the ALICE Collaboration, Laboratoire de Physique de Clermont (LPC), Université

More information

Perturbative origin of azimuthal anisotropy in nuclear collisions

Perturbative origin of azimuthal anisotropy in nuclear collisions Perturbative origin of azimuthal anisotropy in nuclear collisions Amir H. Rezaeian Uiversidad Tecnica Federico Santa Maria, Valparaiso Sixth International Conference on Perspectives in Hadronic Physics

More information

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR

Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by STAR Inclusive spectrum of charged jets in central Au+Au collisions at s NN = 200 GeV by SAR Nuclear Physics Institute, Academy of Sciencis of Czech Republic, Na ruhlarce 39/64, 180 86 Prague, Czech Republic

More information

Heavy Flavours in ALICE

Heavy Flavours in ALICE Heavy Flavours in ALICE Yvonne Pachmayer, University of Heidelberg for the ALICE Collaboration Motivation Cold nuclear matter effects Results from p-pb collisions Open heavy flavour J/ψ, ψ(2s), ϒ(1S) Comparison

More information

Opportunities with diffraction

Opportunities with diffraction Opportunities with diffraction Krzysztof Golec-Biernat Institute of Nuclear Physics in Kraków IWHSS17, Cortona, 2 5 April 2017 Krzysztof Golec-Biernat Opportunities with diffraction 1 / 29 Plan Diffraction

More information

PoS(DIS2014)183. Charmonium Production at ATLAS. S. Cheatham on behalf of the ATLAS Collaboration. McGill University

PoS(DIS2014)183. Charmonium Production at ATLAS. S. Cheatham on behalf of the ATLAS Collaboration. McGill University on behalf of the ATLAS Collaboration. McGill University E-mail: susan.cheatham@cern.ch Understanding of the production of P-wave charmonium states is a significant bottleneck in the understanding of charmonium

More information

Overview of Quarkonium Production in Heavy-Ion Collisions at LHC

Overview of Quarkonium Production in Heavy-Ion Collisions at LHC XLV International Symposium on Multiparticle Dynamics (ISMD2015) Wildbad Kreuth, Germany, October 4-9, 2015 Overview of Quarkonium Production in Heavy-Ion Collisions at LHC Byungsik Hong (Korea University)

More information

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC

Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Quarkonia and heavy-quark production in proton and nuclear collisions at the LHC Michael Schmelling / MPI for Nuclear Physics Introduction Double Parton Scattering Cold Nuclear Matter Effects Quark Gluon

More information

LHCb results from proton-ion collisions

LHCb results from proton-ion collisions LHCb results from proton-ion collisions L. Massacrier on behalf of the LHCb collaboration Laboratoire de l Accélérateur Linéaire, Orsay Institut de Physique Nucléaire d Orsay XLV International Symposium

More information

Nuclear modification of the J/Psi transverse momentum

Nuclear modification of the J/Psi transverse momentum Physics and Astronomy Publications Physics and Astronomy 14 Nuclear modification of the J/Psi transverse momentum Dmitri Kharzeev Brookhaven National Laboratory Eugene M. Levin Tel Aviv University Kirill

More information

Phenomenology of prompt photon production. in p A and A A collisions

Phenomenology of prompt photon production. in p A and A A collisions Phenomenology of prompt photon production in p A and A A collisions François Arleo LAPTH, Annecy LPT Orsay April 2011 Francois Arleo (LAPTH) Prompt γ in p A and A A collisions LPT Orsay April 2011 1 /

More information

using photons in p A and A A collisions

using photons in p A and A A collisions Probing parton densities and energy loss processes using photons in p A and A A collisions François Arleo LAPTH, Annecy High p Probes of High Density QCD May 2011 Francois Arleo (LAPTH) Prompt γ in p A

More information

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment

Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Quarkonium production measurement in Pb-Pb collisions at forward and mid rapidity with the ALICE experiment Lizardo Valencia Palomo Institut de Physique Nucléaire d Orsay (CNRS-IN2P3, Université Paris-Sud

