Work and Heat Definitions

Size: px
Start display at page:

Download "Work and Heat Definitions"

Transcription

1 Wrk and eat Deinitins FL- Surrundings: Everything utside system + q -q + System: he part S the rld e are bserving. Wrk, : transer energy as a result unbalanced rces - eat, q: transer energy resulting rm a temperature dierence eat Sign cnventin: Psitive heat is input t the system Negative heat is utput rm system Wrk Sign cnventin: Psitive rk dne n the system Negative rk dne by the system

2 Expansin and cmpressin FL- Figure 9. EXPANSION M h M OMPRESSION M Remve pins Remve pins h M Questins. What is system? Surrundings?. des initial and inal pressure crrespnd t P ext? 3. What is sign rk r bth cases? 4. Exactly h much rk has been dne? Mgh Mg A Ah P Sign Δ?? rce*distance pressure*vlume (rce/area)*(area*height) extδ

3 EX-FL What i P ext is nt cnstant? FL-3 I P ext is nt cnstant during the expansin (r cmpressin), the rk is the integral ver the path rm i t and e need t kn h P ext varies ith : i P ext d General expressin. P ext is a unctin.

4 Wrk is the area under P ext vs... FL-4 nsider an isthermal cmpressin at cnstant pressure, P ext P P ext P < P ext P P P ext Δ P ext Δ he curve is r an ideal gas, at cnstant : P nr he rk is equal t the shaded area: nte h it depends n P ext. Figure 9.

5 Reversible isthermal cmpressin FL-5 Wrk depends n the path taken rm t. Fr cmpressin, the abslute minimum rk is dne alng the reversible path. Reversible path: At every ininitesimal step P ext is made ininitesimally larger than P. At every step, P ext is equal t the equilibrium gas pressure,. nr P gas rev rev P gas nr d d Figure 9.3 rev nr ln Is rk psitive r negative? mpressin: ln < 0 +

6 Reversible isthermal expressin EX-FL FL-6 Wrk depends n the path taken rm t. Fr expansin, the abslute maximum rk is dne n surrundings alng the reversible path. nr ln rev (Ideal gas) Is rk psitive r negative? Expansin: ln > 0 - Figure 9.3

7 State Functins vs Path Functins FL-7 As e ve seen, the rk depends n the path taken beteen initial and inal state. Wrk and heat are path unctins. State unctins dn t depend n the path taken but nly upn the state the system. Energy, U r, are state unctins. Why is this imprtant??? (See Math hapter r mre detail) he dierentials path unctins are inexact and can t be integrated nrmally! he dierentials state unctins are exact and can be integrated nrmally! State unctins du U U ΔU Path unctins δ δ (nt Δ r ) q q (nt Δq r q q )

8 he First La FL-8 he First La hermdynamics: Energy is nserved. du q δ + δ Dierential Frm ΔU q + Integral Frm Even thugh δq and δ are path unctins (inexact dierentials), their sum is a state unctin (exact dierential).

9 Let s explre state vs. path mre deeply! FL-9 3 reversible paths t the same place P,, P,, Path A: Reversible isthermal expansin Path B+: Reversible adiabatic expansin lled by heating at cnstant vlume Path D+E: Reversible cnstant-pressure expansin lled by cling at cnstant vlume All three paths are reversible, but ill they all invlve the same rk? ΔU?

10 Path A: Reversible Isthermal Expansin FL-0 P,, P,, A he energy an ideal gas depends nly n the temperature Recall U (3/)R du A 0 du δ q + δ δ rev, A δqrev, A Since the prcess is reversible δ rev, A Pgasd nr d rev, A nr ln q rev, A nr ln

11 Path B: Reversible Adiabatic Expansin FL- P,, P 3,, Adiabatic: N energy transerred as heat. S q 0. du δ Recall rm BZ/PFIG slides: We can get rm du ( ) Since ideal gas U depends nly n : Put it all tgether rev, B ΔU B U ( ) ( B du d du ( ) d ) d Frm t r

12 Path : eat at nstant FL- P 3,, P,, nstant vlume NO P Wrk!! Δ U qrev, + rev, qrev, We need t ind q rev, and ΔU q rev, ΔU ( ) d Frm t Path B + Path ΔU B + ΔU rev, B + ( ) d ( ) d rev, ( ) d 0

13 Paths D and E FL-3 Path D: nstant pressure expansin P,, P,, 3 ΔU q D 3 ( ) d P ( ) rev, D rev, D ΔU D rev, D Path E: ling at cnstant 3 D ( ) d + P ( ) E P,, 3 P,, 0 ΔU E q 3 rev, E ( ) d ΔU E rev, E rev, E 3 ( ) d

14 Path D + E FL-4 D E q rev rev q + q P ( ), D+ E rev, D rev, E + P ( ), D+ E rev, D rev, E Δ U q + D + E 0

15 Summary q,, ΔU FL-5 P ( ) rev, D+ E q rev, D+ E P ( ) Δ U rev +E, D 0 rev, A nr ln rev, A nr ln q ΔU A 0 rev, B+ ( ) d qrev, B+ ( ) d Δ U rev, B+ 0 ΔU, state unctin, is same r all paths but q rev and rev, path unctins, dier based n path.

