Photons. Observational Astronomy 2018 Part 1 Prof. S.C. Trager

Size: px
Start display at page:

Download "Photons. Observational Astronomy 2018 Part 1 Prof. S.C. Trager"

Transcription

1 Photons Observational Astronomy 2018 Part 1 Prof. S.C. Trager

2 Wavelengths, frequencies, and energies of photons Recall that λν=c, where λ is the wavelength of a photon, ν is its frequency, and c is the speed of light in a vacuum, c= cm s 1 The human eye is sensitive to wavelengths from ~3900 Å (1 Å=0.1 nm=10 8 cm=10 10 m) blue light to ~7200 Å red light

3 Optical astronomy runs from ~3100 Å (the atmospheric cutoff) to ~1 µm (=1000 nm=10000 Å) Optical astronomers often refer to λ>8000 Å as nearinfrared (NIR) because it s beyond the wavelength sensitivity of most people s eyes although NIR typically refers to the wavelength range ~1 µm to ~2.5 µm We ll come back to this in a minute!

4 The energy of a photon is E=hν, where h= erg s is Planck s constant High-energy (extreme UV, X-ray, γ-ray) astronomers often use ev (electron volt) as an energy unit, where 1 ev= erg

5 Some useful relations: (Hz) = E (erg) h (erg s 1 ) = E (ev) (Å) = c = hc 1 E (ev) = E 1 (ev 1 ) Therefore a photon with a wavelength of 10 Å has an energy of 1.24 kev

6 If a photon was emitted from a blackbody of temperature T, then the average photon energy is Eav~kT, where k = erg K 1 = ev K 1 is Boltzmann s constant. It is sometimes useful to know what frequency corresponds to the average photon energy: h kt (Hz) = T (K) or T = 1.44 cm K

7 Note that this wavelength isn t the peak of the blackbody curve. Consider the blackbody function B (T )= 2hc 3 and assume that λ<hc/kt. Then setting we find λpt=0.290 cm K for the peak of the blackbody curve. For the Sun, whose surface temperature is T=5777 K, this implies λp 5000 Å, or roughly a green color. 1 exp(hc/ kt) 1 db (T )/d =0

8 The relation between energy kt in ev and temperature T in K is particularly useful in high-energy astronomy: kt (ev) = T (K) T (K) = kt (ev) Therefore X-rays with a wavelength of 10 Å and an energy of 1.24 kev may have been emitted from a blackbody with a temperature of ~ K!

9 The electromagnetic spectrum

10 The electromagnetic spectrum

11 The electromagnetic spectrum

12 Approximate EM bands in astronomy Band λstart λend Telescopes Radio ~1 cm WSRT, ~2m Millimeter 1 mm 10 mm ALMA, JVLA Submillimeter 0.2 mm 1 mm ALMA Infrared 1 µm 0.2 mm near-infrared (NIR) 1 µm 2.5 µm ground-based mid-infrared (MIR) 2.5 µm 25 µm Spitzer, JWST far-infrared (FIR) 25 µm 200 µm (0.2 mm) Herschel Optical 3100 Å 1 µm ground-based, HST visible ~4000 Å ~8000 Å eye Ultraviolet (UV) ~500 Å 3100 Å near-ultraviolet (NUV) 2000 Å Å GALEX, HST far-ultraviolet (FUV) 900 Å 2000 Å GALEX, HST, FUSE extreme-ultraviolet (EUV) 500 Å 1000 Å EUVE X-ray 0.1 kev (100 Å) 200 kev (0.06 Å) XMM, Chandra γ-ray ~200 kev (0.06 Å) Fermi, INTEGRAL Ground Space! Ground Space Ground

13 Fluxes, filters, magnitudes, and colors For a point source like an unresolved star we can define the spectral flux density S(ν) as the energy deposited per unit time per unit area per unit frequency therefore S(ν) has units of erg s 1 cm 2 Hz 1 The actual energy received by a telescope per second in a frequency band Δν (the bandwidth) is P=Sav(ν)AeffΔν, where Aeff is the effective area of the telescope which includes effects like telescope obscuration, detector efficiency, atmospheric absorption, etc. and Sav(ν) is the average spectral flux density over the bandwidth

14 An example: bright radio sources have fluxes of 1.0 Jy (Jansky) at ν=1400 MHz near the 21 cm line of H. Then S(ν)= erg s 1 cm 2 Hz 1 (=1.0 Jy) If we observe a 1 Jy source with a single Westerbork telescope diameter 25 m, efficiency 0.5 at this frequency with a bandwidth of Δν=1.25 MHz, and assuming Sav(ν)= S(ν) over this bandwidth, the telescope will receive P = erg s 1 cm 2 Hz (12500 cm) Hz erg s 1 = W

15 This is a tiny amount of power! It would take ~80% of the age of the Universe to collect enough energy to power a 100W lightbulb for 1 second! In reality, S(ν) and Aeff will (likely) not be constant over the bandwidth Δν, so we should really write P = Z 2 1 S( )A e d

16 The total power flowing across an area is called the flux density F, Z 2 F = S( )d 1 This is the Poynting flux in E&M It has units of erg s 1 cm 2

17 To find the luminosity, we multiply the flux density over the area of a sphere with a radius equal to the distance between the observer (us!) and the emitting object: r so that L=4πr 2 F over some bandwidth Δν=ν2 ν1.

