Solutions Assignment 2 - Growth and Easy ModelWorks

Size: px
Start display at page:

Download "Solutions Assignment 2 - Growth and Easy ModelWorks"

Transcription

1 - FS 2015 Solutions Assignment 2 - Growth and Easy ModelWorks This assignment is used to learn using the general purpose modeling and simulation tool Easy ModelWorks. To this end we study the classical model logistic growth. Questions and answers 1) Unless preinstalled, please download and install Easy ModelWorks according to the instructions and always carry out all instructions immediately ( I hear and I forget. I see and I remember. I do and I understand. Confucius ). 2) Activate from the sample models the model logistic growth (choose menu command Modelling -> Sample MDPs 1 > Logistic Growth (cont.) ). It has a single state variable x1 2 that represents the population size x and the following conditions hold: x 0, a,b > 0. a) Examine the model behaviour for small values of the state variable x1 (Note: use Menu Command Modelling -> Edit model... to alter the initial condition of x1). Investigate the underlying differential equation: Why does the observed behaviour occur? What is the differential equation, which approximately describes such a growth? What do you call this kind of growth (Consult the Courseware «Drosophila» p. 2-5)? Which symbol is commonly used for the model parameter in this model? What is its unit and its ecological meaning? Continuous time logistic growth is an ordinary differential equation, i.e. a DESS (Differential Equation System Specification), of following form: x (t) = dx(t) / dt = a x(t) b x(t) 2 = x = a x b x 2 (1) The fact that the state variable x(t) is a function of time t, is often assumed implicitly: Instead of x(t) we write then just x and instead of x (t) just x. The shape of the curve of the solution is symmetrical-sigmoidal. The important model parameter a, often also called r, is the relative growth rate. Its unit is "per unit of time", in our case per day (d -1 ). It determines whether the population is growing (a > 0) or decaying (a < 0). However, normally a is considered to be positive only. In (1), b is a second model parameter (see also part 2c) To investigate small values of the state variables x, the initial values x 0 have to be reduced to a small value, say Use menu command Modelling -> Edit model... and enter the desired new value for x 0 (Figure 1). Figure 1: Dialogue to change the initial value x 0. of the population size, after having used the menu command Modelling -> Edit model... (population size in this simulation model: x10 = 0.001). The input field is located underneath x.(0), to the right of the differential equation of the state variable x (in this simulation model called x1). 1 MDP stands for Model Definition Program 2 In contrast to its larger sister ModelWorks, Easy ModelWorks has limited functionality and requires a specific naming of state variables: You may only use one of these 9 names x1, x2, x9. 1

2 Solutions Assignment 2 Growth and Easy ModelWorks The value x0 defines the initial state of a population. The smaller the size, the more time the population needs to reach the equilibrium. The reason being that the initial value does not change the actual shape of the curve. If you start the simulation with a smaller population, you have to allow for some time to elapse until the population will reach the value matching the former, larger initial value. Reducing the initial value results thus only in a temporal delay before stabilization (Figure 2 left). Figure 2: Simulation experiments with the model Logistic Growth (cont.) using different starting values x0 of the population size, i.e. x0 = 0.001, 0.5 and 1.0 (left) and simplified equations system, i.e. b = 0 (right, Menu command Set time... and tend = 10, b = 0 and 0.001). For small population sizes x << 1, the quadratic term in (1) 0, i.e. the logistic differential equation (1) reduces to an equation of exponential growth: x a x. This is true for the left parts of all curves in Figure 2 (left), i.e. for t < ~5. You can verify this by changing the equation and delete the self-inhibition term or by setting b = 0 (menu command Edit model... ) and shortening the simulation time to 10 d (menu command "Set time...", Figure 2, right). b) What is the role of the parameter a? How does the model behaviour change, if you increase the value of a from 0.7 to 1.2? Please sketch first the model behavior you expect before you make a simulation. Then make this parameter change by editing the model (choose menu command Modelling -> Edit model... ) and then solve the altered model again. Was your expectation correct? If not, don t worry, this is an excellent learning opportunity: try to understand what is going on. or? Figure 3: Two possible sketches for the prediction of the behaviour of the model by increasing the model parameter a from 0.7 to 1.2 (sub-question 2b, compare Figure 4). The parameter a is a relative growth rate and is to be interpreted as the net growth rate. It arises from the difference between the processes which make the population grow, i.e. natality and immigration, as well as the processes which cause the population to decrease, i.e. mortality and emigration (s. supplement to the assignment, i.e. Figure 1 in chapter 2 «Theory»). 2