16 Adiabatic Expansin OOL FL-6 Adiabatic s q 0 δ and du ( ) d du δ (nte that i either q 0 r 0 then the remaining dierential becmes exact) δ d Fr an ideal gas and reversible expansin: Putting them tgether nr d Pd nr ( ) d d d R I e kn h depends n, e can take bth integrals. Fr ideal mnatmic gas, 3R / B d d

17 Adiabatic vs. Isthermal Expansin FL-7 Adiabatic expansin (ideal mnatmic gas): 3/ P nr P P 3/ 5/3 P 5/3 P mpare ith Byle s La r isthermal prcesses: P P

18 hermchemistry: Δ and ΔU FL-8 Recall: Δ q p, ΔU q, U + P Δ ΔU + PΔ + ΔP ΔU + PΔ Melt ice at 0 and atm given q p 6.0 kj/ml Δ q p 6.0 kj/ml Given the mlar vlumes, slid: liquid: s l L/ml L/ml ΔU alculate L bar 00 J L atm 0.3 J

19 hermchemistry: Δ and ΔU FL-9 nsider vaprizatin (biling) ater at 00 and atm. Given: q p 40.7 kj/ml, L/ml, l g 30.6 L/ml Δ q p 40.7 kj/ml alculate ΔU ΔU Δ PΔ ΔU q the heat t vercme the intermlecular rces hlding ater tgether.

20 q p hermchemistry (cn t) We ill cus n since mst chemistry is dne at cnstant P nsider the absrptin and evlutin energy (heat) assciated ith chemical reactins. Δ r < 0 exthermic (ex ut) Δ Release energy as heat. eat is ne the prducts. r reactants prducts enthalpy prd Figure 9.8 Recall dems rm last eek?! react prducts reactants q p Δ r FL-0 > 0 endthermic (end in) Absrb energy as heat. eat must be supplied t drive the reactin.

21 able 9. Subscripts We, in class and text, adpt the lling cnventins: FL- Reactin aprizatin, evapratin Sublimatin Melting, usin ransitin beteen phases Mixing luids Adsrptin mbustin Frmatin General reactin Subscript vap sub us trs mix ad c r

22 Δ is additive: ess s La FL- Δ is a state unctin, and this means it is an additive prperty I e kn () and (), () () ( s) O ( g ) + O + O ( g ) ( g ) O O ( g ) ( g ) Δ ( ) 0.5 r ( ) Δ r kj kj We can add them t ind (3) (3) + O O ( s) ( g ) ( g ) EX-FL 3&4

23 Setup r EX-FL 3 and 4 FL-3 EX-FL3 Given: P( s) + 3l( g ) Pl3( l) Δ 640 r kj Find: P( s) + 5l( g ) Pl5( s) Pl + l Pl 3( l) ( g ) 5( s) Δ 887 r Δ r kj EX-FL4 Given: Find: Fe + 3 O Fe O ( s) ( g ) 3( s) 3Fe( s) + O( g ) Fe3O4( s) 4FeO3( s) + Fe( s) 3Fe3O4( s) Δ 06 r Δ 36 r Δ r kj kj

24 Δ r he standard reactin enthaply FL-4 is extensive: it depends n the number mles reactants acilitate the tabulatin reactin enthalpies IUPA has prpsed use the standard reactin enthaply (intensive) Δ r Deined as: ne mle reagent and all reactants and prducts in their standard states (r a gas this is ne bar at the temperature interest) Fr example: + O O ( s) ( g ) ( g ) (ne mle is cmbusted) Δ r (Intensive) kj ml - Use t get: ( s) + O( g ) O( g )

25 Standard mlar enthalpy rmatin FL-5 he enthalpy rmatin ne mle rm the cnstituent elements is the standard mlar enthalpy rmatin (intensive) Δ this means all reactants and prducts in their standard states ( g ) + O ( g ) O ( l) Δ 85.8 kj ml - at 98.5 K Standard states at bar and 98.5 K One mle O (l) is 85.8 kj dnhill in enthalpy rm the cnstituent elements

26 Δ r elements a big zer FL-6 tabulate values r Δ the values Δ r each pure element in its stable rm at ne bar and the temperature interest is set t zer. At 5 : (g) O (g) l (g) Br (g) I (g) (diamnd) Δ 0 kj ml - Δ 0 kj ml - Δ 0 kj ml - Δ kj ml - Δ kj ml - Δ.897 kj ml - See able 9. r mre Why nt zer?

27 Using Δ t get Δ r FL-7 aa + bb yy + zz aδ [A] Δ [B] yδ [Y ] b zδ [Z] # mles per mle Δ r Δ ( prducts) Δ ( reacants) Δ r ( ) ( yδ [ Y ] + zδ [ Z] aδ [ A] + bδ [ B] )

28 Which ne d yu expect t be larger, r P? Why? EX-FL5 eat apacity FL-8 eat capacity is a path unctin. Fr example, the amunt energy required t raise the temperature a substance ne degree is dierent i dne at cnstant r cnstant P At cnstant, the energy added as heat is q (ΔU q ) U ΔU Δ q Δ At cnstant P, the energy added as heat is q P (Δ q P )

29 p and emperature Dependence Δ FL-9 We can calculate the dierence in enthalpy at t dierent temperatures rm the heat capacity at thse temperatures: P P Integrate ( ) ( ) P ( ) d Prblem: Phase transitins!!! At phase transitins, P. hat is, there is n change in temp as yu add heat. hus, the enthalpy assciated ith the phase transitin must be added in ( ) (0) us s ( ) d + Δ + P us 0 us l P ( ) d

30 Benzene FL-30 Benzene: us 78.7 K, vap 353. K Figs 9.5 and 9.6 slid liquid gas liquid gas slid Fr > vap,

31 Δ r at dierent FL-3 I yu kn Δ r at ne temp,, and ant t kn it at anther,, e can use the heat capacities: Reactants Δ r ( ) Want t kn Prducts Δ r ( ) Knn: Path

