Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT.

Size: px
Start display at page:

Download "Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT."

Transcription

1 Chapter 11 THE NATURE OF GASES States of Matter Describe the motion of gas particles according to the kinetic theory Interpret gas pressure in terms of kinetic theory Key Terms: 1. kinetic energy 2. gas pressure 3. atmospheric pressure 4. vacuum 5.barometers 6. standard atmosphere (atm) 7. kinetic theory 8. pascal (Pa) Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. The kinetic theory describes the 1 of particles in matter, and the forces of attraction between them. The theory assumes that the volume occupied by a gas is mostly 2, that the particles of gas are 3, move 4 of each other, and are in constant 5 motion. Furthermore, the 6 between particles are elastic so that the total 7 remains constant. The pressure of a gas results from the counties' collisions of the gas particles with an object. Barometers are used to measure 8 pressure. Standard conditions are defined as a temperature of 9 and a pressure of 10. Part B True-False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 11. Atmospheric pressure is 760 mm Hg. 12. The SI unit of pressure is the pascal. 13. Atmospheric pressure increases as you climb a mountain because the air layer that surrounds the earth thins out. 14. When particles of a substance are heated, some of the energy is absorbed by the particle and stored in the form of potential energy. 15. The Kelvin temperature of a substance describes the total kinetic energy of the particles in the substance. 16. At any given temperature, the particles of all substances have the same average kinetic energy. H. Cannon, C. Clapper and T. Guillot Klein High School

2 Part C Matching Match each description in Column B to the correct term in Column A. Column A Column B 17. vacuum 18. kinetic energy States of Matter a. an instrument used to measure atmospheric pressure b. a space where no particles of matter exist 19. gas pressure 20. atmospheric pressure 21. barometer c. the energy an object has because of its motion d. the force resulting from the simultaneous collisions of billions of gas particles on an object e. the pressure that results from the collisions of air molecules with objects Part D Questions and Problems 22. A gas is at a pressure of 4.30 atm. What is this pressure in kilopascals? In mmhg? 23. Describe the motion of particles of a gas according to kinetic theory. 24. What simple evidence demonstrates that gas particles are in motion? 11-2

3 THE NATURE OF LIQUID Describe the nature of a liquid in terms of the attractive forces between the particles * Differentiate between evaporation and boiling of a liquid, using kinetic theory Key Terms vaporization boiling point normal boiling point evaporation vapor pressure Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. Liquids and solids are known as 1 states of matter. Liquids are much 2 than gases. The conversion of a liquid to a gas or vapor is called 3. When a liquid becomes a gas below the boiling point of the 4, the process is called evaporation. Liquid evaporates faster when heated; however, evaporation itself is a 5 process. When a partially filled container of liquid is sealed, some of the particles in the liquid _6_. These particles collide with the walls of the container, producing a force called 7. The vapor pressure of a liquid can be determined by a device called a(n) 8. A liquid boils when its 9 equals the external pressure. The normal boiling point of a liquid is the temperature at which the vapor pressure is equal to 10. Part B True - False Classify each of these statements as always true, AT; sometimes true, ST; or never true, NT. 11. The particles of a liquid do not have enough kinetic energy to overcome the attractive forces between them to escape. 12. When a liquid occupies a closed container, there are more particles entering the vapor than condensing. 13. The change of a substance directly from a solid to a gas or vapor is called condensation 14. The rates of evaporation and condensation are equal at equilibrium. 15. Adding heat to a liquid will increase the temperature of the liquid. 16. During evaporation, the temperature of a liquid decreases. 11-3

4 Part C Matching Match each description in Column B to the correct term in Column A. Column A Column B. 17. vapor pressure. 18. condensation. 19. normal boiling point.20. liquid.21. intermolecular forces a. the pressure above a liquid in a sealed container b. the attractive forces between molecules c. the boiling point of a liquid at a pressure of kpa d. a relatively incompressible form of matter with a fixed volume but not fixed shape. e. the change of a gas or vapor to the liquid state Part D Questions and Problems 22. Describe what happens on a particle level when a liquid is at its boiling point. 23. Liquid A has a vapor pressure of 7.37 kpa at 40 C. Liquid B has a vapor pressure of kpa at 40 C. Which liquid would evaporate faster at 40 C? Explain your answer. 11-4