3 Increasing the parameter a from 0.7 to actually resulted in the following curves (Figure 4): a b c Figure 4: The increase of the relative growth rate a from 0.7 to 1.2 d -1 results in a faster growth as well as an increased equilibrium position (cf. Figure 3). a: default axis scaling; b: exactly the same simulation results as in a, however, customized presentation by changing the axis scaling. It was made by use of the dialogue (c), increasing the maximum from 1000 to 1200 (input field below max). This dialogue is selected by the menu command Set monitoring... in the menu Simulation. Depending on the prediction you have made (Fig. 3, left or right), it may or may not match the simulation result shown in Fig. 4. Be assured, it doesn t matter if your prediction does not match the simulated results. This happens often and is quite normal. Having erred with such a prediction is even to be welcomed, since it is an excellent opportunity to learn. Try to understand why your prediction has been wrong and you can gain often many insights. The following will help you find an explanation for this perhaps quite surprising model behavior. c) Study empirically the model behaviour for values of the state variable near the value of the ratio a/b = 0.7/0.001 (Note: First discard all changes you have made by activating once more the same sample model and by answering No when asked to save changes). Explain again by analytical examination of the underlying differential equation why the observed behaviour occurs. What differential equation describes approximately this form of behaviour? Increasing the initial value x 0 of the state variable x(t) up to a value of 0.7/0.001 = 700 results in a horizontal straight line along the equilibrium position x(t ). The net growth of the population is obviously equal to 0, i.e. growth and decline compensate each other and the population size does not change (Figure 5). 3 Use the same dialog, you have used for the change of the initial values, menu command "Edit Model" (see Figure 1) 3

4 It holds: dx(t )/dt = a*x(t ) b*x(t ) 2 (1) = 0.7* *700 2 = = 0 This equilibrium condition can be interpreted to be a dynamic equilibrium such that for the population density x(t ) the growth term (a*x(t )) is equal to the density-dependent selfinhibition term (b*x(t ) 2 ). We can not say whether births and immigration (g) have decreased, whether death rate and emigration (m) have increased, or whether both changed in the aforementioned way with increasing population size, because the model describes merely the net effect of any or all of these changes. The differential equation, which describes the behaviour of this model, is: dx(t)/dt = g m = 0 where: g m with x 0 = x(t ) = 700 g: absolute rate of growth 4 m: absolute rate of mortality 5 If you create "artificially" exceptionally high population sizes, x(t) > x(t ), the self-inhibition term m will be higher than the growth term g. Such high values could for instance be the result of immigration into a population in the equilibrium position x(t ). In that case, the model will even describe a population decline. Please note that this will occur, although the growth rate a is positive (Figure 4, e.g. x 0 = 900)! Figure 5: If the initial value x 0 is set at the equilibrium value x(t ) = 700, you get a horizontal straight line. Other initial values x 0 are also shown here: x(t ) = 900, 800, 675, 300 and 1. 4 in contrast to relative growth rate r, a model parameter, which is a per capita growth rate 5 in contrast to relative mortality/emigration rate, which is a per capita mortality/emigration rate 4

5 d) Please derive from the original differential equation a new equivalent differential equation with only the following two model parameters: a and a/b. What is the name of the new parameter? = a/b? What is its unit and its ecological meaning? Please modify in Easy ModelWorks your MDP according to the obtained equation. Do you really get the same model behaviour? dx(t)/dt = a x b x2 (1) = a (1 b/a*x) x = a (1 1 a/b *x) x = a ( a/b a/b x a/b ) x = a ( a/b x a/b ) x dx(t)/dt = a ( K x K ) x = r (K x K ) x (2) = a*([k x(t)]/k)*x(t) = r*([k x(t)]/k)*x(t) (see «Theory») respectively implemented with a = r in Easy ModelWorks (Figure 6): Figure 6: The formula of the differential equation is to be entered in the field right to the text x1dot = (menu command Edit model... in the menu Modelling ). x1dot: derivative of the state variable x = x1 The new parameter K (= a/b) represents the carrying capacity of a population, resulting from dividing the growth coefficient a, respectively the growth rate r, through the self-inhibition coefficient b. It corresponds exactly to the equilibrium value x(t ). The greater the growth coefficient a or the smaller the self-inhibition coefficient b, the greater is K and the higher is the maximum population size (a/b = K = x(t )). The unit of K as carrying capacity must of course be the same as that of the population. Therefore, the unit equation is: a b = d 1 d 1 1 = Individuals * Individuals You can also see easily, why the equilibrium position x(t ) exists in the new form of the differential equation (2). If the population x = K, the numerator and thus the value of the whole equation will become zero (see sub-question 2c). e) Repeat the task b). What is now the role of the parameter a? Please sketch again the expected model 5