18 The luminosity is therefore the total power of an object in some frequency range Δν. Note that we often use the term luminosity to mean the bolometric luminosity, the total power integrated over all frequencies.

19 This definition of luminosity assumes 1. the emission is isotropic that is, the same in all directions 2. an average spectral flux density over the bandwidth If (2) is incorrect, we should write L =4 r 2 F =4 r 2 Z 2 1 S( )d

20 Optical and near-infrared astronomers use magnitudes to describe the intensities of astronomical objects. To define magnitudes, it s useful to know that NUV optical NIR detectors (usually) have a response proportional to the number of photons collected in a given time.

21 We can define a photon spectral flux density Sγ(ν), which is the number of photons (γ) per unit frequency per unit time per unit area. It is simply S ( ) = S( ) h and has the units s 1 cm 2 Hz 1

22 The number of photons per unit time and unit area detected is then the photon spectral flux density times an efficiency factor that depends on frequency, integrated over all frequencies: F = Z 1 0 S ( ) ( )d Here ε(ν) is the efficiency which includes all effects like the filter curve, detector efficiency, absorption and scattering of the telescope, instrument, and atmosphere, etc.

23 Consider two stars with fluxes Fγ(1) and Fγ(2) Then the magnitude difference between these stars is F (2) m 2 m 1 = 2.5 log 10 F (1) We use logarithms because human perception of intensity tends to be in logarithmic increments We ll come back to the zeropoint of this scale shortly! Note that this definition defines the apparent magnitude, the magnitude seen by the detector

24 The coefficient of 2.5 is important. It says that a ratio of 100 in fluxes (received number of photons) corresponds to a magnitude difference of 5 magnitudes If star 2 is 100 times brighter than star 1, it is 5 magnitudes brighter but actually 5 magnitudes less. Confusing, eh?

25 This means that a 1 st magnitude (m=1) star is brighter than a 2 nd magnitude star (m=2). By how much? Invert our equation for magnitudes: So if m2 m1=1, then Fγ(2)/Fγ(1)=1/ a factor of ~2.51 in flux. F (2) F (1) = (m 2 m 1 )

26 Some useful properties and factoids about magnitudes... The magnitude system is roughly based on natural logarithms: m 1 m 2 =0.921 ln(f 1 /f 2 ) If, then f 1 m = m 2 m f so the magnitude difference between two objects of nearly-equal brightness is equal to the fractional difference in their brightnesses i.e., a difference of 0.1 magnitudes is ~10% in brightness A factor of 2 difference in brightness is a difference of 0.75 magnitudes

27 Let s return to our efficiency term ε(ν): we can write this as ( ) =f R T where f is the transmission of any filter used to isolate the (frequency) region of interest R is the transmission of the telescope, optics, and detector T is the transmission of the atmosphere (if any)

28 Let s consider the filter term fν: the transmission of the filter can be chosen as desired (assuming the right materials can be found) so that a specific bandpass can be observed There are many filter systems (see next slide)...

29 Two common filter systems

30 So the (apparent) magnitude difference between two objects is F,B (2) m B (2) m B (1) = B(2) B(1) = 2.5 log 10 F,B (1) where Z 1 Z 1 F,B = 0 S ( ) B ( )d = 0 S ( )f B R T d

31 We define the color of an object as the magnitude difference of the object in two different filters ( bandpasses ) if the filters are X and Y, then the color (X Y) is (X Y ) m X m Y = 2.5 log F,X F,Y

32 Most (but not all) magnitude systems are based on taking a magnitude with respect to a star with a known (or predefined) magnitude So to get a magnitude on system X, one observes stars with known magnitudes and calibrates the instrumental magnitudes onto the standard system We ll discuss this calibration process in great detail later in the course!

33 The Vega system defines a set of A0V stars as having apparent magnitude 0 in all bands of a system The Johnson-Cousins-Glass system is a Vega system, where the magnitudes of all bands in the system are set to 0 for an idealized A0V star at 8 pc Another common magnitude zeropoint system is the AB system, in which magnitudes are defined as m AB, = 2.5 log S( ) at a given frequency ν; see Fukugita et al. (1995) and Girardi et al. (2002) for more info.

34 Apparent magnitudes depend on the flux of photons received from a source; but this depends on the distance to the source! Remember that L=4πr 2 F, so for a given L, F r 2

35 To have a measurement of intrinsic luminosity, we must remove this distance dependence. We define the absolute magnitude M to do this: we choose a fiducial distance of 10 pc and define the distance modulus apple F (r) µ = m M = 2.5 log F (10 pc) r = 5 log 10 pc = 5 log r (pc) 5...ignoring absorption by dust and cosmological effects.