32 Summary FL-3 Energy is cnserved. du δ q + δ U and are state unctins. q,, P and are path unctins. here are many ays t discuss P rk. Understanding the heat cnsumed r evlved can prvide perul insight int chemical reactins. We can use the act that U and are state unctins t tabulate and calculate thermchemical values. NEX: Energy is nt enugh t predict the directin a spntaneus prcess (reactin) the rld preers disrder

Thermochemistry. Thermochemistry

Thermochemistry. Thermochemistry Thermchemistry Petrucci, Harwd and Herring: Chapter 7 CHEM 1000A 3.0 Thermchemistry 1 Thermchemistry The study energy in chemical reactins A sub-discipline thermdynamics Thermdynamics studies the bulk

More information

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY

Types of Energy COMMON MISCONCEPTIONS CHEMICAL REACTIONS INVOLVE ENERGY CHEMICAL REACTIONS INVOLVE ENERGY The study energy and its transrmatins is knwn as thermdynamics. The discussin thermdynamics invlve the cncepts energy, wrk, and heat. Types Energy Ptential energy is stred

More information

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY

AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY AP CHEMISTRY CHAPTER 6 NOTES THERMOCHEMISTRY Energy- the capacity t d wrk r t prduce heat 1 st Law f Thermdynamics: Law f Cnservatin f Energy- energy can be cnverted frm ne frm t anther but it can be neither

More information

Work and Heat Definitions

Work and Heat Definitions Work and Heat Definitions FL- Surroundings: Everything outside system + q -q + System: he part of S the orld e are observing. Heat, q: transfer of energy resulting from a temperature difference Work, :

More information

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review)

Part One: Heat Changes and Thermochemistry. This aspect of Thermodynamics was dealt with in Chapter 6. (Review) CHAPTER 18: THERMODYNAMICS AND EQUILIBRIUM Part One: Heat Changes and Thermchemistry This aspect f Thermdynamics was dealt with in Chapter 6. (Review) A. Statement f First Law. (Sectin 18.1) 1. U ttal

More information

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj

REVIEW QUESTIONS Chapter 18. H = H (Products) - H (Reactants) H (Products) = (1 x -125) + (3 x -271) = -938 kj Chemistry 102 ANSWER KEY REVIEW QUESTIONS Chapter 18 1. Calculate the heat reactin ( H ) in kj/ml r the reactin shwn belw, given the H values r each substance: NH (g) + F 2 (g) NF (g) + HF (g) H (kj/ml)

More information

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics

Chapters 29 and 35 Thermochemistry and Chemical Thermodynamics Chapters 9 and 35 Thermchemistry and Chemical Thermdynamics 1 Cpyright (c) 011 by Michael A. Janusa, PhD. All rights reserved. Thermchemistry Thermchemistry is the study f the energy effects that accmpany

More information

Chapter 17 Free Energy and Thermodynamics

Chapter 17 Free Energy and Thermodynamics Chemistry: A Mlecular Apprach, 1 st Ed. Nivald Tr Chapter 17 Free Energy and Thermdynamics Ry Kennedy Massachusetts Bay Cmmunity Cllege Wellesley Hills, MA 2008, Prentice Hall First Law f Thermdynamics

More information

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w

Chapter Outline 4/28/2014. P-V Work. P-V Work. Isolated, Closed and Open Systems. Exothermic and Endothermic Processes. E = q + w Islated, Clsed and Open Systems 9.1 Energy as a Reactant r a Prduct 9.2 Transferring Heat and Ding Wrk 9.5 Heats f Reactin and Calrimetry 9.6 Hess s Law and Standard Heats f Reactin 9.7 Heats f Reactin

More information

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes

Chapter 17: Thermodynamics: Spontaneous and Nonspontaneous Reactions and Processes Chapter 17: hermdynamics: Spntaneus and Nnspntaneus Reactins and Prcesses Learning Objectives 17.1: Spntaneus Prcesses Cmparing and Cntrasting the hree Laws f hermdynamics (1 st Law: Chap. 5; 2 nd & 3

More information

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C?

Examples: 1. How much heat is given off by a 50.0 g sample of copper when it cools from 80.0 to 50.0 C? NOTES: Thermchemistry Part 1 - Heat HEAT- TEMPERATURE - Thermchemistry: the study f energy (in the frm f heat) changes that accmpany physical & chemical changes heat flws frm high t lw (ht cl) endthermic

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions eat Effects f hemical Reactins Enthalpy change fr reactins invlving cmpunds Enthalpy f frmatin f a cmpund at standard cnditins is btained frm the literature as standard enthalpy f frmatin Δ (O (g = -9690

More information

Thermodynamics and Equilibrium

Thermodynamics and Equilibrium Thermdynamics and Equilibrium Thermdynamics Thermdynamics is the study f the relatinship between heat and ther frms f energy in a chemical r physical prcess. We intrduced the thermdynamic prperty f enthalpy,

More information

Unit 14 Thermochemistry Notes

Unit 14 Thermochemistry Notes Name KEY Perid CRHS Academic Chemistry Unit 14 Thermchemistry Ntes Quiz Date Exam Date Lab Dates Ntes, Hmewrk, Exam Reviews and Their KEYS lcated n CRHS Academic Chemistry Website: https://cincchem.pbwrks.cm

More information

Thermodynamics Partial Outline of Topics

Thermodynamics Partial Outline of Topics Thermdynamics Partial Outline f Tpics I. The secnd law f thermdynamics addresses the issue f spntaneity and invlves a functin called entrpy (S): If a prcess is spntaneus, then Suniverse > 0 (2 nd Law!)