More information

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland

Conference Report Mailing address: CMS CERN, CH-1211 GENEVA 23, Switzerland Available on the CMS information server CMS CR 3-78 he Compact Muon Solenoid Experiment Conference Report Mailing address: CMS CERN, CH- GENEVA 3, Switzerland 8//9 Υ suppression in PbPb collisions at the

More information

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model

PoS(EPS-HEP2015)214. Spectra and elliptic flow of charmed hadrons in HYDJET++ model Spectra and elliptic flow of charmed hadrons in HYJE++ model ab, I.P. Lokhtin a, A. Belyaev a, G. Ponimatkin c and E. Pronina a a Skobeltsyn Institute of Nuclear Physics, M.V. Lomonosov Moscow State University,

More information

Physics of ultrarelativistic heavy-ion collisions

Physics of ultrarelativistic heavy-ion collisions Physics of ultrarelativistic heavy-ion collisions Jean-Philippe Lansberg IPNO, Paris-Sud U. Taller de Altas Energías 2015, Benasque, Sep 20 - Oct 02, 2015 2nd Lecture: September 29, 2015 J.P. Lansberg

More information

AGH-UST University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland

AGH-UST University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland Central Exclusive Production at LHCb AGH-UST University of Science and Technology, Faculty of Physics and Applied Computer Science, Krakow, Poland E-mail: brachwal@agh.edu.pl The LHCb detector, with its

More information

Studies on transverse spin properties of nucleons at PHENIX

Studies on transverse spin properties of nucleons at PHENIX Studies on transverse spin properties of nucleons at PHENIX Pacific Spin 2015 Academia Sinica in Taipei, Taiwan October 8, 2015 Yuji Goto (RIKEN/RBRC) 3D structure of the nucleon Conclusive understanding

More information

Quarkonium production in CMS

Quarkonium production in CMS Quarkonium production in CMS Hyunchul Kim (Korea University For the CMS collaboration Content CMS detector@lhc Quarkonia physics motivation Result from CMS Charmonia : J/ψ Bottomonia : ϒ Summary HIM@Pyeongchang,

More information

Quarkonium Production at J-PARC

Quarkonium Production at J-PARC Quarkonium Production at J-PARC Jen-Chieh Peng University of Illinois at Urbana-Champaign J-PARC Meeting for Spin and Hadron Physics RIKEN, April 7-8, 008 Outline Quarkonium Production at J-PARC with Unpolarized

More information

Measurements of multi-particle correlations and collective flow with the ATLAS detector

Measurements of multi-particle correlations and collective flow with the ATLAS detector Measurements of multi-particle correlations and collective flow with the detector omasz Bold AGH University of Science and enology, Krakow, Poland E-mail: tomasz.bold@fis.agh.edu.pl he measurement of flow

More information

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV

+ High p T with ATLAS and CMS in Heavy-Ion 2.76TeV + High p T with ATLAS and CMS in Heavy-Ion Collisions @ 2.76TeV Lamia Benhabib On behalf of ATLAS and CMS HCP 2011, Paris lamia.benhabib@llr.in2p3.fr +Outlook Introduction : hard probes Strongly interacting

More information

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector

PoS(DIS2017)208. Nuclear PDF studies with proton-lead measurements with the ALICE detector Nuclear PDF studies with proton-lead measurements with the ALICE detector a,b for the ALICE Collaboration a Institute for Subatomic Physics, Department for Physics and Astronomy and EMMEφ, Faculty of Science,

More information

Heavy flavour production at RHIC and LHC

Heavy flavour production at RHIC and LHC Heavy flavour production at RHIC and LHC Gian Michele Innocenti 1, 1 Massachusetts Institute of Technology Abstract. In this proceedings, I present selected experimental results on heavy-flavour production