5 THE NATURE OF SOLID Describe how the degree of organization of particles distinguishes solids from gases and liquids Distinguish between a crystal lattice and a unit cell Explain how allotropes of an element differ Key Terms melting point allotropes amorphous solids glasses crystal unit cell Use this completion exercise to check your understanding of the concepts and terms that are introduced in this section. Each blank can be completed with a term, short phrase, or number. Solids tend to be dense and 1_. They do not flow or take the shape of their containers, like liquids do, because the particles in solids vibrate around 2 points. When a solid is sufficiently heated and its particles vibrate so strongly that they are no longer held in fixed positions, the solid 3. The 4 is the temperature at which a solid turns to liquid. The melting and 5 of a substance are at the same temperature. In general, ionic solids tend to have relatively 6 melting points while molecular solids tend to have relatively low melting points. Most solids are 7 in nature. The particles are arranged in a pattern known as a crystal 8. The smallest subunit of a crystal lattice is the 9. Some solids have a disordered array of particles and are 10_. 11-5

Name Date Class THE NATURE OF GASES

Name Date Class THE NATURE OF GASES 13.1 THE NATURE OF GASES Section Review Objectives Describe the assumptions of the kinetic theory as it applies to gases Interpret gas pressure in terms of kinetic theory Define the relationship between

More information

Name Date Class STATES OF MATTER

Name Date Class STATES OF MATTER 13 STATES OF MATTER Chapter Test A A. Matching Match each description in Column B with the correct term in Column A. Write the letter of the correct description on the line. Column A Column B 1. amorphous

More information

Chapter 13 - States of Matter. Section 13.1 The nature of Gases

Chapter 13 - States of Matter. Section 13.1 The nature of Gases Chapter 13 - States of Matter Section 13.1 The nature of Gases Kinetic energy and gases Kinetic energy: the energy an object has because of its motion Kinetic theory: all matter is made if particles in

More information

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line.

Name Date Class STATES OF MATTER. Match the correct state of matter with each description of water by writing a letter on each line. 10 STATES OF MATTER SECTION 10.1 THE NATURE OF GASES (pages 267 272) This section describes how the kinetic theory applies to gases. It defines gas pressure and explains how temperature is related to the

More information

Chapter 10 States of Matter

Chapter 10 States of Matter Chapter 10 States of Matter 1 Section 10.1 The Nature of Gases Objectives: Describe the assumptions of the kinetic theory as it applies to gases. Interpret gas pressure in terms of kinetic theory. Define

More information

Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler

Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler Chemistry States of Matter Lesson 9 Lesson Plan David V. Fansler States of Matter The Nature of Gases Objectives: Describe the motion of gas particles according to the kinetic theory; Interpret gas pressure

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole!

Chemistry Joke. Once you ve seen 6.02 x You ve seen a mole! States of Matter Chemistry Joke Once you ve seen 6.02 x 10 23 atoms You ve seen a mole! Kinetic Theory Kinetic Theory explains the states of matter based on the concept that the particles in all forms

More information

Name _ Class _ Date _

Name _ Class _ Date _ STAT(S O~ MATT(R... CHAPTR TST A A. Matching Match each description in Column B with the correct term in Column A. Write the letter of the correct description in the blank provided. in the same physical

More information

States of Matter Chapter 10 Assignment & Problem Set

States of Matter Chapter 10 Assignment & Problem Set States of Matter Name Warm-Ups (Show your work for credit) Date 1. Date 2. Date 3. Date 4. Date 5. Date 6. Date 7. Date 8. States of Matter 2 Study Guide: Things You Must Know Vocabulary (know the definition

More information

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018

Chemistry Day 5. Friday, August 31 st Tuesday, September 4 th, 2018 Chemistry Day 5 Friday, August 31 st Tuesday, September 4 th, 2018 Do-Now Title: BrainPOP: States of Matter 1. Write down today s FLT 2. List two examples of gases 3. List two examples of things that are

More information

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook

CHAPTER 13. States of Matter. Kinetic = motion. Polar vs. Nonpolar. Gases. Hon Chem 13.notebook CHAPTER 13 States of Matter States that the tiny particles in all forms of matter are in constant motion. Kinetic = motion A gas is composed of particles, usually molecules or atoms, with negligible volume