More information

Entropy, Free Energy, and Equilibrium

Entropy, Free Energy, and Equilibrium Nv. 26 Chapter 19 Chemical Thermdynamics Entrpy, Free Energy, and Equilibrium Nv. 26 Spntaneus Physical and Chemical Prcesses Thermdynamics: cncerned with the questin: can a reactin ccur? A waterfall runs

More information

Lecture 4. The First Law of Thermodynamics

Lecture 4. The First Law of Thermodynamics Lecture 4. The First Law f Thermdynamics THERMODYNAMICS: Basic Cncepts Thermdynamics: (frm the Greek therme, meaning "heat" and, dynamis, meaning "pwer") is the study f energy cnversin between heat and

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Answer Key ALE 28. ess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 4 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk neatly using dimensinal analysis

More information

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review

CHEM Thermodynamics. Change in Gibbs Free Energy, G. Review. Gibbs Free Energy, G. Review Review Accrding t the nd law f Thermdynamics, a prcess is spntaneus if S universe = S system + S surrundings > 0 Even thugh S system

More information

Thermochemistry Heats of Reaction

Thermochemistry Heats of Reaction hermchemistry Heats f Reactin aa + bb cc + dd hermchemical Semantics q V = Heat f Rxn at [V] = U = Energy (change) f Rxn q P = Heat f Rxn at [P] = H = Enthalpy (change) f Rxn Exthermic rxns: q < 0 Endthermic

More information

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change?

ALE 21. Gibbs Free Energy. At what temperature does the spontaneity of a reaction change? Name Chem 163 Sectin: Team Number: ALE 21. Gibbs Free Energy (Reference: 20.3 Silberberg 5 th editin) At what temperature des the spntaneity f a reactin change? The Mdel: The Definitin f Free Energy S

More information

Chemistry 114 First Hour Exam

Chemistry 114 First Hour Exam Chemistry 114 First Hur Exam Please shw all wrk fr partial credit Name: (4 pints) 1. (12 pints) Espress is made by frcing very ht water under high pressure thrugh finely grund, cmpacted cffee. (Wikipedia)

More information

" 1 = # $H vap. Chapter 3 Problems

 1 = # $H vap. Chapter 3 Problems Chapter 3 rblems rblem At 1 atmsphere pure Ge melts at 1232 K and bils at 298 K. he triple pint ccurs at =8.4x1-8 atm. Estimate the heat f vaprizatin f Ge. he heat f vaprizatin is estimated frm the Clausius

More information

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P

Thermochemistry. The study of energy changes that occur during chemical : at constant volume ΔU = q V. no at constant pressure ΔH = q P Thermchemistry The study energy changes that ccur during chemical : at cnstant vlume ΔU = q V n at cnstant pressure = q P nly wrk Fr practical reasns mst measurements are made at cnstant, s thermchemistry

More information

CHEM 103 Calorimetry and Hess s Law

CHEM 103 Calorimetry and Hess s Law CHEM 103 Calrimetry and Hess s Law Lecture Ntes March 23, 2006 Prf. Sevian Annuncements Exam #2 is next Thursday, March 30 Study guide, practice exam, and practice exam answer key are already psted n the

More information

How can standard heats of formation be used to calculate the heat of a reaction?

How can standard heats of formation be used to calculate the heat of a reaction? Name Chem 161, Sectin: Grup Number: ALE 28. Hess s Law and Standard Enthalpies Frmatin (Reerence: Chapter 6 - Silberberg 5 th editin) Imprtant!! Fr answers that invlve a calculatin yu must shw yur wrk

More information

Chem 75 February 16, 2017 Exam 2 Solutions

Chem 75 February 16, 2017 Exam 2 Solutions 1. (6 + 6 pints) Tw quick questins: (a) The Handbk f Chemistry and Physics tells us, crrectly, that CCl 4 bils nrmally at 76.7 C, but its mlar enthalpy f vaprizatin is listed in ne place as 34.6 kj ml

More information

Spontaneous Processes, Entropy and the Second Law of Thermodynamics

Spontaneous Processes, Entropy and the Second Law of Thermodynamics Chemical Thermdynamics Spntaneus Prcesses, Entrpy and the Secnd Law f Thermdynamics Review Reactin Rates, Energies, and Equilibrium Althugh a reactin may be energetically favrable (i.e. prducts have lwer

More information

188 CHAPTER 6 THERMOCHEMISTRY

188 CHAPTER 6 THERMOCHEMISTRY 188 CHAPTER 6 THERMOCHEMISTRY 4. a. ΔE = q + w = J + 100. J = 77 J b. w = PΔV = 1.90 atm(.80 L 8.0 L) = 10.5 L atm ΔE = q + w = 50. J + 1060 = 1410 J c. w = PΔV = 1.00 atm(9.1 L11. L) = 17.9 L atm 101.

More information

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK

CHEM 1413 Chapter 6 Homework Questions TEXTBOOK HOMEWORK CHEM 1413 Chapter 6 Hmewrk Questins TEXTBOOK HOMEWORK 6.25 A 27.7-g sample f the radiatr clant ethylene glycl releases 688 J f heat. What was the initial temperature f the sample if the final temperature

More information

General Chemistry II, Unit II: Study Guide (part 1)

General Chemistry II, Unit II: Study Guide (part 1) General Chemistry II, Unit II: Study Guide (part 1) CDS Chapter 21: Reactin Equilibrium in the Gas Phase General Chemistry II Unit II Part 1 1 Intrductin Sme chemical reactins have a significant amunt

More information

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra

Chem 115 POGIL Worksheet - Week 8 Thermochemistry (Continued), Electromagnetic Radiation, and Line Spectra Chem 115 POGIL Wrksheet - Week 8 Thermchemistry (Cntinued), Electrmagnetic Radiatin, and Line Spectra Why? As we saw last week, enthalpy and internal energy are state functins, which means that the sum