More information

arxiv: v1 [nucl-ex] 7 Jan 2019

arxiv: v1 [nucl-ex] 7 Jan 2019 Open Heavy Flavour: Experimental summary arxiv:9.95v [nucl-ex] 7 Jan 9 Deepa homas he University of exas at Austin E-mail: deepa.thomas@cern.ch In this paper I will review a few of the latest experimental

More information

PoS(BEAUTY2016)023. Heavy flavour production at CMS. Giulia Negro. CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR)

PoS(BEAUTY2016)023. Heavy flavour production at CMS. Giulia Negro. CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR) CEA/IRFU,Centre d etude de Saclay Gif-sur-Yvette (FR) E-mail: giulia.negro@cern.ch hree recent results in heavy flavour production at the experiment are addressed in this report. Measurements of the differential

More information

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb

PoS(EPS-HEP2015)309. Electroweak Physics at LHCb European Organisation for Nuclear Research (CERN), Switzerland E-mail: william.barter@cern.ch LHCb s unique forward acceptance allows for complementary measurements of electroweak boson production to those

More information

arxiv: v1 [nucl-ex] 12 May 2008

arxiv: v1 [nucl-ex] 12 May 2008 1 Highlights from PHENIX - II arxiv:0805.1636v1 [nucl-ex] 12 May 2008 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 Terry C. Awes (for the PHENIX Collaboration ) Oak

More information

The invariant and helicity amplitudes in the

The invariant and helicity amplitudes in the The invariant and helicity amplitudes in the transitions Λ b Λ ( 1 + J/ψ Mikhail Ivanov JINR Dubna E-mail: ivanovm@theor.jinr.ru We present results for the invariant and helicity amplitudes in the transitions

More information

A new explanation to the cold nuclear matter effects in heavy ion. collisions

A new explanation to the cold nuclear matter effects in heavy ion. collisions A new explanation to the cold nuclear matter effects in heavy ion collisions Zhi-Feng Liu (Institute of Geophysics, Shijiazhuang Economic University, Shijiazhuang, China) The J/Psi cross section ratios

More information

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons

LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons LHC Heavy Ion Physics Lecture 5: Jets, W, Z, photons HUGS 2015 Bolek Wyslouch Techniques to study the plasma Radiation of hadrons Azimuthal asymmetry and radial expansion Energy loss by quarks, gluons

More information

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision

Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Twist-3 approach to hyperon polarization in unpolarized proton-proton collision Graduate School of Science and Technology, Niigata University, Ikarashi, Niigata 950-2181, Japan E-mail: yabe.niigata.hadron0127@gmail.com

More information

Bottomonia physics at RHIC and LHC energies

Bottomonia physics at RHIC and LHC energies Bottomonia physics at RHIC and LHC energies Georg Wolschin Heidelberg University Institut für Theoretische Physik Philosophenweg 16 D-69120 Heidelberg ISMD_2017_Tlaxcala Topics 1. Introduction: ϒ suppression

More information

The growth with energy of vector meson photo-production cross-sections and low x evolution

The growth with energy of vector meson photo-production cross-sections and low x evolution The growth with energy of vector meson photo-production cross-sections and low x evolution Departamento de Actuaria, Física y Matemáticas, Universidad de las Américas Puebla, Santa Catarina Martir, 78,

More information

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration

Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE. Daniel Tapia Takaki. On behalf of the ALICE Collaboration Photo-production of vector mesons in 2.76 TeV ultra-peripheral Pb+Pb collisions at ALICE On behalf of the ALICE Collaboration Rencontres du Viet Nam: 14th Workshop on Elastic and Diffractive Scattering

More information

Single inclusive jet production at very forward rapidity in proton-proton collisions with s = 7 and 13 TeV

Single inclusive jet production at very forward rapidity in proton-proton collisions with s = 7 and 13 TeV production at very forward rapidity in proton-proton collisions with s = 7 and ev Instytut izyki Jadrowej, Radzikowskiego, - Krakow, Poland E-mail: krzysztof.kutak@ifj.edu.pl Hans Van Haevermaet Particle