6 behavior before you run the model. What happens if you increase a from 0.7 to 1.2? Implement this change now and solve the new model. Was your expectation correct? Figure 7: Sketch of the prediction of the behaviour of the new model variant when increasing the model parameter a from 0.7 to 1.2 (sub-question 2e, see Figure 8). The sketch shows that it is assumed that because the carrying capacity K remains the same, the curve will run steeper, but that the equilibrium position does not change. Because K was formulated independently from a (= r) (see Figure 6). Increasing the model parameter a from 0.7 to 1.2 shows that a actually affects only the slope of the curve and not the equilibrium position anymore (Figure 8). The curve is steeper and the value of K is reached earlier. Please note that this is not just a termporal shift, but also the shape of the curve changes. Please note also that the maximum slope in the population size x(t) = K/2 is at a = 1.2 d -1 greater than at a = 0.7 d -1. Figure 8: By varying the growth rate, i.e. the model parameters a from 0.7 to 1.2 d -1, the slope of the population size becomes steeper. However, the carrying capacity K remains the same. (see Figure 7). 6

Math 132. Population Growth: Raleigh and Wake County

Math 132. Population Growth: Raleigh and Wake County Math 132 Population Growth: Raleigh and Wake County S. R. Lubkin Application Ask anyone who s been living in Raleigh more than a couple of years what the biggest issue is here, and if the answer has nothing

More information

Linear Motion with Constant Acceleration

Linear Motion with Constant Acceleration Linear Motion 1 Linear Motion with Constant Acceleration Overview: First you will attempt to walk backward with a constant acceleration, monitoring your motion with the ultrasonic motion detector. Then

More information

Computer simulation of radioactive decay

Computer simulation of radioactive decay Computer simulation of radioactive decay y now you should have worked your way through the introduction to Maple, as well as the introduction to data analysis using Excel Now we will explore radioactive

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates

Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates 9.1 Multivariable Functions and Contour Graphs Although Excel can easily draw 3-dimensional surfaces, they are often difficult to mathematically

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Taking Stock: In the last chapter, we learned that equilibrium problems have an interesting dimension

More information

Some Generalizations of Logistic Model

Some Generalizations of Logistic Model Review Communications Biomath Communications 4 (2017) Biomath Communications www.biomathforum.org/biomath/index.php/conference Some Generalizations of Logistic Model Gurgen Dallakyan Aygestan 8, Yerevan

More information

AMS 27L LAB #6 Winter 2009

AMS 27L LAB #6 Winter 2009 AMS 27L LAB #6 Winter 2009 Symbolically Solving Differential Equations Objectives: 1. To learn about the MATLAB Symbolic Solver 2. To expand knowledge of solutions to Diff-EQs 1 Symbolically Solving Differential

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions?

Math 2930 Worksheet Introduction to Differential Equations. What is a Differential Equation and what are Solutions? Math 2930 Worksheet Introduction to Differential Equations Week 1 January 25, 2019 What is a Differential Equation and what are Solutions? A differential equation is an equation that relates an unknown

More information

Math 2930 Worksheet Introduction to Differential Equations

Math 2930 Worksheet Introduction to Differential Equations Math 2930 Worksheet Introduction to Differential Equations Week 1 August 24, 2017 Question 1. Is the function y = 1 + t a solution to the differential equation How about the function y = 1 + 2t? How about

More information

SUMMER MATH PACKET College Algebra and Trigonometry A COURSE 235 and Pre-Calculus A COURSE 241

SUMMER MATH PACKET College Algebra and Trigonometry A COURSE 235 and Pre-Calculus A COURSE 241 SUMMER MATH PACKET College Algebra and Trigonometry A COURSE 35 and Pre-Calculus A COURSE 41 Revised May 017 MATH SUMMER PACKET INSTRUCTIONS Attached you will find a packet of exciting math problems for

More information

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge).

the probability of getting either heads or tails must be 1 (excluding the remote possibility of getting it to land on its edge). Probability One of the most useful and intriguing aspects of quantum mechanics is the Heisenberg Uncertainty Principle. Before I get to it however, we need some initial comments on probability. Let s first

More information

Lab 5: Nonlinear Systems

Lab 5: Nonlinear Systems Lab 5: Nonlinear Systems Goals In this lab you will use the pplane6 program to study two nonlinear systems by direct numerical simulation. The first model, from population biology, displays interesting

More information

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models.

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Unit #16 : Differential Equations Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Differential Equation Modelling - 1 Differential Equation

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

2015 SUMMER MATH PACKET

2015 SUMMER MATH PACKET Name: Date: 05 SUMMER MATH PACKET College Algebra Trig. - I understand that the purpose of the summer packet is for my child to review the topics they have already mastered in previous math classes and

More information

Chapter 1 Review of Equations and Inequalities

Chapter 1 Review of Equations and Inequalities Chapter 1 Review of Equations and Inequalities Part I Review of Basic Equations Recall that an equation is an expression with an equal sign in the middle. Also recall that, if a question asks you to solve

More information

APPM 2360 Lab #3: The Predator Prey Model

APPM 2360 Lab #3: The Predator Prey Model APPM 2360 Lab #3: The Predator Prey Model 1 Instructions Labs may be done in groups of 3 or less. One report must be turned in for each group and must be in PDF format. Labs must include each student s:

More information

Polynomial Models Studio Excel 2007 for Windows Instructions

Polynomial Models Studio Excel 2007 for Windows Instructions Polynomial Models Studio Excel 2007 for Windows Instructions A. Download the data spreadsheet, open it, and select the tab labeled Murder. This has the FBI Uniform Crime Statistics reports of Murder and

More information

Project IV Fourier Series

Project IV Fourier Series Project IV Fourier Series Robert Jerrard Goal of the project To develop understanding of how many terms of a Fourier series are required in order to well-approximate the original function, and of the differences

More information

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc.