36 We define the absolute bolometric magnitude as the total power emitted over all frequencies expressed in magnitudes. We set the magnitude scale zeropoint to the (absolute) bolometric magnitude of the Sun, M =4.74 bol Thus M bol = 2.5 log L L where L = erg s 1 Solving for the luminosity of an object, then, we have L = M bol erg s 1 independent of the temperature (color) of the source.

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians:

point, corresponding to the area it cuts out: θ = (arc length s) / (radius of the circle r) in radians Babylonians: Astronomische Waarneemtechnieken (Astronomical Observing Techniques) 1 st Lecture: 1 September 11 This lecture: Radiometry Radiative transfer Black body radiation Astronomical magnitudes Preface: The Solid

More information

Today in Astronomy 142: observations of stars

Today in Astronomy 142: observations of stars Today in Astronomy 142: observations of stars What do we know about individual stars?! Determination of stellar luminosity from measured flux and distance Magnitudes! Determination of stellar surface temperature

More information

summary of last lecture

summary of last lecture radiation specific intensity flux density bolometric flux summary of last lecture Js 1 m 2 Hz 1 sr 1 Js 1 m 2 Hz 1 Js 1 m 2 blackbody radiation Planck function(s) Wien s Law λ max T = 2898 µm K Js 1 m

More information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information

Properties of Electromagnetic Radiation Chapter 5. What is light? What is a wave? Radiation carries information Concepts: Properties of Electromagnetic Radiation Chapter 5 Electromagnetic waves Types of spectra Temperature Blackbody radiation Dual nature of radiation Atomic structure Interaction of light and matter

More information

Fluxes. 1 March 2016

Fluxes. 1 March 2016 Fluxes 1 March 2016 intrinsic luminosity L = energy emi5ed per second (erg/s) intrinsic luminosity L = energy emi5ed per second (erg/s) flux F = energy received per unit area F = L / 4π d 2 (erg/s/cm 2

More information

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields

Deducing Temperatures and Luminosities of Stars (and other objects ) Electromagnetic Fields. Sinusoidal Fields Deducing Temperatures and Luminosities of Stars (and other objects ) Review: Electromagnetic Radiation Gamma Rays X Rays Ultraviolet (UV) Visible Light Infrared (IR) Increasing energy Microwaves Radio

More information

The magnitude system. ASTR320 Wednesday January 30, 2019

The magnitude system. ASTR320 Wednesday January 30, 2019 The magnitude system ASTR320 Wednesday January 30, 2019 What we measure: apparent brightness How bright a star appears to be in the sky depends on: How bright it actually is Luminosity and its distance

More information

Ay 20 Basic Astronomy and the Galaxy Problem Set 2

Ay 20 Basic Astronomy and the Galaxy Problem Set 2 Ay 20 Basic Astronomy and the Galaxy Problem Set 2 October 19, 2008 1 Angular resolutions of radio and other telescopes Angular resolution for a circular aperture is given by the formula, θ min = 1.22λ

More information

6 Light from the Stars

6 Light from the Stars 6 Light from the Stars Essentially everything that we know about objects in the sky is because of the light coming from them. 6.1 The Electromagnetic Spectrum The properties of light (electromagnetic waves)

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Exploring Early Galaxies with the CCAT June 28, 2012 CCAT: 25 meter submm telescope CCAT Site on C. Chajnantor Me, at 18,400

More information

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here)

THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) What is color? THE ELECTROMAGNETIC SPECTRUM. (We will go into more detail later but we need to establish some basic understanding here) Light isn t just white: colors is direct evidence that light has

More information

The Electromagnetic Spectrum

The Electromagnetic Spectrum Astr 102: Introduction to Astronomy Fall Quarter 2009, University of Washington, Željko Ivezić Lecture 4: The Electromagnetic Spectrum 1 Understanding Stellar and Galaxy Properties, and Cosmology Four

More information

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation

The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation The Nature of Light I: Electromagnetic Waves Spectra Kirchoff s Laws Temperature Blackbody radiation Electromagnetic Radiation (How we get most of our information about the cosmos) Examples of electromagnetic

More information

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101

Astronomical Observations: Distance & Light 7/2/09. Astronomy 101 Astronomical Observations: Distance & Light 7/2/09 Astronomy 101 Astronomy Picture of the Day Astronomy 101 Something Cool: Lasers on the Moon Astronomy 101 Outline for Today Astronomy Picture of the Day

More information

II Light.