More information

Quarkonium production in proton-nucleus collisions

Quarkonium production in proton-nucleus collisions INT Program INT-17-1b Precision spectroscopy of QGP properties with jets and heavy quarks May 31 st 2017 Quarkonium production in proton-nucleus collisions Roberta Arnaldi INFN Torino INT Program INT-17-1b

More information

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours

Outlook: 1) Hard probes: definitions. 2) High p T hadrons. 3) Heavy Flavours 5 th International School on QGP and Heavy Ions Collisions: past, present and future Torino, 5-12 March 2011 1 Outlook: 1) Hard probes: definitions 2) High p T hadrons 3) Heavy Flavours 4) Quarkonia 1)

More information

LHCb results in proton-nucleus collisions at the LHC

LHCb results in proton-nucleus collisions at the LHC LHCb results in proton-nucleus collisions at the LHC PANIC August 28, 2014 on behalf of the LHCb collaboration Outline Motivation LHCb Detector Beam configurations Measurements J/Ψ production Υ production

More information

First LHCb results from pa and Pb-Pb collisions

First LHCb results from pa and Pb-Pb collisions First LHCb results from pa and Pb-Pb collisions L. Massacrier on behalf of the LHCb collaboration Laboratoire de l Accélérateur Linéaire, Orsay Institut de Physique Nucléaire d Orsay LHCP 016 13th 18th

More information

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline

Nuclear GPDs and DVCS in Collider kinematics. Vadim Guzey. Theory Center, Jefferson Lab. Outline Nuclear GPDs and DVCS in Collider kinematics Vadim Guzey Theory Center, Jefferson Lab Introduction Outline Nuclear PDFs Nuclear GPDs Predictions for DVCS Conclusions Introduction e(k ) Deeply Virtual Compton

More information

NUCLEAR BROADENING OF OUT OF PLANE TRANSVERSE MOMENTUM IN DI-JET PRODUCTION

NUCLEAR BROADENING OF OUT OF PLANE TRANSVERSE MOMENTUM IN DI-JET PRODUCTION NUCLEAR BROADENING OF OUT OF PLANE TRANSVERSE MOMENTUM IN DI-JET PRODUCTION arxiv:hep-ph/9407386v1 27 Jul 1994 Boris Z. Kopeliovich Joint Institute for Nuclear Research Head Post Office, P.O. Box 79, 101000

More information

Quarkonia and open heavy-flavour production in high multiplicity pp collisions

Quarkonia and open heavy-flavour production in high multiplicity pp collisions Quarkonia and open heavy-flavour production in high multiplicity pp collisions Sarah Porteboeuf-Houssais for the ALICE Collaboration QGP France, Etretat, 9-12 Septembre 2013 Physics motivations in the

More information

Color dipoles: from HERA to EIC

Color dipoles: from HERA to EIC Université de Moncton INT workshop: Gluons and the quark sea at high energies,distributions, polarisation, tomography September 29, 2010 based on work done with J. R. Forshaw, G.Shaw and B. E. Cox (Manchester

More information

Challenges of direct photon production at forward rapidities and large p T

Challenges of direct photon production at forward rapidities and large p T Journal of Physics: Conference Series PAPER OPEN ACCESS Challenges of direct photon production at forward rapidities and large p o cite this article: Michal Krelina et al 207 J. Phys.: Conf. Ser. 805 02003

More information

Scaling patterns in ATLAS & CMS quarkonium production data

Scaling patterns in ATLAS & CMS quarkonium production data Scaling patterns in ATLAS & CMS quarkonium production data Pietro Faccioli, IST and LIP, Lisbon C. Lourenço M. Araújo J. Seixas Quarkonium Working Group, November 8 th 2017 1. shapes of the p T distributions

More information

CGC effects on J/ψ production

CGC effects on J/ψ production CGC effects on J/ψ production Kirill Tuchin based on work with D. Kharzeev, G. Levin and M. Nardi 6th Winter Workshop on Nuclear Dynamics Jan.-9 Ocho Rios, Jamaica Introduction I Inclusive light hadron