More information

CHEM. Ch. 12 Notes ~ STATES OF MATTER

CHEM. Ch. 12 Notes ~ STATES OF MATTER CHEM. Ch. 12 Notes ~ STATES OF MATTER NOTE: Vocabulary terms are in boldface and underlined. Supporting details are in italics. 12.1 topics States of Matter: SOLID, LIQUID, GAS, PLASMA I. Kinetic Theory

More information

CHEMISTRY Matter and Change. Chapter 12: States of Matter

CHEMISTRY Matter and Change. Chapter 12: States of Matter CHEMISTRY Matter and Change Chapter 12: States of Matter CHAPTER 12 States of Matter Section 12.1 Section 12.2 Section 12.3 Section 12.4 Gases Forces of Attraction Liquids and Solids Phase Changes Click

More information

Gases, Liquids and Solids

Gases, Liquids and Solids Chapter 5 Gases, Liquids and Solids The States of Matter Gases Pressure Forces between one molecule and another are called intermolecular forces. Intermolecular forces hold molecules together and kinetic

More information

Chapter 3. States of Matter

Chapter 3. States of Matter Chapter 3 States of Matter 1. Solid 2. Liquid 3. Gas States of Matter Two More (discuss later) Plasma Bose-Einstein condensate States of Matter Solid (definite shape and volume) Particles are tightly packed

More information

Activities for chapter 13: States of matter

Activities for chapter 13: States of matter Activities for chapter 13: States of matter What do I already know about states of matter? (index card) and Vocabulary table Chapter 13 reading guide (feb break assignment) and Powerpoints POGIL activities:

More information

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles.

Ch Kinetic Theory. 1.All matter is made of atoms and molecules that act like tiny particles. Ch. 15.1 Kinetic Theory 1.All matter is made of atoms and molecules that act like tiny particles. Kinetic Theory 2.These tiny particles are always in motion. The higher the temperature, the faster the

More information

13.1 The Nature of Gases (refer to pg )

13.1 The Nature of Gases (refer to pg ) 13.1 The Nature of Gases (refer to pg. 420-424) Essential Understanding any other state of matter. Temperature and pressure affect gases much more than they affect Lesson Summary Kinetic Theory and a Model

More information

Unit 8 Kinetic Theory of Gases. Chapter 13-14

Unit 8 Kinetic Theory of Gases. Chapter 13-14 Unit 8 Kinetic Theory of Gases Chapter 13-14 This tutorial is designed to help students understand scientific measurements. Objectives for this unit appear on the next slide. Each objective is linked to

More information

Chemistry B11 Chapter 6 Gases, Liquids, and Solids

Chemistry B11 Chapter 6 Gases, Liquids, and Solids Chapter 6 Gases, Liquids, and Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive forces

More information

CHAPTER 10. States of Matter

CHAPTER 10. States of Matter CHAPTER 10 States of Matter Kinetic Molecular Theory Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure

CHAPTER 10. Kinetic Molecular Theory. Five Assumptions of the KMT. Atmospheric Pressure Kinetic Molecular Theory CHAPTER 10 States of Matter Kinetikos - Moving Based on the idea that particles of matter are always in motion The motion has consequences Explains the behavior of Gases, Liquids,

More information

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K

Thermal Physics. Temperature (Definition #1): a measure of the average random kinetic energy of all the particles of a system Units: o C, K Thermal Physics Internal Energy: total potential energy and random kinetic energy of the molecules of a substance Symbol: U Units: J Internal Kinetic Energy: arises from random translational, vibrational,

More information

Investigating the Phase of High Entropy. Pressure

Investigating the Phase of High Entropy. Pressure Name: Investigating the Phase of High Entropy Do Now: Define atmosphere: What gases make up the atmosphere? What factors most strongly affect the weather? and Pressure A pressure gauge records a pressure

More information

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages )

Name Date Class STATES OF MATTER. SECTION 13.1 THE NATURE OF GASES (pages ) Name Date Class 13 STATES OF MATTER SECTION 13.1 THE NATURE OF GASES (pages 385 389) This section introduces the kinetic theory and describes how it applies to gases. It defines gas pressure and explains

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015. Solid. Liquid Commonly found on Gas Earth Plasma Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) STATES OF MATTER The Four States of Matter Solid } Liquid Commonly found on Gas Earth Plasma STATES OF MATTER Based upon particle