II Light. II Light http://sgoodwin.staff.shef.ac.uk/phy111.html 0. Light Light is the main tool we have in astronomy. We detect light from distant objects and can determine the temperature, density, composition,

More information

1. Why photons? 2. Photons in a vacuum

1. Why photons? 2. Photons in a vacuum Photons and Other Messengers 1. Why photons? Ask class: most of our information about the universe comes from photons. What are the reasons for this? Let s compare them with other possible messengers,

More information

Ay Fall 2012 Imaging and Photometry Part I

Ay Fall 2012 Imaging and Photometry Part I Ay 122 - Fall 2012 Imaging and Photometry Part I (Many slides today c/o Mike Bolte, UCSC) Imaging and Photometry Now essentially always done with imaging arrays (e.g., CCDs); it used to be with single-channel

More information

Galaxy formation and evolution. Astro 850

Galaxy formation and evolution. Astro 850 Galaxy formation and evolution Astro 850 Introduction What are galaxies? Systems containing many galaxies, e.g. 10 11 stars in the Milky Way. But galaxies have different properties. Properties of individual

More information

Prof. Jeff Kenney Class 4 May 31, 2018

Prof. Jeff Kenney Class 4 May 31, 2018 Prof. Jeff Kenney Class 4 May 31, 2018 Which stellar property can you estimate simply by looking at a star on a clear night? A. distance B. diameter C. luminosity D. surface temperature E. mass you can

More information

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations

Galaxies 626. Lecture 10 The history of star formation from far infrared and radio observations Galaxies 626 Lecture 10 The history of star formation from far infrared and radio observations Cosmic Star Formation History Various probes of the global SF rate: ρ* (z) M yr 1 comoving Mpc 3 UV continuum

More information

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition

Today. Spectra. Thermal Radiation. Wien s Law. Stefan-Boltzmann Law. Kirchoff s Laws. Emission and Absorption. Spectra & Composition Today Spectra Thermal Radiation Wien s Law Stefan-Boltzmann Law Kirchoff s Laws Emission and Absorption Spectra & Composition Spectrum Originally, the range of colors obtained by passing sunlight through

More information

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16

Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Astronomy 1102 Exam #1 Chapters 1,2,5,6 & 16 Chapter 1 Degrees- basic unit of angle measurement, designated by the symbol -a full circle is divided into 360 and a right angle measures 90. arc minutes-one-sixtieth

More information

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019

AST 301, Lecture 2. James Lattimer. Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University. January 29, 2019 AST 301, Lecture 2 James Lattimer Department of Physics & Astronomy 449 ESS Bldg. Stony Brook University January 29, 2019 Cosmic Catastrophes (AKA Collisions) james.lattimer@stonybrook.edu Properties of

More information

Temperature, Blackbodies & Basic Spectral Characteristics.

Temperature, Blackbodies & Basic Spectral Characteristics. Temperature, Blackbodies & Basic Spectral Characteristics. Things that have one primary temperature but also exhibit a range of temperatures are known in physics as blackbodies. They radiate energy thermally.

More information

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6)

Discussion Review Test #2. Units 12-19: (1) (2) (3) (4) (5) (6) Discussion Review Test #2 Units 12-19: (1) (2) (3) (4) (5) (6) (7) (8) (9) Galileo used his observations of the changing phases of Venus to demonstrate that a. the sun moves around the Earth b. the universe

More information

Light: Transverse WAVE

Light: Transverse WAVE Light Longitudinal WAVES Light: Transverse WAVE Light: Particle or wave Photon The Wave Nature of Light 1. Unlike other branches of science, astronomers cannot touch or do field work on their samples.

More information

Sources of radiation

Sources of radiation Sources of radiation Most important type of radiation is blackbody radiation. This is radiation that is in thermal equilibrium with matter at some temperature T. Lab source of blackbody radiation: hot

More information

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16]

AST 105 Intro Astronomy The Solar System. MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] AST 105 Intro Astronomy The Solar System MIDTERM II: Tuesday, April 5 [covering Lectures 10 through 16] REVIEW Light as Information Bearer We can separate light into its different wavelengths (spectrum).

More information

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016

Astronomy across the spectrum: telescopes and where we put them. Martha Haynes Discovering Dusty Galaxies July 7, 2016 Astronomy across the spectrum: telescopes and where we put them Martha Haynes Discovering Dusty Galaxies July 7, 2016 CCAT-prime: next generation telescope CCAT Site on C. Chajnantor Me, at 18,400 feet

More information

Structure & Evolution of Stars 1

Structure & Evolution of Stars 1 Structure and Evolution of Stars Lecture 2: Observational Properties Distance measurement Space velocities Apparent magnitudes and colours Absolute magnitudes and luminosities Blackbodies and temperatures

More information

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions

* * The Astronomical Context. Much of astronomy is about positions so we need coordinate systems to. describe them. 2.1 Angles and Positions 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions Actual * q * Sky view q * * Fig. 2-1 Position usually means

More information

Welcome to Phys 321 Astronomy & Astrophysics II. Course Instructor: Prof. Bin Chen Tiernan Hall 101 1

Welcome to Phys 321 Astronomy & Astrophysics II. Course Instructor: Prof. Bin Chen Tiernan Hall 101 1 Welcome to Phys 321 Astronomy & Astrophysics II Course Instructor: Prof. Bin Chen Tiernan Hall 101 bin.chen@njit.edu 1 NJIT Astronomy Courses The Physics Department has an undergraduate minor and a concentration