More information

Chemistry 1A Fall 2000

Chemistry 1A Fall 2000 Chemistry 1A Fall 2000 Midterm Exam III, versin B Nvember 14, 2000 (Clsed bk, 90 minutes, 155 pints) Name: SID: Sectin Number: T.A. Name: Exam infrmatin, extra directins, and useful hints t maximize yur

More information

GOAL... ability to predict

GOAL... ability to predict THERMODYNAMICS Chapter 18, 11.5 Study f changes in energy and transfers f energy (system < = > surrundings) that accmpany chemical and physical prcesses. GOAL............................. ability t predict

More information

Advanced Chemistry Practice Problems

Advanced Chemistry Practice Problems Advanced Chemistry Practice Prblems Thermdynamics: Gibbs Free Energy 1. Questin: Is the reactin spntaneus when ΔG < 0? ΔG > 0? Answer: The reactin is spntaneus when ΔG < 0. 2. Questin: Fr a reactin with

More information

Solutions to the Extra Problems for Chapter 14

Solutions to the Extra Problems for Chapter 14 Slutins t the Extra Prblems r Chapter 1 1. The H -670. T use bnd energies, we have t igure ut what bnds are being brken and what bnds are being made, s we need t make Lewis structures r everything: + +

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Lecture 16 Thermodynamics II

Lecture 16 Thermodynamics II Lecture 16 Thermdynamics II Calrimetry Hess s Law Enthalpy r Frmatin Cpyright 2013, 2011, 2009, 2008 AP Chem Slutins. All rights reserved. Fur Methds fr Finding H 1) Calculate it using average bnd enthalpies

More information

Problem Set 1 Solutions 3.20 MIT Professor Gerbrand Ceder Fall 2001

Problem Set 1 Solutions 3.20 MIT Professor Gerbrand Ceder Fall 2001 LEEL ROBLEMS rblem Set Slutins. MI ressr Gerbrand Ceder Fall rblem. Gas is heating in a rigid cntainer rm 4 C t 5 C U U( ) U( ) W + Q (First Law) (a) W Since nly wrk is pssible & since the cntainer is

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Matter Content from State Frameworks and Other State Documents

Matter Content from State Frameworks and Other State Documents Atms and Mlecules Mlecules are made f smaller entities (atms) which are bnded tgether. Therefre mlecules are divisible. Miscnceptin: Element and atm are synnyms. Prper cnceptin: Elements are atms with

More information

Semester 2 AP Chemistry Unit 12

Semester 2 AP Chemistry Unit 12 Cmmn In Effect and Buffers PwerPint The cmmn in effect The shift in equilibrium caused by the additin f a cmpund having an in in cmmn with the disslved substance The presence f the excess ins frm the disslved

More information

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command

NUPOC STUDY GUIDE ANSWER KEY. Navy Recruiting Command NUPOC SUDY GUIDE ANSWER KEY Navy Recruiting Cmmand CHEMISRY. ph represents the cncentratin f H ins in a slutin, [H ]. ph is a lg scale base and equal t lg[h ]. A ph f 7 is a neutral slutin. PH < 7 is acidic

More information

Heat Effects of Chemical Reactions

Heat Effects of Chemical Reactions * eat Effect f hemical Reactin Enthalpy change fr reactin invlving cmpund Enthalpy f frmatin f a cmpund at tandard cnditin i btained frm the literature a tandard enthalpy f frmatin Δ O g = -9690 J/mle

More information

Chapter 4 Thermodynamics and Equilibrium

Chapter 4 Thermodynamics and Equilibrium Chapter Thermdynamics and Equilibrium Refer t the fllwing figures fr Exercises 1-6. Each represents the energies f fur mlecules at a given instant, and the dtted lines represent the allwed energies. Assume

More information

enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions

enthalpies of formation for a few thousand compounds can be used for thermochemical calculations for millions of different chemical reactions hater 4. hermchemistry Summary thermchemistry: branch f thermdynamics dealing with energy changes f chemical reactins, w, U, and are calculated fr chemical reactin rcesses enthalies f frmatin are intrduced

More information

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics

CHEM 116 Electrochemistry at Non-Standard Conditions, and Intro to Thermodynamics CHEM 116 Electrchemistry at Nn-Standard Cnditins, and Intr t Thermdynamics Imprtant annuncement: If yu brrwed a clicker frm me this semester, return it t me at the end f next lecture r at the final exam

More information

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol

Recitation 06. n total = P total V/RT = (0.425 atm * 10.5 L) / ( L atm mol -1 K -1 * 338 K) = mol Recitatin 06 Mixture f Ideal Gases 1. Chapter 5: Exercise: 69 The partial pressure f CH 4 (g) is 0.175 atm and that f O 2 (g) is 0.250 atm in a mixture f the tw gases. a. What is the mle fractin f each

More information

CHEM 1001 Problem Set #3: Entropy and Free Energy

CHEM 1001 Problem Set #3: Entropy and Free Energy CHEM 1001 Prblem Set #3: Entry and Free Energy 19.7 (a) Negative; A liquid (mderate entry) cmbines with a slid t frm anther slid. (b)psitive; One mle f high entry gas frms where n gas was resent befre.

More information

Chapter 3 Homework Solutions

Chapter 3 Homework Solutions Chapter Hmewrk Slutins. n = ml = 5 C = 98 K = 5 C = 98 K p = atm p = 5 atm. Cpm = (5/)R he entrpy changes fr the heating and cmpressin can e calculated separately and added. Heat at cnstant pressure S

More information

What determines how matter behaves? Thermodynamics.

What determines how matter behaves? Thermodynamics. What determines hw matter ehaves? hermdynamics.. What determines hw matter ehaves? Final Stale State Equilirium State Gis free energy: Minimum (at specific, ). Classical thermdynamics Macrscpic phenmena.