More information

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015

STATES OF MATTER STATES OF MATTER. The Four States of Matter 3/5/2015 The Four States of Matter Unit 10: States of Matter Lesson 10.1: States and Their Changes (Review) Solid } Liquid Commonly found on Gas Earth Plasma Based upon particle arrangement Based upon energy of

More information

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion

Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion Chapter 10 Kinetic Theory (Kinetikos - Moving ) Based on the idea that particles of matter are always in motion The motion has consequences Behavior of Gases Physical Properties of Gases Ideal Gas an imaginary

More information

Solids, Liquids, and Gases. Chapter 14

Solids, Liquids, and Gases. Chapter 14 Solids, Liquids, and Gases Chapter 14 Matter & Thermal Energy Matter can exist as a solid, a liquid, a gas or a plasma. The Molecular Kinetic Theory of Matter explains their differences and how they can

More information

Revision Sheet Final Exam Term

Revision Sheet Final Exam Term Revision Sheet Final Exam Term-1 2018-2019 Name: Subject: Chemistry Grade: 11 A, B, C Required Materials: Chapter: 10 Section: 1,2,3,4,5 (Textbook pg. 311-333) Chapter: 11 Section: 1,2, (Textbook pg. 341-355)

More information

Liquids & Solids: Section 12.3

Liquids & Solids: Section 12.3 Liquids & Solids: Section 12.3 MAIN IDEA: The particles in and have a range of motion and are not easily. Why is it more difficult to pour syrup that is stored in the refrigerator than in the cabinet?

More information

Unit 4: The Nature of Matter

Unit 4: The Nature of Matter 16 16 Table of Contents Unit 4: The Nature of Matter Chapter 16: Solids, Liquids, and Gases 16.1: Kinetic Theory 16.2: Properties and Fluids 16.3: Behavior of Gases 16.1 Kinetic Theory Kinetic Theory kinetic

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion)

States of Matter. The Solid State. Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) States of Matter The Solid State Particles are tightly packed, very close together (strong cohesive forces) Low kinetic energy (energy of motion) Fixed shape and volume Crystalline or amorphous structure

More information

The fundamental difference between. particles.

The fundamental difference between. particles. Gases, Liquids and Solids David A. Katz Department of Chemistry Pima Community College States of Matter The fundamental difference between states t of matter is the distance between particles. States of

More information

SOLID 1. Make sure your state of matter is set on solid. Write your observations below:

SOLID 1. Make sure your state of matter is set on solid. Write your observations below: Chemistry Ms. Ye Name Date Block Properties of Matter: Particle Movement Part 1: Follow the instructions below to complete the activity. Click on the link to open the simulation for this activity: http://phet.colorado.edu/sims/states-of-matter/states-of-matterbasics_en.jnlp***note:

More information

States of Matter. Solids Liquids Gases

States of Matter. Solids Liquids Gases States of Matter Solids Liquids Gases 1 Solid vs. Liquid vs. Gas Depends on only two things: What? Attractions Kinetic between particles vs Energy of particles 2 Intermolecular Forces (Molecular Attractions)

More information

Physical Science Exam 3 Study Guide. Dr. Karoline Rostamiani. Chapter 3

Physical Science Exam 3 Study Guide. Dr. Karoline Rostamiani. Chapter 3 Chapter 3 Section 1 States of Matter What is matter made of? What are the three most common states of matter? How do particles behave in each state of matter? Solids, Liquids, and Gases Materials can be

More information

Chapter 10: States of Matter

Chapter 10: States of Matter CP Chemistry Mrs. Klingaman Chapter 10: States of Matter Name: Mods: Chapter 10: States of Matter Reading Guide 10.1 The Kinetic Molecular Theory of Matter (pgs. 311-314) 1. The kinetic-molecular theory

More information

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different

Unit 6. Unit Vocabulary: Distinguish between the three phases of matter by identifying their different *STUDENT* Unit Objectives: Absolute Zero Avogadro s Law Normal Boiling Point Compound Cooling Curve Deposition Energy Element Evaporation Heat Heat of Fusion Heat of Vaporization Unit 6 Unit Vocabulary:

More information

Name. Objective 1: Describe, at the molecular level, the difference between a gas, liquid, and solid phase.

Name. Objective 1: Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Unit 6 Notepack States of Matter Name Unit 4 Objectives 1. Describe, at the molecular level, the difference between a gas, liquid, and solid phase. (CH 10) 2. Describe states of matter using the kinetic

More information

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided.