Chapter 8. Linear Regression. Copyright 2010 Pearson Education, Inc. Chapter 8 Linear Regression Copyright 2010 Pearson Education, Inc. Fat Versus Protein: An Example The following is a scatterplot of total fat versus protein for 30 items on the Burger King menu: Copyright

More information

A Scientific Model for Free Fall.

A Scientific Model for Free Fall. A Scientific Model for Free Fall. I. Overview. This lab explores the framework of the scientific method. The phenomenon studied is the free fall of an object released from rest at a height H from the ground.

More information

Wednesday 9/27. Please open quizizz

Wednesday 9/27. Please open quizizz Wednesday 9/27 Please open quizizz Graphing Acceleration VT Graphs VELOCITY m/s VELOCITY TIME GRAPHS Moving in a positive direction, SPEEDING UP Constant speed NO ACCELERATION Moving in a positive direction,

More information

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations

ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER / Lines and Their Equations ACCESS TO SCIENCE, ENGINEERING AND AGRICULTURE: MATHEMATICS 1 MATH00030 SEMESTER 1 017/018 DR. ANTHONY BROWN. Lines and Their Equations.1. Slope of a Line and its y-intercept. In Euclidean geometry (where

More information

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms

Name: Date: Period: APGR 40: Population Ecology and Distribution of Organisms Overview 1. What is ecology? APGR 40: Population Ecology and Distribution of Organisms 2. Study Figure 40.2 in your text. It shows the different levels of the biological hierarchy studied by ecologists.

More information

1 Mathematical models of the population growth

1 Mathematical models of the population growth 1 Mathematical models of the population growth 1.1 How many people can the Earth support? (Or a quick refresher on the least square method) I would like to start with a very simple and yet interesting

More information

Investigating Springs (Simple Harmonic Motion)

Investigating Springs (Simple Harmonic Motion) Investigating Springs (Simple Harmonic Motion) INTRODUCTION The purpose of this lab is to study the well-known force exerted by a spring The force, as given by Hooke s Law, is a function of the amount

More information

SUMMER MATH PACKET ADVANCED ALGEBRA A COURSE 215

SUMMER MATH PACKET ADVANCED ALGEBRA A COURSE 215 SUMMER MATH PACKET ADVANCED ALGEBRA A COURSE 5 Updated May 0 MATH SUMMER PACKET INSTRUCTIONS Attached you will find a packet of exciting math problems for your enjoyment over the summer. The purpose of

More information

Motion in Two Dimensions: Centripetal Acceleration

Motion in Two Dimensions: Centripetal Acceleration Motion in Two Dimensions: Centripetal Acceleration Name: Group Members: Date: TA s Name: Apparatus: Rotating platform, long string, liquid accelerometer, meter stick, masking tape, stopwatch Objectives:

More information

Total=75 min. Materials BLM cut into cards BLM

Total=75 min. Materials BLM cut into cards BLM Unit 2: Day 4: All together now! Math Learning Goals: Minds On: 15 Identify functions as polynomial functions. Consolidate understanding of properties of functions that include: linear, Action: 50 quadratic,

More information

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1

, (1) e i = ˆσ 1 h ii. c 2016, Jeffrey S. Simonoff 1 Regression diagnostics As is true of all statistical methodologies, linear regression analysis can be a very effective way to model data, as along as the assumptions being made are true. For the regression

More information

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates.

Physics E-1ax, Fall 2014 Experiment 3. Experiment 3: Force. 2. Find your center of mass by balancing yourself on two force plates. Learning Goals Experiment 3: Force After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Find your center of mass by

More information

First Order Rate Laws and the Kinetics Mechanism Simulation Program

First Order Rate Laws and the Kinetics Mechanism Simulation Program First Order Rate Laws and the Kinetics Mechanism Simulation Program The Kinetics Mechanism Simulation program (kine.html) is useful for building models in a wide variety of areas, including population

More information

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 7

Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 7 EECS 16B Designing Information Devices and Systems II Fall 2018 Elad Alon and Miki Lustig Homework 7 This homework is due on October 17, 2018 at 11:59pm Self grades are due on October 22, 2018 at 11:59pm