More information

Flux Units and Line Lists

Flux Units and Line Lists APPENDIX 2 Flux Units and Line Lists In This Appendix... Infrared Flux Units / 255 Formulae / 258 Look-up Tables / 259 Examples / 266 Infrared Line Lists / 266 In this chapter we provide a variety of background

More information

Introduction to Electromagnetic Radiation and Radiative Transfer

Introduction to Electromagnetic Radiation and Radiative Transfer Introduction to Electromagnetic Radiation and Radiative Transfer Temperature Dice Results Visible light, infrared (IR), ultraviolet (UV), X-rays, γ-rays, microwaves, and radio are all forms of electromagnetic

More information

Light The EM Spectrum

Light The EM Spectrum Light The EM Spectrum 1 Spectrum of Electromagnetic Radiation Region Wavelength (Angstroms) Wavelength (centimeters) Frequency (Hz) Energy (ev) Radio > 10 9 > 10 < 3 x 10 9 < 10-5 Microwave 10 9-10 6 10-0.01

More information

aka Light Properties of Light are simultaneously

aka Light Properties of Light are simultaneously Today Interaction of Light with Matter Thermal Radiation Kirchhoff s Laws aka Light Properties of Light are simultaneously wave-like AND particle-like Sometimes it behaves like ripples on a pond (waves).

More information

The Nature of Light. We have a dual model

The Nature of Light. We have a dual model Light and Atoms Properties of Light We can come to understand the composition of distant bodies by analyzing the light they emit This analysis can tell us about the composition as well as the temperature

More information

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1:

Astr 323: Extragalactic Astronomy and Cosmology. Spring Quarter 2014, University of Washington, Željko Ivezić. Lecture 1: Astr 323: Extragalactic Astronomy and Cosmology Spring Quarter 2014, University of Washington, Željko Ivezić Lecture 1: Review of Stellar Astrophysics 1 Understanding Galaxy Properties and Cosmology The

More information

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines!

Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines! Some HI is in reasonably well defined clouds. Motions inside the cloud, and motion of the cloud will broaden and shift the observed lines Idealized 21cm spectra Example observed 21cm spectra HI densities

More information

Light and Stars ASTR 2110 Sarazin

Light and Stars ASTR 2110 Sarazin Light and Stars ASTR 2110 Sarazin Doppler Effect Frequency and wavelength of light changes if source or observer move Doppler Effect v r dr radial velocity dt > 0 moving apart < 0 moving toward Doppler

More information

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA

Ay 1 Midterm. Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA Ay 1 Midterm Due by 5pm on Wednesday, May 9 to your head TA s mailbox (249 Cahill), or hand it directly to any section TA You have THREE HOURS to complete the exam, but it is about two hours long. The

More information

Stellar Astrophysics: The Continuous Spectrum of Light

Stellar Astrophysics: The Continuous Spectrum of Light Stellar Astrophysics: The Continuous Spectrum of Light Distance Measurement of Stars Distance Sun - Earth 1.496 x 10 11 m 1 AU 1.581 x 10-5 ly Light year 9.461 x 10 15 m 6.324 x 10 4 AU 1 ly Parsec (1

More information

2. The Astronomical Context. Fig. 2-1

2. The Astronomical Context. Fig. 2-1 2-1 2. The Astronomical Context describe them. Much of astronomy is about positions so we need coordinate systems to 2.1 Angles and Positions * θ * Fig. 2-1 Position usually means angle. Measurement accuracy

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

The Light of Your Life. We can see the universe because atoms emit photons

The Light of Your Life. We can see the universe because atoms emit photons The Light of Your Life We can see the universe because atoms emit photons Astronomy is an observational science Our messengers are Light (electromagnetic waves) Gravitational waves Cosmic rays (particles)

More information

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department

Astronomy 114. Lecture 27: The Galaxy. Martin D. Weinberg. UMass/Astronomy Department Astronomy 114 Lecture 27: The Galaxy Martin D. Weinberg weinberg@astro.umass.edu UMass/Astronomy Department A114: Lecture 27 18 Apr 2007 Read: Ch. 25,26 Astronomy 114 1/23 Announcements Quiz #2: we re

More information

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation.

Problem Solving. radians. 180 radians Stars & Elementary Astrophysics: Introduction Press F1 for Help 41. f s. picture. equation. Problem Solving picture θ f = 10 m s =1 cm equation rearrange numbers with units θ factors to change units s θ = = f sinθ fθ = s / cm 10 m f 1 m 100 cm check dimensions 1 3 π 180 radians = 10 60 arcmin

More information

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline

9/19/ Basic Properties of Light and Matter. Chapter 5: Light: The Cosmic Messenger. What is light? Lecture Outline Lecture Outline 5.1 Basic Properties of Light and Matter Chapter 5: Light: The Cosmic Messenger Our goals for learning: What is light? What is matter? How do light and matter interact? What is light? Light

More information

Astronomy 150 K. Nordsieck Spring Exam 1 Solutions. 1. ( T F ) In Madison the North Star, Polaris, is situated almost exactly at the zenith.