More information

Multi-jet production and jet correlations at CMS

Multi-jet production and jet correlations at CMS Multi-jet production and jet correlations at Gábor I. Veres on behalf of the Collaboration CERN E-mail: gabor.veres@cern.ch Hadronic jet production at the LHC is an excellent testing ground for QCD. Essential

More information

Elena G. Ferreiro Universidade de Santiago de Compostela, Spain

Elena G. Ferreiro Universidade de Santiago de Compostela, Spain EMMI workshop Quarkonia in Deconfined Matter, Acitrezza Sicily, 27 Sept 1 Oct 2011 Elena G. Ferreiro Universidade de Santiago de Compostela, Spain Work done in collaboration with F. Fleuret, J P. Lansberg,

More information

Kinematical correlations: from RHIC to LHC

Kinematical correlations: from RHIC to LHC : from RHIC to LHC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and Univeristy of Rzeszów, PL-35-959 Cracow, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Kinematical correlations between outgoing

More information

Disintegration of quarkonia in QGP due to time dependent potential

Disintegration of quarkonia in QGP due to time dependent potential Disintegration of quarkonia in QGP due to time dependent potential and Ajit M. Srivastava Institute of Physics Bhubaneswar, India, 71 E-mail: parphy8@gmail.com, ajit@iopb.res.in Rapid thermalization in

More information

Quarkonium results in pa & AA: from RHIC to LHC

Quarkonium results in pa & AA: from RHIC to LHC International School of Nuclear Physics 38 th course Nuclear matter under extreme conditions relativistic heavy-ion collisions September 2016 Quarkonium results in pa & AA: from RHIC to LHC Roberta Arnaldi

More information

Suppression of Heavy Quarkonium Production in pa Collisions

Suppression of Heavy Quarkonium Production in pa Collisions Suppression of Heavy Quarkonium Production in pa Collisions Jianwei Qiu Brookhaven National Laboratory Based on works done with Z.-B. Kang, G. Sterman, P. Sun, J.P. Vary, B.W. Xiao, F. Yuan, X.F. Zhang,

More information

arxiv: v1 [hep-ph] 7 Jul 2015

arxiv: v1 [hep-ph] 7 Jul 2015 arxiv:1507.01916v1 [hep-ph] 7 Jul 2015 Department of Physics and Astronomy, Iowa State University, Ames, Iowa, 50011, USA E-mail: tuchin@iastate.edu An essential part of experimental program at the future

More information

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab

Probing small-x gluons in hadrons and nuclei. Kazuhiro Watanabe. Old Dominion University. Jan 4, 2017 Jefferson Lab Probing small-x gluons in hadrons and nuclei Kazuhiro Watanabe Old Dominion University Jan 4, 2017 Jefferson Lab Kazuhiro Watanabe (ODU) Probing gluon saturation dynamics at small-x Jan 4, 2017 1 / 16

More information

Jets and Diffraction Results from HERA

Jets and Diffraction Results from HERA Jets and Diffraction Results from HERA A. Buniatyan DESY, Notkestrasse 5, 7 Hamburg, Germany for the H and ZEUS Collaborations he latest results on precision measurements of jet and diffractive cross sections

More information

Small Collision Systems at RHIC

Small Collision Systems at RHIC EPJ Web of Conferences 7, (8) SQM 7 https://doi.org/.5/epjconf/87 Small Collision Systems at RHIC Norbert Novitzky, Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 79, USA

More information

ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions

ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions ALICE results on vector meson photoproduction in ultraperipheral p-pb and Pb-Pb collisions Evgeny Kryshen (Petersburg Nuclear Physics Institute, Russia) for the ALICE collaboration INT workshop INT-17-65W