More information

Experiment: Oscillations of a Mass on a Spring

Experiment: Oscillations of a Mass on a Spring Physics NYC F17 Objective: Theory: Experiment: Oscillations of a Mass on a Spring A: to verify Hooke s law for a spring and measure its elasticity constant. B: to check the relationship between the period

More information

MODELS ONE ORDINARY DIFFERENTIAL EQUATION:

MODELS ONE ORDINARY DIFFERENTIAL EQUATION: MODELS ONE ORDINARY DIFFERENTIAL EQUATION: opulation Dynamics (e.g. Malthusian, Verhulstian, Gompertz, Logistic with Harvesting) Harmonic Oscillator (e.g. pendulum) A modified normal distribution curve

More information

Finite Mathematics : A Business Approach

Finite Mathematics : A Business Approach Finite Mathematics : A Business Approach Dr. Brian Travers and Prof. James Lampes Second Edition Cover Art by Stephanie Oxenford Additional Editing by John Gambino Contents What You Should Already Know

More information

The following are generally referred to as the laws or rules of exponents. x a x b = x a+b (5.1) 1 x b a (5.2) (x a ) b = x ab (5.

The following are generally referred to as the laws or rules of exponents. x a x b = x a+b (5.1) 1 x b a (5.2) (x a ) b = x ab (5. Chapter 5 Exponents 5. Exponent Concepts An exponent means repeated multiplication. For instance, 0 6 means 0 0 0 0 0 0, or,000,000. You ve probably noticed that there is a logical progression of operations.

More information

1.2 Supplement: Mathematical Models: A Catalog of Essential Functions

1.2 Supplement: Mathematical Models: A Catalog of Essential Functions Math 131 -copyright Angela Allen, Fall 2011 1 1.2 Supplement: Mathematical Models: A Catalog of Essential Functions Note: Some of these examples and figures come from your textbook Single Variable Calculus:

More information

appstats8.notebook October 11, 2016

appstats8.notebook October 11, 2016 Chapter 8 Linear Regression Objective: Students will construct and analyze a linear model for a given set of data. Fat Versus Protein: An Example pg 168 The following is a scatterplot of total fat versus

More information

2 One-dimensional models in discrete time

2 One-dimensional models in discrete time 2 One-dimensional models in discrete time So far, we have assumed that demographic events happen continuously over time and can thus be written as rates. For many biological species with overlapping generations

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013

Chapter 5 Lecture. Metapopulation Ecology. Spring 2013 Chapter 5 Lecture Metapopulation Ecology Spring 2013 5.1 Fundamentals of Metapopulation Ecology Populations have a spatial component and their persistence is based upon: Gene flow ~ immigrations and emigrations

More information

Unit 8 - Polynomial and Rational Functions Classwork

Unit 8 - Polynomial and Rational Functions Classwork Unit 8 - Polynomial and Rational Functions Classwork This unit begins with a study of polynomial functions. Polynomials are in the form: f ( x) = a n x n + a n 1 x n 1 + a n 2 x n 2 +... + a 2 x 2 + a

More information

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models.

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Unit #17 : Differential Equations Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Reading: Sections 11.5-11.7. In workingwiththemodels insections11.5

More information

Chapter 2. Motion in One Dimension. AIT AP Physics C

Chapter 2. Motion in One Dimension. AIT AP Physics C Chapter 2 Motion in One Dimension Kinematics Describes motion while ignoring the agents that caused the motion For now, will consider motion in one dimension Along a straight line Will use the particle

More information

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation?

Linear Regression. Linear Regression. Linear Regression. Did You Mean Association Or Correlation? Did You Mean Association Or Correlation? AP Statistics Chapter 8 Be careful not to use the word correlation when you really mean association. Often times people will incorrectly use the word correlation

More information

SUMMER MATH PACKET. Geometry A COURSE 227

SUMMER MATH PACKET. Geometry A COURSE 227 SUMMER MATH PACKET Geometry A COURSE 7 MATH SUMMER PACKET INSTRUCTIONS Attached you will find a packet of exciting math problems for your enjoyment over the summer. The purpose of the summer packet is

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals

Chapter 8. Linear Regression. The Linear Model. Fat Versus Protein: An Example. The Linear Model (cont.) Residuals Chapter 8 Linear Regression Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Slide 8-1 Copyright 2007 Pearson Education, Inc. Publishing as Pearson Addison-Wesley Fat Versus

More information

Lab 10: DC RC circuits

Lab 10: DC RC circuits Name: Lab 10: DC RC circuits Group Members: Date: TA s Name: Objectives: 1. To understand current and voltage characteristics of a DC RC circuit 2. To understand the effect of the RC time constant Apparatus:

More information

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions

Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions Chapter 9 Ingredients of Multivariable Change: Models, Graphs, Rates & 9.1 Cross-Sectional Models and Multivariable Functions For a multivariable function with two input variables described by data given