More information

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity:

A. Lattice Enthalpies Combining equations for the first ionization energy and first electron affinity: [15.1B Energy Cycles Lattice Enthalpy] pg. 1 f 5 CURRICULUM Representative equatins (eg M+(g) M+(aq)) can be used fr enthalpy/energy f hydratin, inizatin, atmizatin, electrn affinity, lattice, cvalent

More information

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY

Name: Period: Date: BONDING NOTES HONORS CHEMISTRY Name: Perid: Date: BONDING NOTES HONORS CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q

When a substance heats up (absorbs heat) it is an endothermic reaction with a (+)q Chemistry Ntes Lecture 15 [st] 3/6/09 IMPORTANT NOTES: -( We finished using the lecture slides frm lecture 14) -In class the challenge prblem was passed ut, it is due Tuesday at :00 P.M. SHARP, :01 is

More information

CHE 105 EXAMINATION III November 11, 2010

CHE 105 EXAMINATION III November 11, 2010 CHE 105 EXAMINATION III Nvember 11, 2010 University f Kentucky Department f Chemistry READ THESE DIRECTIONS CAREFULLY BEFORE STARTING THE EXAMINATION! It is extremely imprtant that yu fill in the answer

More information

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N

A) 0.77 N B) 0.24 N C) 0.63 N D) 0.31 N E) 0.86 N. v = ω k = 80 = 32 m/s. Ans: (32) 2 = 0.77 N Q1. A transverse sinusidal wave travelling n a string is given by: y (x,t) = 0.20 sin (2.5 x 80 t) (SI units). The length f the string is 2.0 m and its mass is 1.5 g. What is the magnitude f the tensin

More information

Hess Law - Enthalpy of Formation of Solid NH 4 Cl

Hess Law - Enthalpy of Formation of Solid NH 4 Cl Hess Law - Enthalpy f Frmatin f Slid NH 4 l NAME: OURSE: PERIOD: Prelab 1. Write and balance net inic equatins fr Reactin 2 and Reactin 3. Reactin 2: Reactin 3: 2. Shw that the alebraic sum f the balanced

More information

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013

CHEM-443, Fall 2013, Section 010 Midterm 2 November 4, 2013 CHEM-443, Fall 2013, Sectin 010 Student Name Midterm 2 Nvember 4, 2013 Directins: Please answer each questin t the best f yur ability. Make sure yur respnse is legible, precise, includes relevant dimensinal

More information

4F-5 : Performance of an Ideal Gas Cycle 10 pts

4F-5 : Performance of an Ideal Gas Cycle 10 pts 4F-5 : Perfrmance f an Cycle 0 pts An ideal gas, initially at 0 C and 00 kpa, underges an internally reversible, cyclic prcess in a clsed system. The gas is first cmpressed adiabatically t 500 kpa, then

More information

More Tutorial at

More Tutorial at Answer each questin in the space prvided; use back f page if extra space is needed. Answer questins s the grader can READILY understand yur wrk; nly wrk n the exam sheet will be cnsidered. Write answers,

More information

Session #22: Homework Solutions

Session #22: Homework Solutions Sessin #22: Hmewrk Slutins Prblem #1 (a) In the cntext f amrphus inrganic cmpunds, name tw netwrk frmers, tw netwrk mdifiers, and ne intermediate. (b) Sketch the variatin f mlar vlume with temperature

More information

CHAPTER 6 WORK AND ENERGY

CHAPTER 6 WORK AND ENERGY CHAPTER 6 WORK AND ENERGY CONCEPTUAL QUESTIONS 16. REASONING AND SOLUTION A trapeze artist, starting rm rest, swings dwnward n the bar, lets g at the bttm the swing, and alls reely t the net. An assistant,

More information

3. Review on Energy Balances

3. Review on Energy Balances 3. Review n Energy Balances Objectives After cmpleting this chapter, students shuld be able t recall the law f cnservatin f energy recall hw t calculate specific enthalpy recall the meaning f heat f frmatin

More information

Lecture 12: Chemical reaction equilibria

Lecture 12: Chemical reaction equilibria 3.012 Fundamentals f Materials Science Fall 2005 Lecture 12: 10.19.05 Chemical reactin equilibria Tday: LAST TIME...2 EQUATING CHEMICAL POTENTIALS DURING REACTIONS...3 The extent f reactin...3 The simplest

More information

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent.

Electrochemistry. Reduction: the gaining of electrons. Reducing agent (reductant): species that donates electrons to reduce another reagent. Electrchemistry Review: Reductin: the gaining f electrns Oxidatin: the lss f electrns Reducing agent (reductant): species that dnates electrns t reduce anther reagent. Oxidizing agent (xidant): species

More information

Examples: Everything in the universe is made up of matter. How atoms are form the. Solids Liquids Gases. The a substance has, If a substance has

Examples: Everything in the universe is made up of matter. How atoms are form the. Solids Liquids Gases. The a substance has, If a substance has Matter What is Matter? Examples: Everything in the universe is made up f matter Hw atms are frm the The States f Matter There are main states f matter Slids Liquids Gases What causes the different States

More information

SPONTANEITY, ENTROPY, AND FREE ENERGY

SPONTANEITY, ENTROPY, AND FREE ENERGY CHAER 7 SONANEIY, ENROY, AND FREE ENERGY Questins. Living rganisms need an external surce f energy t carry ut these prcesses. Green plants use the energy frm sunlight t prduce glucse frm carbn dixide and