Astronomy 150 K. Nordsieck Spring Exam 1 Solutions. 1. ( T F ) In Madison the North Star, Polaris, is situated almost exactly at the zenith. Astronomy 150 K. Nordsieck Spring 2000 Exam 1 Solutions True or False (Circle T or F) 1. ( T F ) In Madison the North Star, Polaris, is situated almost exactly at the zenith. False. Polaris is near the

More information

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond

The formation of stars and planets. Day 1, Topic 2: Radiation physics. Lecture by: C.P. Dullemond The formation of stars and planets Day 1, Topic 2: Radiation physics Lecture by: C.P. Dullemond Astronomical Constants CGS units used throughout lecture (cm,erg,s...) AU = Astronomical Unit = distance

More information

Photometric Systems. Neil Phillips 08 April Introduction 1. 2 Magnitudes and Colours 2

Photometric Systems. Neil Phillips 08 April Introduction 1. 2 Magnitudes and Colours 2 Photometric Systems Neil Phillips 8 April 28 Contents 1 Introduction 1 2 Magnitudes and Colours 2 3 Performing photometry 2 3.1 The System Response R λ....................................

More information

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light.

LIGHT. Question. Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. LIGHT Question Until very recently, the study of ALL astronomical objects, outside of the Solar System, has been with telescopes observing light. What kind of information can we get from light? 1 Light

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules

Taking fingerprints of stars, galaxies, and interstellar gas clouds. Absorption and emission from atoms, ions, and molecules Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules 1 Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

Detectors for IR astronomy

Detectors for IR astronomy Detectors for IR astronomy Where does infrared begin? Wavelength sensi?vity of the human eye vs. wavelength Note: the eye has some (limited) sensi?vity to IR light at ~1000nm (=0.5x energy of photons the

More information

ASTR-1010: Astronomy I Course Notes Section VI

ASTR-1010: Astronomy I Course Notes Section VI ASTR-1010: Astronomy I Course Notes Section VI Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

The Magnitude Scale. The Color Index.

The Magnitude Scale. The Color Index. The Magnitude Scale The Color Index. The Magnitude Scale Measuring the brightness of astronomical objects While cataloging stars in the sky, the Greek Astronomer Hipparchus developed the magnitude system,

More information

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today.

Outline HST HST. HST& JWST CARMA and ALMA SOFIA Chandra Blackbodies. Doppler Effect. Homework #5 was due today. Outline Homework #5 was due today. Next homework is #6 due next Friday at 11:50 am. There will be another make-up nighttime observing session in November. Stay tuned. I will be teaching Paul s class on

More information

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars

Family of stars. Fred Sarazin Physics Department, Colorado School of Mines. PHGN324: Family of stars Family of stars Reminder: the stellar magnitude scale In the 1900 s, the magnitude scale was defined as follows: a difference of 5 in magnitude corresponds to a change of a factor 100 in brightness. Dm

More information

Taking fingerprints of stars, galaxies, and interstellar gas clouds

Taking fingerprints of stars, galaxies, and interstellar gas clouds - - Taking fingerprints of stars, galaxies, and interstellar gas clouds Absorption and emission from atoms, ions, and molecules Periodic Table of Elements The universe is mostly hydrogen H and helium He

More information

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9

ASTRONOMY 161. Introduction to Solar System Astronomy. Class 9 ASTRONOMY 161 Introduction to Solar System Astronomy Class 9 Light Monday, January 29 Look, but don t touch. - Astronomers Motto Light: Key Concepts (1) Visible light is just one form of electromagnetic

More information

The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100

The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100 The Relation Between Gas Density and Star Formation Rate in the Spiral Galaxy M100 George J. Bendo and Rebecca Freestone Jodrell Bank Centre for Astrophysics, The University of Manchester 04 January 2018

More information

Multi-wavelength Astronomy

Multi-wavelength Astronomy astronomy Multi-wavelength Astronomy Content What do we measure Multi-wavelength approach Data Data Mining Virtual Observatory Hands on session Larmor's formula Maxwell's equations imply that all classical

More information

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle!

9/16/08 Tuesday. Chapter 3. Properties of Light. Light the Astronomer s Tool. and sometimes it can be described as a particle! 9/16/08 Tuesday Announce: Observations? Milky Way Center movie Moon s Surface Gravity movie Questions on Gravity from Ch. 2 Ch. 3 Newton Movie Chapter 3 Light and Atoms Copyright (c) The McGraw-Hill Companies,

More information

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: "OMEWORK #1

Light and Atoms. ASTR 1120 General Astronomy: Stars & Galaxies. ASTR 1120 General Astronomy: Stars & Galaxies !ATH REVIEW: #AST CLASS: OMEWORK #1 ASTR 1120 General Astronomy: Stars & Galaxies!ATH REVIEW: Tonight, 5-6pm, in RAMY N1B23 "OMEWORK #1 -Due THU, Sept. 10, by 5pm, on Mastering Astronomy CLASS RECORDED STARTED - INFO WILL BE POSTED on CULEARN

More information

Direct imaging of extra-solar planets

Direct imaging of extra-solar planets Chapter 6 Direct imaging of extra-solar planets Direct imaging for extra-solar planets means that emission from the planet can be spatially resolved from the emission of the bright central star The two

More information

NATS 101 Section 13: Lecture 5. Radiation

NATS 101 Section 13: Lecture 5. Radiation NATS 101 Section 13: Lecture 5 Radiation What causes your hand to feel warm when you place it near the pot? NOT conduction or convection. Why? Therefore, there must be an mechanism of heat transfer which

More information

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must.