Name: Class: Date: SHORT ANSWER Answer the following questions in the space provided. CHAPTER 10 REVIEW States of Matter SECTION 1 SHORT ANSWER Answer the following questions in the space provided. 1. Identify whether the descriptions below describe an ideal gas or a real gas. a. The gas

More information

Unit 4: Gas Laws. Matter and Phase Changes

Unit 4: Gas Laws. Matter and Phase Changes Unit 4: Gas Laws Matter and Phase Changes ENERGY and matter What is 에너지 A fundamental property of the universe that cannot be easily defined. Energy No one knows what energy is, only what it does or has

More information

The Gas Laws. Learning about the special behavior of gases

The Gas Laws. Learning about the special behavior of gases The Gas Laws Learning about the special behavior of gases The States of Matter What are the 3 states of matter that chemists work with? Solids, liquids, and gases We will explain the behavior of gases

More information

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules.

Chapter 10. Lesson Starter. Why did you not smell the odor of the vapor immediately? Explain this event in terms of the motion of molecules. Preview Lesson Starter Objectives The Kinetic-Molecular Theory of Gases The Kinetic-Molecular Theory and the Nature of Gases Deviations of Real Gases from Ideal Behavior Section 1 The Kinetic-Molecular

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell

A).5 atm B) 1 atm C) 1.5 atm D) 2 atm E) it is impossible to tell 1. ne atmosphere is equivalent to A) 1.00 g ml 1 B) 22,400 ml ) 273 K D) 760. mmhg E) 298 K 2. A cylinder contains 2.50 L of air at a pressure of 5.00 atmospheres. At what volume, will the air exert a

More information

ch 12 acad.notebook January 12, 2016 Ch 12 States of Matter (solids, liquids, gases, plasma, Bose Einstein condensate)

ch 12 acad.notebook January 12, 2016 Ch 12 States of Matter (solids, liquids, gases, plasma, Bose Einstein condensate) Ch 12 States of Matter (solids, liquids, gases, plasma, Bose Einstein condensate) BIG IDEA The kinetic molecular theory explains the different properties of solids, liquids and gases. I CAN: 1) use the

More information

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS

CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS CHAPTER 1 Matter in our Surroundings CONCEPT DETAILS KEY CONCEPTS : [ *rating as per the significance of concept] 1. Particle nature of Matter *** 2. States of Matter **** 3. Interchange in states of Matter

More information

Conceptual Chemistry

Conceptual Chemistry Conceptual Chemistry Objective 1 Describe, at the molecular level, the difference between a gas, liquid, and solid phase. Solids Definite shape Definite volume Particles are vibrating and packed close

More information

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter

General Chemistry I. Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University. Module 3: The Three States of Matter General Chemistry I Dr. PHAN TẠI HUÂN Faculty of Food Science and Technology Nong Lam University Module 3: The Three States of Matter Gas state (Equation of state: ideal gas and real gas). Liquid state

More information

Introduction Matter has three possible states: - Solid - Liquid - Gas. Chem101 - Lecture 6

Introduction Matter has three possible states: - Solid - Liquid - Gas. Chem101 - Lecture 6 Chem101 - Lecture 6 States of Matter Introduction Matter has three possible states: - Solid - Liquid - Gas We will investigate the differences in the physical properties exhibited by each of these states

More information

SOLIDS, LIQUIDS, AND GASES

SOLIDS, LIQUIDS, AND GASES CHAPTER 2 SOLIDS, LIQUIDS, AND GASES SECTION 2 1 States of Matter (pages 56-60) This section explains how shape, volume, and the motion of particles are useful in describing solids, liquids, and gases.

More information

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding

Chapter 10: States of Matter. Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Chapter 10: States of Matter Concept Base: Chapter 1: Properties of Matter Chapter 2: Density Chapter 6: Covalent and Ionic Bonding Pressure standard pressure the pressure exerted at sea level in dry air

More information

Ch. 9 Liquids and Solids

Ch. 9 Liquids and Solids Intermolecular Forces I. A note about gases, liquids and gases. A. Gases: very disordered, particles move fast and are far apart. B. Liquid: disordered, particles are close together but can still move.