More information

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1

A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 A.P. CHEMISTRY. SOLUTIONS AND ACID BASE CHEMISTRY. p 1 (Nte: questins 1 t 14 are meant t be dne WITHOUT calculatrs!) 1.Which f the fllwing is prbably true fr a slid slute with a highly endthermic heat

More information

General Chemistry II, Unit I: Study Guide (part I)

General Chemistry II, Unit I: Study Guide (part I) 1 General Chemistry II, Unit I: Study Guide (part I) CDS Chapter 14: Physical Prperties f Gases Observatin 1: Pressure- Vlume Measurements n Gases The spring f air is measured as pressure, defined as the

More information

CHAPTER 6 THERMOCHEMISTRY. Questions

CHAPTER 6 THERMOCHEMISTRY. Questions CHAPTER 6 THERMOCHEMISTRY Questins 11. Path-dependent functins fr a trip frm Chicag t Denver are thse quantities that depend n the rute taken. One can fly directly frm Chicag t Denver, r ne culd fly frm

More information

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier

Lecture 14 Chapter 16, Sections 3-4 Equilibrium. Nifty K eq math Q and K eq Connection with G Le Chatelier Lecture 14 Chater 16, Sectins 3-4 Equilibrium Nifty K math Q and K Cnnectin with G Le Chatelier Remember In general fr a reactin like aa + bb dd + ee K [ ] d D [ E] e [ ] a A [ ] b B K s can be cmbined

More information

O C S polar - greater force. H polar greater force. H polar. polar H-bond

O C S polar - greater force. H polar greater force. H polar. polar H-bond hapter 10 : 29, 30, 31, 33, 36, 40, 46, 48, 50, 72, 87, 91, 93, 110 29. a. Lndn e. Lndn b. diple-diple f. diple-diple c. -bnding g. in-in d. in-in 30. a. in-in e. -bnding b. Lndn f. diple-diple c. Lndn

More information

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O

15.0 g Cr = 21.9 g Cr O g Cr 4 mol Cr mol Cr O WYSE Academic Challenge Sectinal Chemistry Exam 2008 SOLUTION SET 1. Crrect answer: B. Use PV = nrt t get: PV = nrt 2. Crrect answer: A. (2.18 atm)(25.0 L) = n(0.08206 L atm/ml K)(23+273) n = 2.24 ml Assume

More information

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY

Name: Period: Date: BONDING NOTES ADVANCED CHEMISTRY Name: Perid: Date: BONDING NOTES ADVANCED CHEMISTRY Directins: This packet will serve as yur ntes fr this chapter. Fllw alng with the PwerPint presentatin and fill in the missing infrmatin. Imprtant terms

More information

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes.

Edexcel IGCSE Chemistry. Topic 1: Principles of chemistry. Chemical formulae, equations and calculations. Notes. Edexcel IGCSE Chemistry Tpic 1: Principles f chemistry Chemical frmulae, equatins and calculatins Ntes 1.25 write wrd equatins and balanced chemical equatins (including state symbls): fr reactins studied

More information

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25

CHAPTER Read Chapter 17, sections 1,2,3. End of Chapter problems: 25 CHAPTER 17 1. Read Chapter 17, sectins 1,2,3. End f Chapter prblems: 25 2. Suppse yu are playing a game that uses tw dice. If yu cunt the dts n the dice, yu culd have anywhere frm 2 t 12. The ways f prducing

More information

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW

GASES. PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2. Pressure & Boyle s Law Temperature & Charles s Law Avogadro s Law IDEAL GAS LAW GASES Pressure & Byle s Law Temperature & Charles s Law Avgadr s Law IDEAL GAS LAW PV = nrt N 2 CH 4 CO 2 O 2 HCN N 2 O NO 2 Earth s atmsphere: 78% N 2 21% O 2 sme Ar, CO 2 Sme Cmmn Gasses Frmula Name

More information

Answer Key, Problem Set 8b (full)

Answer Key, Problem Set 8b (full) Chemistry 11 Mines, Fall 017 Answer Key, Prblem Set 8b (full) 1. NT1;. NT; 3. 6.58 (with extra parts added); 4. NT3; 5. 6. & 6.3; 6. 6.93; 7. 6.99; 8. 6.75 (i.e., determine the H fr the thermchemical equatin);

More information

Chemical Equilibrium

Chemical Equilibrium 0.110/5.60 Fall 005 Lecture #10 age 1 Chemical Equilibrium Ideal Gases Questin: What is the cmsitin f a reacting miture f ideal gases? e.g. ½ N (g, T, ) + 3/ H (g, T, ) = NH 3 (g, T, ) What are N,, and

More information

MBN 305 Phase Diagrams & Transformations

MBN 305 Phase Diagrams & Transformations MBN 35 Phase Diagrams & ransfrmatins Dr. Ersin Emre Oren Department f Bimedical Engineering Department f Materials Science & Nantechnlgy Engineering OBB University f Ecnmics and echnlgy Ankara - URKEY

More information

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)?