1. Using, scientists can use a few smaller telescopes to take images with the. 2. To double the resolving power of a telescope, you must. Chapter 5 Telescopes Multiple Choice Questions 1. Using, scientists can use a few smaller telescopes to take images with the same resolution as a much larger telescope. A. Satellite telescopes B. Charge-coupled

More information

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W.

Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1. Astronomy 102, Autumn 2009, E. Agol & J. Dalcanton U.W. Light! Lecture 3, Oct. 8! Astronomy 102, Autumn 2009! Oct. 8, 2009 #1 Questions of the Day! I. What is light?! II. What are the wave/particle properties of light?! III. How do energy and wavelength vary

More information

What is LIGHT? Reading Question

What is LIGHT? Reading Question Reading Question What is LIGHT? A. Light is a wave, like sound only much faster. B. Light is like little particles. Each one is a photon. C. Light is the absence of dark. D. A kind of energy we model with

More information

High Redshift Universe

High Redshift Universe High Redshift Universe Finding high z galaxies Lyman break galaxies (LBGs) Photometric redshifts Deep fields Starburst galaxies Extremely red objects (EROs) Sub-mm galaxies Lyman α systems Finding high

More information

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel)

In class quiz - nature of light. Moonbow with Sailboats (Matt BenDaniel) In class quiz - nature of light Moonbow with Sailboats (Matt BenDaniel) Nature of light - review Light travels at very high but finite speed. Light is electromagnetic wave characterized by wavelength (or

More information

Astronomy The Nature of Light

Astronomy The Nature of Light Astronomy The Nature of Light A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Measuring the speed of light Light is an electromagnetic wave The relationship between Light and temperature

More information

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u

Some fundamentals. Statistical mechanics. The non-equilibrium ISM. = g u Some fundamentals Statistical mechanics We have seen that the collision timescale for gas in this room is very small relative to radiative timesscales such as spontaneous emission. The frequent collisions

More information

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell?

Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? Chemistry Ms. Ye Name Date Block Do Now: Bohr Diagram, Lewis Structures, Valence Electrons 1. What is the maximum number of electrons you can fit in each shell? 1 st shell 2 nd shell 3 rd shell 4 th shell

More information

Astro 1050 Wed. Feb. 18, 2015

Astro 1050 Wed. Feb. 18, 2015 Astro 1050 Wed. Feb. 18, 2015 Today: Begin Chapter 5: Light the Cosmic Messenger For Friday: Study for Test #1 Be sure to bring green bubble sheet, #2 pencil and a calculator. 1 Chapter 5: Light, the Cosmic

More information

Electromagnetic Radiation.

Electromagnetic Radiation. Electromagnetic Radiation http://apod.nasa.gov/apod/astropix.html CLASSICALLY -- ELECTROMAGNETIC RADIATION Classically, an electromagnetic wave can be viewed as a self-sustaining wave of electric and magnetic

More information

Lesson 4 - Telescopes

Lesson 4 - Telescopes Lesson 4 - Telescopes READING ASSIGNMENT Chapter 5.1: Optical Telescopes Chapter 5.3: Images and Detectors Chapter 5.2: Telescope Size Discovery 5-1: The Hubble Space Telescope Chapter 5.4: High-Resolution

More information

ASTR-1010: Astronomy I Course Notes Section IV

ASTR-1010: Astronomy I Course Notes Section IV ASTR-1010: Astronomy I Course Notes Section IV Dr. Donald G. Luttermoser Department of Physics and Astronomy East Tennessee State University Edition 2.0 Abstract These class notes are designed for use

More information

Theoretical quantities: blackbody radiation

Theoretical quantities: blackbody radiation Theoretical quantities: blackbody radiation Magnitudes are observed quantities; that is, in practice, optical astronomers typically 1. take pictures of stars 2. measure the apparent brightness of each

More information

Radiation from planets

Radiation from planets Chapter 4 Radiation from planets We consider first basic, mostly photometric radiation parameters for solar system planets which can be easily compared with existing or future observations of extra-solar

More information

Chapter 5: Telescopes

Chapter 5: Telescopes Chapter 5: Telescopes You don t have to know different types of reflecting and refracting telescopes. Why build bigger and bigger telescopes? There are a few reasons. The first is: Light-gathering power:

More information

= λ. Light: The Cosmic Messenger. Continuing Topics for Today 1/24/17. Your account on Mastering Astronomy. ASTR 1040 Stars & Galaxies