More information

Physical Science Chapter 5 Cont3. Temperature & Heat

Physical Science Chapter 5 Cont3. Temperature & Heat Physical Science Chapter 5 Cont3 Temperature & Heat What are we going to study? Heat Transfer Phases of Matter The Kinetic Theory of Gases Thermodynamics Specific Heat (Capacity) Specific Heat Latent Heat

More information

Name: Class: Date: Figure 3-1

Name: Class: Date: Figure 3-1 Name: Class: Date: Chapter 3 test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A gas has a. a definite volume but no definite shape. b. a definite shape

More information

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation

Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Bromine liquid vapor equilibrium vapor pressure temperature intermolecular forces Presentation Department of Chemistry & Biochemistry University of Oregon Eugene, Oregon 97403 USA Closed system vs Open

More information

Ch10.4 Attractive Forces

Ch10.4 Attractive Forces Ch10.4 Attractive Forces Intermolecular Forces are the forces holding molecules to each other. Solids have strong forces Gases (vapor) have weak forces Intermolecular forces determine the phase of matter.

More information

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due

compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due Liquids and solids They are similar compared to gases. They are incompressible. Their density doesn t change with temperature. These similarities are due to the molecules being close together in solids

More information

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws!

Gases! n Properties! n Kinetic Molecular Theory! n Variables! n The Atmosphere! n Gas Laws! Gases n Properties n Kinetic Molecular Theory n Variables n The Atmosphere n Gas Laws Properties of a Gas n No definite shape or volume n Gases expand to fill any container n Thus they take the shape of

More information

The Behaviour of Gases

The Behaviour of Gases INTRAMOLECULAR VS. INTERMOLECULAR FORCES LEARNING GOAL: to understand why gases behave the way they do The Behaviour of Gases intramolecular chemical changes: breaking and forming of INTRAMOLECULAR FORCES

More information

Centimeters of mercury

Centimeters of mercury CHAPTER 11 PROPERTIES OF GASES Gases have an indefinite shape: a gas takes the shape of its container and fills it uniformly. If the shape of the container changes, so does the shape of the gas. Gases

More information

STOICHIOMETRY. Chapter Quiz. Fill in the word(s) that will make each statement true

STOICHIOMETRY. Chapter Quiz. Fill in the word(s) that will make each statement true STOICHIOMETRY Chapter Quiz Fill in the word(s) that will make each statement true. 1. The 1 in a balanced chemical equation also reveal the mole ratios of the substances involved. 1. 12.1 2. 12.1 2. The

More information

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory

Gases. Measuring Temperature Fahrenheit ( o F): Exceptions to the Ideal Gas Law. Kinetic Molecular Theory Ideal gas: a gas in which all collisions between atoms or molecules are perfectly elastic (no energy lost) there are no intermolecular attractive forces Think of an ideal gas as a collection of perfectly

More information

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter

Chapter 6 The States of Matter. Examples of Physical Properties of Three States of Matter Chapter 6 The States of Matter Examples of Physical Properties of Three States of Matter 1 Three States of Matter Solids: Fixed shape, fixed volume, particles are held rigidly in place. Liquids: Variable

More information

Kinetic Theory of Matter

Kinetic Theory of Matter 1 Temperature and Thermal Energy Kinetic Theory of Matter The motion of the particles in matter is described by kinetic theory of matter. Matter is composed of particles that are atoms, molecules, or ions

More information

Some notes on sigma and pi bonds:

Some notes on sigma and pi bonds: Some notes on sigma and pi bonds: SIGMA bonds are formed when orbitals overlap along the axis between two atoms. These bonds have good overlap between the bonding orbitals, meaning that they are strong.

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Chemistry 101 Chapter 14 Liquids & Solids

Chemistry 101 Chapter 14 Liquids & Solids Chemistry 101 Chapter 14 Liquids & Solids States of matter: the physical state of matter depends on a balance between the kinetic energy of particles, which tends to keep them apart, and the attractive

More information

The OTHER TWO states of matter

The OTHER TWO states of matter ` The OTHER TWO states of matter LIQUIDS A decrease in the average kinetic energy of gas particles causes the temperature to decrease. As it cools, the particles tend to move more slowly if they slow down

More information

4 Discuss and evaluate the 5th state of matter. 3 - Differentiate among the four states of matter in terms of energy,

4 Discuss and evaluate the 5th state of matter. 3 - Differentiate among the four states of matter in terms of energy, Goal: Differentiate among the four states of matter in terms of energy, particle motion, and phase transitions. 4 States of Mater Sections 3.1, 3.2 4 Discuss and evaluate the 5 th state of matter. 3 -