More information

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model

Heavy quarks and charmonium at RHIC and LHC within a partonic transport model within a partonic transport model Institut für Theoretische Physik, Johann Wolfgang Goethe-Universität Frankfurt, Germany E-mail: uphoff@th.physik.uni-frankfurt.de Kai Zhou Physics Department, Tsinghua

More information

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab

Threshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab hreshold Photo-production of J/5 Mesons J. Dunne Jefferson Lab Introduction With the advent of higher energies at Jefferson Lab, the study of charmonium becomes possible. he threshold production of J/5

More information

arxiv: v1 [hep-ex] 14 Jan 2016

arxiv: v1 [hep-ex] 14 Jan 2016 Nuclear Physics A Nuclear Physics A (28) 5 www.elsevier.com/locate/procedia arxiv:6.352v [hep-ex] 4 Jan 26 Measurements of heavy-flavour nuclear modification factor and elliptic flow in Pb Pb collisions

More information

Heavy quark and quarkonium evolutions in heavy ion collisions

Heavy quark and quarkonium evolutions in heavy ion collisions Heavy quark and quarkonium evolutions in heavy ion collisions Baoyi Chen Tianjin University & Goethe Univeristy Main Collaborators: Pengfei Zhuang, Ralf Rapp, Yunpeng Liu, Xiaojian Du, Wangmei Zha, Carsten

More information

Multiple Parton-Parton Interactions: from pp to A-A

Multiple Parton-Parton Interactions: from pp to A-A Multiple Parton-Parton Interactions: from pp to A-A Andreas Morsch CERN QCD Challenges at LHC Taxco, Mexico, Jan 18-22 (2016) Multiple Parton-Parton Interactions Phys. Lett. B 167 (1986) 476 Q i 2 Λ QCD

More information

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions

The ALICE experiment at LHC. Experimental conditions at LHC The ALICE detector Some physics observables Conclusions The ALICE experiment at LHC Experimental conditions at LHC The ALICE detector Some physics observables Conclusions ALICE @ LHC PbPb collisions at 1150 TeV = 0.18 mj Experimental conditions @LHC 2007 start

More information

Measurement of W-boson production in p-pb collisions at the LHC with ALICE

Measurement of W-boson production in p-pb collisions at the LHC with ALICE Measurement of W-boson production in p-pb collisions at the LHC with ALICE for the ALICE Collaboration University of Cape Town Rondebosch, Cape Town, 7700, South Africa ithemba Laboratory of Accelerator

More information

Elastic and Total Cross-Section Measurements by TOTEM: Past and Future

Elastic and Total Cross-Section Measurements by TOTEM: Past and Future Elastic and Total Cross-Section Measurements by TOTEM: Past and Future CERN (Also at Wigner RCP, Hungary) E-mail: fnemes@cern.ch The TOTEM experiment at the LHC has measured proton-proton elastic scattering

More information

Multiple Parton Interactions Physics

Multiple Parton Interactions Physics Some entertaining aspects of Multiple Parton Interactions Physics Yuri Dokshitzer LPTHE, Jussieu, Paris & PNPI, St Petersburg GGI 13.09 2011 Multi-Parton Interactions work in collaboration with B.Blok,

More information

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC

Probing parton densities with γ and γ +Q production. in p A collisions. François Arleo. Workshop on proton-nucleus collisions at the LHC Probing parton densities with γ and γ +Q production in p A collisions François Arleo LLR Palaiseau & LAPTh, Annecy Workshop on proton-nucleus collisions at the LHC Trento, May 2013 Francois Arleo (LLR

More information

Associated production of J/ψ and ϒ mesons and the prospects to observe a new hypothetical tetraquark state

Associated production of J/ψ and ϒ mesons and the prospects to observe a new hypothetical tetraquark state Associated production of J/ψ and ϒ mesons and the prospects to observe a new hypothetical tetraquark state P.N. Lebedev Institute of Physics, 53 Lenin Avenue, Moscow 119991, Russia E-mail: baranov@sci.lebedev.ru

More information

A Fixed-Target ExpeRiment at the LHC : luminosities, target polarisation and a selection of physics studies