More information

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules

MATH 250 TOPIC 13 INTEGRATION. 13B. Constant, Sum, and Difference Rules Math 5 Integration Topic 3 Page MATH 5 TOPIC 3 INTEGRATION 3A. Integration of Common Functions Practice Problems 3B. Constant, Sum, and Difference Rules Practice Problems 3C. Substitution Practice Problems

More information

Physics 201 Lab 2 Air Drag Simulation

Physics 201 Lab 2 Air Drag Simulation Physics 201 Lab 2 Air Drag Simulation Jan 28, 2013 Equipment Initial Set Up Type the data from Table 1 into the appropriate cells. By preceding the content of the cell with an equal sign (as in cell A6)

More information

Slope Fields: Graphing Solutions Without the Solutions

Slope Fields: Graphing Solutions Without the Solutions 8 Slope Fields: Graphing Solutions Without the Solutions Up to now, our efforts have been directed mainly towards finding formulas or equations describing solutions to given differential equations. Then,

More information

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition

STUDY GUIDE Math 20. To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition STUDY GUIDE Math 0 To the students: To accompany Intermediate Algebra for College Students By Robert Blitzer, Third Edition When you study Algebra, the material is presented to you in a logical sequence.

More information

New Material Section 1: Functions and Geometry occurring in engineering

New Material Section 1: Functions and Geometry occurring in engineering New Material Section 1: Functions and Geometry occurring in engineering 1. Plotting Functions: Using appropriate software to plot the graph of a function Linear f(x) = mx+c Quadratic f(x) = Px +Qx+R Cubic

More information

The Basics of Physics with Calculus Part II. AP Physics C

The Basics of Physics with Calculus Part II. AP Physics C The Basics of Physics with Calculus Part II AP Physics C The AREA We have learned that the rate of change of displacement is defined as the VELOCITY of an object. Consider the graph below v v t lim 0 dx

More information

ISIS/Draw "Quick Start"

ISIS/Draw Quick Start ISIS/Draw "Quick Start" Click to print, or click Drawing Molecules * Basic Strategy 5.1 * Drawing Structures with Template tools and template pages 5.2 * Drawing bonds and chains 5.3 * Drawing atoms 5.4

More information

Differentiation 1. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996.

Differentiation 1. The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. Differentiation 1 The METRIC Project, Imperial College. Imperial College of Science Technology and Medicine, 1996. 1 Launch Mathematica. Type

More information

Chemical Engineering 436 Laplace Transforms (1)

Chemical Engineering 436 Laplace Transforms (1) Chemical Engineering 436 Laplace Transforms () Why Laplace Transforms?? ) Converts differential equations to algebraic equations- facilitates combination of multiple components in a system to get the total

More information

DIFFERENTIAL EQUATIONS

DIFFERENTIAL EQUATIONS DIFFERENTIAL EQUATIONS Basic Concepts Paul Dawkins Table of Contents Preface... Basic Concepts... 1 Introduction... 1 Definitions... Direction Fields... 8 Final Thoughts...19 007 Paul Dawkins i http://tutorial.math.lamar.edu/terms.aspx

More information

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots.

Quadratic Functions Objective: To be able to graph a quadratic function and identify the vertex and the roots. Name: Quadratic Functions Objective: To be able to graph a quadratic function and identif the verte and the roots. Period: Quadratic Function Function of degree. Usuall in the form: We are now going to

More information

5 Transcendental Functions

5 Transcendental Functions 57 5 Transcendental Functions In the discussion before Problem on page 53, we pointed out that G(x) = R x af(t)dt is an antiderivative of f(x). Subsequently, we used that fact to compare G(x) with an antiderivative

More information

All living organisms are limited by factors in the environment

All living organisms are limited by factors in the environment All living organisms are limited by factors in the environment Monday, October 30 POPULATION ECOLOGY Monday, October 30 POPULATION ECOLOGY Population Definition Root of the word: The word in another language

More information

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION

LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION LAB 5 INSTRUCTIONS LINEAR REGRESSION AND CORRELATION In this lab you will learn how to use Excel to display the relationship between two quantitative variables, measure the strength and direction of the

More information

Assignment #0 Using Stellarium

Assignment #0 Using Stellarium Name: Class: Date: Assignment #0 Using Stellarium The purpose of this exercise is to familiarize yourself with the Stellarium program and its many capabilities and features. Stellarium is a visually beautiful

More information

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations

Student Instruction Sheet: Unit 3, Lesson 3. Solving Quadratic Relations Student Instruction Sheet: Unit 3, Lesson 3 Solving Quadratic Relations Suggested Time: 75 minutes What s important in this lesson: In this lesson, you will learn how to solve a variety of quadratic relations.