More information

Chapter Practice Test Grosser

Chapter Practice Test Grosser Class: Date: Chapter 10-11 Practice Test Grosser Multiple Choice Identify the choice that best completes the statement or answers the question. 1. According to the kinetic-molecular theory, particles of

More information

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES

THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES THE PARTICLE MODEL AND PROPERTIES OF THE GASES, LIQUIDS AND SOLIDS. STATES CHANGES The particle model of a gas A gas has no fixed shape or volume, but always spreads out to fill any container. There are

More information

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass

Matter. Energy- which is a property of matter!! Matter: anything that takes up space and has mass Matter Matter: anything that takes up space and has mass Can you think of anything that is not made of matter? Energy- which is a property of matter!! Matter is made up of moving particles! Instead of

More information

Chapter 14 9/21/15. Solids, Liquids & Gasses. Essential Questions! Kinetic Theory! Gas State! Gas State!

Chapter 14 9/21/15. Solids, Liquids & Gasses. Essential Questions! Kinetic Theory! Gas State! Gas State! Chapter 14 Solids, Liquids & Gasses Essential Questions What is the kinetic theory of matter? How do particles move in the different states of matter? How do particles behave at the boiling and melting

More information

Ch. 11 States of matter

Ch. 11 States of matter Ch. 11 States of matter States of Matter Solid Definite volume Definite shape Liquid Definite volume Indefinite shape (conforms to container) Gas Indefinite volume (fills any container) Indefinite shape

More information

Name: Regents Chemistry: Notes: Unit 8 Gases.

Name: Regents Chemistry: Notes: Unit 8 Gases. Name: Regents Chemistry: Notes: Unit 8 Gases 1 Name: KEY IDEAS The concept of an ideal gas is a model to explain the behavior of gases. A real gas is most like an ideal gas when the real gas is at low

More information

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea

Changes of State. Substances in equilibrium change back and forth between states at equal speeds. Main Idea Section 4 s Substances in equilibrium change back and forth between states at equal speeds. A liquid boils when it has absorbed enough energy to evaporate. Freezing occurs when a substance loses enough

More information

The physical state of a substance can be changed by increasing or decreasing its temperature.

The physical state of a substance can be changed by increasing or decreasing its temperature. Chemistry Lecture #63: Changes of State The physical state of a substance can be changed by increasing or decreasing its temperature. For example, a solid substance can be converted into a liquid by heating

More information

Chapter 7. Gases, liquids, and solids. Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg

Chapter 7. Gases, liquids, and solids. Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg Chapter 7 Gases, liquids, and solids Water coexisting in three states H 2 O (g) in air H 2 O (l) ocean H 2 O (s) iceberg What s crack a lackin? Kinetic-molecular theory of gases Physical states and the

More information

Most substances can be in three states: solid, liquid, and gas.

Most substances can be in three states: solid, liquid, and gas. States of Matter Most substances can be in three states: solid, liquid, and gas. Solid Particles Have Fixed Positions The particles in a solid are very close together and have an orderly, fixed arrangement.

More information

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES

SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES 30 SOLIDS AND LIQUIDS - Here's a brief review of the atomic picture or gases, liquids, and solids GASES * Gas molecules are small compared to the space between them. * Gas molecules move in straight lines

More information

Matter changes phase when energy is added or removed

Matter changes phase when energy is added or removed Section 12.4 Phase Changes Explain how the addition and removal of energy can cause a phase change. Interpret a phase diagram. Matter changes phase when energy is added or removed Energy Changes Accompanying

More information

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary

Worksheet 1.1. Chapter 1: Quantitative chemistry glossary Worksheet 1.1 Chapter 1: Quantitative chemistry glossary Amount The number of moles of a substance present in a sample. Aqueous solution A solution with water as the solvent. Atmosphere The unit atmosphere

More information

Chapter 10 Notes: Gases

Chapter 10 Notes: Gases Chapter 10 Notes: Gases Watch Bozeman Videos & other videos on my website for additional help: Big Idea 2: Gases 10.1 Characteristics of Gases Read p. 398-401. Answer the Study Guide questions 1. Earth

More information

Pg , Syllabus

Pg , Syllabus Pg. 169 171, 173-175 Syllabus 5.7 5.14 www.cgrahamphysics.com What do you remember? End www.cgrahamphysics.com How do particles move? 3 of 30 Boardworks Ltd 2012 4 of 30 Boardworks Ltd 2012 States of matter

More information

States of Matter. Reviewing Vocabulary. Match the definition in Column A with the term in Column B.