A Fixed-Target ExpeRiment at the LHC : luminosities, target polarisation and a selection of physics studies A Fixed-Target ExpeRiment at the LHC (AFTER@LHC) : luminosities, target polarisation and a selection of physics studies 1. Introduction The important contributions of fixed-target experiments to hadron

More information

The LHC p+pb run from the nuclear PDF perspective

The LHC p+pb run from the nuclear PDF perspective Department of Physics, University of Jyväskylä, P.O. Box 35, FI-40014 University of Jyväskylä, Finland Helsinki Institute of Physics, University of Helsinki, P.O. Box 64, FI-00014, Finland E-mail: hannu.paukkunen@jyu.fi

More information

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC

PoS(LHC07)034. Dijet correlations in pp collisions at RHIC Institute of Nuclear Physics, PL-31-342 Cracow, Poland and University of Rzeszów, PL-35-959 Rzeszów, Poland E-mail: Antoni.Szczurek@ifj.edu.pl Anna Rybarska Institute of Nuclear Physics, PL-31-342 Cracow,

More information

Introduction to Saturation Physics

Introduction to Saturation Physics Introduction to Saturation Physics Introduction to Saturation Physics April 4th, 2016 1 / 32 Bibliography F. Gelis, E. Iancu, J. Jalilian-Marian and R. Venugopalan, Ann. Rev. Nucl. Part. Sci. 60, 463 (2010)

More information

arxiv: v2 [hep-ph] 19 Feb 2016

arxiv: v2 [hep-ph] 19 Feb 2016 TWIST EXPANSION OF FORWARD DRE YAN PROCESS Tomasz Stebel, eszek Motyka, Mariusz Sadzikowski arxiv:1602.01762v2 [hep-ph] 19 Feb 2016 The Marian Smoluchowski Institute of Physics, Jagiellonian University

More information

Probing nucleon structure by using a polarized proton beam

Probing nucleon structure by using a polarized proton beam Workshop on Hadron Physics in China and Opportunities with 12 GeV Jlab July 31 August 1, 2009 Physics Department, Lanzhou University, Lanzhou, China Probing nucleon structure by using a polarized proton

More information

arxiv: v1 [hep-ph] 7 Feb 2014

arxiv: v1 [hep-ph] 7 Feb 2014 Open-beauty production in ppb collisions at s NN = 5 TeV: effect of the gluon nuclear densities arxiv:1402.1747v1 [hep-ph] 7 Feb 2014 Z. Conesa del Valle a, E. G. Ferreiro b, F. Fleuret c, J.P. Lansberg

More information

Heavy Flavor Results from STAR

Heavy Flavor Results from STAR Heavy Flavor Results from STAR Wei Xie for STAR Collaboration (PURDUE University, West Lafayette) Open Heavy Flavor Production D meson direct measurement Non-photonic electron Heavy Quarkonia Production

More information

arxiv: v1 [hep-ph] 13 Sep 2016

arxiv: v1 [hep-ph] 13 Sep 2016 Energy loss as the origin of an universal scaling law of the elliptic flow Carlota Andrés, 1, Mikhail Braun, 2, and Carlos Pajares 1, 1 Instituto Galego de Física de Altas Enerxías IGFAE, arxiv:1609.03927v1

More information

Charmonium Production and the Quark Gluon Plasma

Charmonium Production and the Quark Gluon Plasma Charmonium Production and the Quark Gluon Plasma introductory remarks on charmonium and QGP discussion of time scales and open charm conservation equation remarks on 'cold nuclear matter effects' the statistical

More information

QCD Factorization Approach to Cold Nuclear Matter Effect

QCD Factorization Approach to Cold Nuclear Matter Effect Physics Division Seminar April 25, 2016 Mini-symposium on Cold Nuclear Matter from Fixed-Target Energies to the LHC SCGP: Small Auditorium Rm 102, October 9-10, 2016 QCD Factorization Approach to Cold

More information