More information

Theory versus Experiment: Analysis and Measurements of Allocation Costs in Sorting (With Hints for Applying Similar Techniques to Garbage Collection)

Theory versus Experiment: Analysis and Measurements of Allocation Costs in Sorting (With Hints for Applying Similar Techniques to Garbage Collection) Theory versus Experiment: Analysis and Measurements of Allocation Costs in Sorting (With Hints for Applying Similar Techniques to Garbage Collection) CS 152 Staff February, 2006 Introduction This handout

More information

Unit #17 - Differential Equations Section 11.7

Unit #17 - Differential Equations Section 11.7 Unit #17 - Differential Equations Section 11.7 Some material from Calculus, Single and MultiVariable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material

More information

FreeFall Student Activity Guide

FreeFall Student Activity Guide FreeFall Student Activity Guide Introduction: What influences how an object falls to the ground? Do the same factors need to be taken into consideration for a golf ball dropped from your hand, an open

More information

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K "

Queueing Theory I Summary! Little s Law! Queueing System Notation! Stationary Analysis of Elementary Queueing Systems  M/M/1  M/M/m  M/M/1/K Queueing Theory I Summary Little s Law Queueing System Notation Stationary Analysis of Elementary Queueing Systems " M/M/1 " M/M/m " M/M/1/K " Little s Law a(t): the process that counts the number of arrivals

More information

Polynomial and Synthetic Division

Polynomial and Synthetic Division Polynomial and Synthetic Division Polynomial Division Polynomial Division is very similar to long division. Example: 3x 3 5x 3x 10x 1 3 Polynomial Division 3x 1 x 3x 3 3 x 5x 3x x 6x 4 10x 10x 7 3 x 1

More information

LAB Exercise #4 - Answers The Traction Vector and Stress Tensor. Introduction. Format of lab. Preparation reading

LAB Exercise #4 - Answers The Traction Vector and Stress Tensor. Introduction. Format of lab. Preparation reading LAB Exercise #4 - Answers The Traction Vector and Stress Tensor Due: Thursday, 26 February 2009 (Special Thanks to D.D. Pollard who pioneered this exercise in 1991) Introduction Stress concentrations in

More information

Lab 6. RC Circuits. Switch R 5 V. ower upply. Voltmete. Capacitor. Goals. Introduction

Lab 6. RC Circuits. Switch R 5 V. ower upply. Voltmete. Capacitor. Goals. Introduction Switch ower upply Lab 6. RC Circuits + + R 5 V Goals Capacitor V To appreciate the capacitor as a charge storage device. To measure the voltage across a capacitor as it discharges through a resistor, and

More information

FreeFall. A Core Learning Goals Activity for Science and Mathematics

FreeFall. A Core Learning Goals Activity for Science and Mathematics CoreModels FreeFall A Core Learning Goals Activity for Science and Mathematics Summary: This model is an extension of the Simple Kinematics model, turned in the vertical direction and with an initial distance

More information

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion

How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion How To: Deal with Heteroscedasticity Using STATGRAPHICS Centurion by Dr. Neil W. Polhemus July 28, 2005 Introduction When fitting statistical models, it is usually assumed that the error variance is the

More information

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations 1 Math 122 Fall 2008 Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations The purpose of this handout is to review the techniques that you will learn for

More information

MINKOWSKIAN SPACE, GRAPHS, EVENTS, WORLD LINES and MEASURING TIME

MINKOWSKIAN SPACE, GRAPHS, EVENTS, WORLD LINES and MEASURING TIME MINKOWSKIAN SPACE, GRAPHS, EVENTS, WORLD LINES and MEASURING TIME One second after we started our stop watch, little Johnny pukes in the corner of his room. Relative to the corner, the happening occurs

More information

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!!

BE SURE THAT YOU HAVE LOOKED AT, THOUGHT ABOUT AND TRIED THE SUGGESTED PROBLEMS ON THIS REVIEW GUIDE PRIOR TO LOOKING AT THESE COMMENTS!!! Review Guide for MAT0 Final Eam Part I. Thursday December 7 th during regular class time Part is worth 50% of your Final Eam grade. Syllabus approved calculators can be used on this part of the eam but

More information

Line Integrals and Path Independence

Line Integrals and Path Independence Line Integrals and Path Independence We get to talk about integrals that are the areas under a line in three (or more) dimensional space. These are called, strangely enough, line integrals. Figure 11.1

More information

How to Make or Plot a Graph or Chart in Excel

How to Make or Plot a Graph or Chart in Excel This is a complete video tutorial on How to Make or Plot a Graph or Chart in Excel. To make complex chart like Gantt Chart, you have know the basic principles of making a chart. Though I have used Excel

More information

Introduction to Hartree-Fock calculations in Spartan

Introduction to Hartree-Fock calculations in Spartan EE5 in 2008 Hannes Jónsson Introduction to Hartree-Fock calculations in Spartan In this exercise, you will get to use state of the art software for carrying out calculations of wavefunctions for molecues,