States of Matter. Reviewing Vocabulary. Match the definition in Column A with the term in Column B. Name Date Class States of Matter Reviewing Vocabulary Match the definition in Column A with the term in Column B. Column A 1. A measure of the resistance of a liquid to flow 2. The energy required to increase

More information

Unit 08 Review: The KMT and Gas Laws

Unit 08 Review: The KMT and Gas Laws Unit 08 Review: The KMT and Gas Laws It may be helpful to view the animation showing heating curve and changes of state: http://cwx.prenhall.com/petrucci/medialib/media_portfolio/text_images/031_changesstate.mov

More information

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed.

Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. Introductory Chemistry: A Foundation, 6 th Ed. Introductory Chemistry, 6 th Ed. Basic Chemistry, 6 th Ed. by Steven S. Zumdahl & Donald J. DeCoste University of Illinois Chapter 13 Gases Properties of

More information

THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES

THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES THE CORPUSCULAR NATURE OF MATTER AND ITS PHYSICAL STATES In this unit we are going to study the matter from a microscopic point of view using the kinetic theory. We will understand the properties of the

More information

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9

CHM Solids, Liquids, and Phase Changes (r15) Charles Taylor 1/9 CHM 111 - Solids, Liquids, and Phase Changes (r15) - 2015 Charles Taylor 1/9 Introduction In CHM 110, we used kinetic theory to explain the behavior of gases. Now, we will discuss solids and liquids. While

More information

Chapter: States of Matter

Chapter: States of Matter Table of Contents Chapter: States of Matter Section 1: Matter Section 2: Changes of State Section 3: Behavior of Fluids 1 What is matter? Matter is anything that takes up space and has mass. Matter Matter

More information

CHEMISTRY NOTES Chapter 12. The Behavior of Gases

CHEMISTRY NOTES Chapter 12. The Behavior of Gases Goals : To gain an understanding of : 1. The kinetic theory of matter. 2. Avogadro's hypothesis. 3. The behavior of gases and the gas laws. NOTES: CHEMISTRY NOTES Chapter 12 The Behavior of Gases The kinetic

More information

Everything in the universe can be classified as either matter or energy. Kinetic Energy Theory: All particles of matter are in constant motion.

Everything in the universe can be classified as either matter or energy. Kinetic Energy Theory: All particles of matter are in constant motion. Physical Science Everything in the universe can be classified as either matter or energy. Kinetic Energy Theory: All particles of matter are in constant motion. State of Matter Bose- Einstein Condensate

More information

STATES OF MATTER. The Four States of Ma/er. Four States. Solid Liquid Gas Plasma

STATES OF MATTER. The Four States of Ma/er. Four States. Solid Liquid Gas Plasma STATES OF MATTER The Four States of Ma/er Solid Liquid Gas Plasma Four States STATES OF MATTER Ø What makes a substance a par:cular state of ma

More information

Liquids. properties & structure

Liquids. properties & structure Liquids properties & structure Energetics of Vaporization when the high energy molecules are lost from the liquid, it lowers the average kinetic energy if energy is not drawn back into the liquid, its

More information

THE PHASES OF MATTER. Solid: holds its shape and does not flow. The molecules in a solid vibrate in place, but on average, don t move very far.

THE PHASES OF MATTER. Solid: holds its shape and does not flow. The molecules in a solid vibrate in place, but on average, don t move very far. THE QUESTIONS What are the phases of matter? What makes these phases different from each other? What is the difference between melting, freezing, boiling and condensation? How do you interpret a Temperature

More information

CHAPTER 4 - STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School

CHAPTER 4 - STATES OF MATTER. Mr. Polard Physical Science Ingomar Middle School CHAPTER 4 - STATES OF MATTER Mr. Polard Physical Science Ingomar Middle School SECTION 1 MATTER VOCABULARY SECTION 1 Matter : anything that takes up space and has mass (pg 72, 102) Solid : Matter with

More information