Name: Date: Class: a. How many barium ions are there per formula unit (compound)? b. How many nitride ions are there per formula unit (compound)? NOTES Name: Date: Class: Lessn 15 Part 2: Binary II Inic Bnding, Plyatmic Ins Bx 1: 1. Ba 3N 2 is the frmula fr. (name) a. Hw many barium ins are there per frmula unit (cmpund)? b. Hw many nitride ins

More information

AP Chemistry Assessment 2

AP Chemistry Assessment 2 AP Chemistry Assessment 2 DATE OF ADMINISTRATION: January 8 January 12 TOPICS COVERED: Fundatinal Tpics, Reactins, Gases, Thermchemistry, Atmic Structure, Peridicity, and Bnding. MULTIPLE CHOICE KEY AND

More information

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008

Phy 212: General Physics II 1 Chapter 18 Worksheet 3/20/2008 Phy 1: General Physics II 1 hapter 18 rksheet 3/0/008 Thermal Expansin: 1. A wedding ring cmpsed f pure gld (inner diameter = 1.5 x 10 - m) is placed n a persn s finger (diameter = 1.5 x 10 - m). Bth the

More information

CHEMICAL EQUILIBRIUM

CHEMICAL EQUILIBRIUM 14 CHAPTER CHEMICAL EQUILIBRIUM 14.1 The Nature f Chemical Equilibrium 14. The Empirical Law f Mass Actin 14.3 Thermdynamic Descriptin f the Equilibrium State 14.4 The Law f Mass Actin fr Related and Simultaneus

More information

CHM 152 Practice Final

CHM 152 Practice Final CM 152 Practice Final 1. Of the fllwing, the ne that wuld have the greatest entrpy (if cmpared at the same temperature) is, [a] 2 O (s) [b] 2 O (l) [c] 2 O (g) [d] All wuld have the same entrpy at the

More information

CHAPTER 6 THERMOCHEMISTRY. Questions

CHAPTER 6 THERMOCHEMISTRY. Questions CHAPTER 6 THERMOCHEMISTRY Questins 11. Path-dependent functins fr a trip frm Chicag t Denver are thse quantities that depend n the rute taken. One can fly directly frm Chicag t Denver, r ne culd fly frm

More information

CHM112 Lab Graphing with Excel Grading Rubric

CHM112 Lab Graphing with Excel Grading Rubric Name CHM112 Lab Graphing with Excel Grading Rubric Criteria Pints pssible Pints earned Graphs crrectly pltted and adhere t all guidelines (including descriptive title, prperly frmatted axes, trendline

More information

Experiment #3. Graphing with Excel

Experiment #3. Graphing with Excel Experiment #3. Graphing with Excel Study the "Graphing with Excel" instructins that have been prvided. Additinal help with learning t use Excel can be fund n several web sites, including http://www.ncsu.edu/labwrite/res/gt/gt-

More information

Process Engineering Thermodynamics E (4 sp) Exam

Process Engineering Thermodynamics E (4 sp) Exam Prcess Engineering Thermdynamics 42434 E (4 sp) Exam 9-3-29 ll supprt material is allwed except fr telecmmunicatin devices. 4 questins give max. 3 pints = 7½ + 7½ + 7½ + 7½ pints Belw 6 questins are given,

More information

Chemical Thermodynamics

Chemical Thermodynamics Chemical Thermdynamics Objectives 1. Be capable f stating the First, Secnd, and Third Laws f Thermdynamics and als be capable f applying them t slve prblems. 2. Understand what the parameter entrpy means.

More information

CHEM 2400/2480. Lecture 19

CHEM 2400/2480. Lecture 19 Lecture 19 Metal In Indicatr - a cmpund whse clur changes when it binds t a metal in - t be useful, it must bind the metal less strngly than EDTA e.g. titratin f Mg 2+ with EDTA using erichrme black T

More information

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions

Chem 116 POGIL Worksheet - Week 3 - Solutions Intermolecular Forces, Liquids, Solids, and Solutions Chem 116 POGIL Wrksheet - Week 3 - Slutins Intermlecular Frces, Liquids, Slids, and Slutins Key Questins 1. Is the average kinetic energy f mlecules greater r lesser than the energy f intermlecular frces

More information

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions?

CHEM 1032 FALL 2017 Practice Exam 4 1. Which of the following reactions is spontaneous under normal and standard conditions? 1 CHEM 1032 FALL 2017 Practice Exam 4 1. Which f the fllwing reactins is spntaneus under nrmal and standard cnditins? A. 2 NaCl(aq) 2 Na(s) + Cl2(g) B. CaBr2(aq) + 2 H2O(aq) Ca(OH)2(aq) + 2 HBr(aq) C.

More information

Work, Energy, and Power

Work, Energy, and Power rk, Energy, and Pwer Physics 1 There are many different TYPES f Energy. Energy is expressed in JOULES (J 419J 4.19 1 calrie Energy can be expressed mre specifically by using the term ORK( rk The Scalar

More information

Compressibility Effects

Compressibility Effects Definitin f Cmpressibility All real substances are cmpressible t sme greater r lesser extent; that is, when yu squeeze r press n them, their density will change The amunt by which a substance can be cmpressed

More information

Chapter 11: Atmosphere

Chapter 11: Atmosphere Chapter 11: Atmsphere Sectin 1: Atmspheric Basics Objectives 1. Describe the cmpsitin f the atmsphere. 2. Cmpare and cntrast the varius layers f the atmsphere. 3. Identify three methds f transferring energy

More information

Chapter 9: Quantization of Light

Chapter 9: Quantization of Light Chapter 9: Quantizatin Light 9.1 Planck s Quantum Thery 9.1.1 Distinguish between Planck s quantum thery and classical thery energy The undatin the Planck s quantum thery is a thery black bdy radiatin.

More information

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site.

Find this material useful? You can help our team to keep this site up and bring you even more content consider donating via the link on our site. Find this material useful? Yu can help ur team t keep this site up and bring yu even mre cntent cnsider dnating via the link n ur site. Still having truble understanding the material? Check ut ur Tutring

More information

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1

Phys102 First Major-122 Zero Version Coordinator: Sunaidi Wednesday, March 06, 2013 Page: 1 Crdinatr: Sunaidi Wednesday, March 06, 2013 Page: 1 Q1. An 8.00 m lng wire with a mass f 10.0 g is under a tensin f 25.0 N. A transverse wave fr which the wavelength is 0.100 m, and the amplitude is 3.70

More information