More information

Theory An important equation in physics is the mathematical form of Newton s second law, F = ma

Theory An important equation in physics is the mathematical form of Newton s second law, F = ma EXPERIMENT 5 NEWTON S SECOND LAW WITH A CONSTANT MASS Objectives 1. To find the acceleration of a cart using the graph of its velocity versus time 2. To establish a mathematical relation between the acceleration

More information

Review for Final Exam, MATH , Fall 2010

Review for Final Exam, MATH , Fall 2010 Review for Final Exam, MATH 170-002, Fall 2010 The test will be on Wednesday December 15 in ILC 404 (usual class room), 8:00 a.m - 10:00 a.m. Please bring a non-graphing calculator for the test. No other

More information

GUIDED NOTES 5.6 RATIONAL FUNCTIONS

GUIDED NOTES 5.6 RATIONAL FUNCTIONS GUIDED NOTES 5.6 RATIONAL FUNCTIONS LEARNING OBJECTIVES In this section, you will: Use arrow notation. Solve applied problems involving rational functions. Find the domains of rational functions. Identify

More information

MATH3203 Lecture 1 Mathematical Modelling and ODEs

MATH3203 Lecture 1 Mathematical Modelling and ODEs MATH3203 Lecture 1 Mathematical Modelling and ODEs Dion Weatherley Earth Systems Science Computational Centre, University of Queensland February 27, 2006 Abstract Contents 1 Mathematical Modelling 2 1.1

More information

COSMOS: Making Robots and Making Robots Intelligent Lecture 3: Introduction to discrete-time dynamics

COSMOS: Making Robots and Making Robots Intelligent Lecture 3: Introduction to discrete-time dynamics COSMOS: Making Robots and Making Robots Intelligent Lecture 3: Introduction to discrete-time dynamics Jorge Cortés and William B. Dunbar June 3, 25 Abstract In this and the coming lecture, we will introduce

More information

How many states. Record high temperature

How many states. Record high temperature Record high temperature How many states Class Midpoint Label 94.5 99.5 94.5-99.5 0 97 99.5 104.5 99.5-104.5 2 102 102 104.5 109.5 104.5-109.5 8 107 107 109.5 114.5 109.5-114.5 18 112 112 114.5 119.5 114.5-119.5

More information

Mathematical goals. Starting points. Materials required OHT 1 Graphs 1. Time needed. To enable learners to:

Mathematical goals. Starting points. Materials required OHT 1 Graphs 1. Time needed. To enable learners to: Level A14 of challenge: D A14 Exploring equations in parametric parametric form form Mathematical goals Starting points To enable learners to: Materials required OHT 1 Graphs 1 Time needed find stationary

More information

Lesson 21 Not So Dramatic Quadratics

Lesson 21 Not So Dramatic Quadratics STUDENT MANUAL ALGEBRA II / LESSON 21 Lesson 21 Not So Dramatic Quadratics Quadratic equations are probably one of the most popular types of equations that you ll see in algebra. A quadratic equation has

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

Key ideas about dynamic models

Key ideas about dynamic models GSTDMB 202: DYNAMICAL MODELLING FOR BIOLOGY AND MEDICINE Lecture 2 Introduction to modelling with differential equations Markus Owen ey ideas about dynamic models Dynamic models describe the change in

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Math 132 Lesson R: Population models and the spread of rumors Application

Math 132 Lesson R: Population models and the spread of rumors Application Math 132 Lesson R: Population models and the spread of rumors Application Population models are not limited to births and deaths. All kinds of quantifiable things pass through populations, from income

More information

1. The characteristic time of exponential growth/decline for this population is A. 5 years B. 20 years C. 5 per year D. 20 per year T c = 1/r

1. The characteristic time of exponential growth/decline for this population is A. 5 years B. 20 years C. 5 per year D. 20 per year T c = 1/r Use this information for the next four questions. A reintroduced population of wolves, starting with 20 individuals in year 0, is growing continuously at a rate of 5%/year. The instantaneous growth rate

More information

Name. Concept 53,1 Dynamic biologicalprocesses influence population density, dispersion, anddemographics

Name. Concept 53,1 Dynamic biologicalprocesses influence population density, dispersion, anddemographics Name Period Chapter 53: Population Ecology The next three chapters on population, community, and ecosystem ecology provide the academic backbone for this unit on ecology. Each chapter considers a different

More information

LAB 3 - VELOCITY AND ACCELERATION

LAB 3 - VELOCITY AND ACCELERATION Name Date Partners L03-1 LAB 3 - VELOCITY AND ACCELERATION OBJECTIVES A cheetah can accelerate from 0 to 50 miles per hour in 6.4 seconds. Encyclopedia of the Animal World A Jaguar can accelerate from

More information