= λ. Light: The Cosmic Messenger. Continuing Topics for Today 1/24/17. Your account on Mastering Astronomy. ASTR 1040 Stars & Galaxies REMINDER Your account on Mastering Astronomy ASTR 1040 Stars & Galaxies SDO: Post-flare ejection from solar surface Prof. Juri Toomre TAs: Piyush Agrawal, Connor Bice Lecture 3 Tues 24 Jan 2017 zeus.colorado.edu/astr1040-toomre

More information

Tuesday, August 27, Stellar Astrophysics

Tuesday, August 27, Stellar Astrophysics Stellar Astrophysics Policies No Exams Homework 65% Project 35% Oral Presentation 5% More on the project http://myhome.coloradomesa.edu/ ~jworkman/teaching/fall13/396/ syllabus396.pdf You need to self

More information

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY

SKINAKAS OBSERVATORY Astronomy Projects for University Students COLOUR IN ASTRONOMY P R O J E C T 3 COLOUR IN ASTRONOMY Objective: Explain what colour means in an astronomical context and its relationship with the temperature of a star. Learn how to create colour-colour diagrams and how

More information

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1

Optical/IR Observational Astronomy Telescopes I: Optical Principles. David Buckley, SAAO. 24 Feb 2012 NASSP OT1: Telescopes I-1 David Buckley, SAAO 24 Feb 2012 NASSP OT1: Telescopes I-1 1 What Do Telescopes Do? They collect light They form images of distant objects The images are analyzed by instruments The human eye Photographic

More information

Astronomy-part 3 notes Properties of Stars

Astronomy-part 3 notes Properties of Stars Astronomy-part 3 notes Properties of Stars What are Stars? Hot balls of that shine because nuclear fusion (hydrogen to helium) is happening at their cores. They create their own. Have different which allow

More information

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons???

Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? Electromagnetic radiation simply a stream of photons (a bundle of energy) What are photons??? no mass travel in a wave like pattern move at the speed of light contain a certain amount (or bundle) of energy

More information

PHYS 160 Astronomy Test #2 Fall 2017 Version A

PHYS 160 Astronomy Test #2 Fall 2017 Version A PHYS 160 Astronomy Test #2 Fall 2017 Version A I. True/False (1 point each) Circle the T if the statement is true, or F if the statement is false on your answer sheet. 1. A blackbody emits all of its radiation

More information

Herschel PACS ICC. The bandwidth of the PACS photometric system. Issue: 1.1

Herschel PACS ICC. The bandwidth of the PACS photometric system. Issue: 1.1 Page: 1 of 8 Document Prepared by: Stefano Pezzuto Page: 2 of 8 Document Status Sheet Document Title: Issue Revision Date Reason for change 1 0 30 April 2013 First version 1 1 7 May 2013 Comments from

More information

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom

Taking Fingerprints of Stars, Galaxies, and Other Stuff. The Bohr Atom. The Bohr Atom Model of Hydrogen atom. Bohr Atom. Bohr Atom Periodic Table of Elements Taking Fingerprints of Stars, Galaxies, and Other Stuff Absorption and Emission from Atoms, Ions, and Molecules Universe is mostly (97%) Hydrogen and Helium (H and He) The ONLY

More information

EXPOSURE TIME ESTIMATION

EXPOSURE TIME ESTIMATION ASTR 511/O Connell Lec 12 1 EXPOSURE TIME ESTIMATION An essential part of planning any observation is to estimate the total exposure time needed to satisfy your scientific goal. General considerations

More information

ASTR240: Radio Astronomy

ASTR240: Radio Astronomy AST24: adio Astronomy HW#1 Due Feb 6, 213 Problem 1 (6 points) (Adapted from Kraus Ch 8) A radio source has flux densities of S 1 12.1 Jy and S 2 8.3 Jy at frequencies of ν 1 6 MHz and ν 2 1415 MHz, respectively.

More information

Observed Properties of Stars ASTR 2120 Sarazin

Observed Properties of Stars ASTR 2120 Sarazin Observed Properties of Stars ASTR 2120 Sarazin Extrinsic Properties Location Motion kinematics Extrinsic Properties Location Use spherical coordinate system centered on Solar System Two angles (θ,φ) Right

More information

IRS Spectroscopy of z~2 Galaxies

IRS Spectroscopy of z~2 Galaxies IRS Spectroscopy of z~2 Galaxies Houck et al., ApJ, 2005 Weedman et al., ApJ, 2005 Lutz et al., ApJ, 2005 Astronomy 671 Jason Marshall Opening the IR Wavelength Regime for Discovery One of the primary

More information

Comparing Ultraviolet and Infrared Star Formation Tracers

Comparing Ultraviolet and Infrared Star Formation Tracers Comparing Ultraviolet and Infrared Star Formation Tracers George J. Bendo and Rebecca Freestone Jodrell Bank Centre for Astrophysics, The University of Manchester 15 February 2018 Overview The DS9 image

More information

Rajib Ganguly (University of Michigan-Flint)

Rajib Ganguly (University of Michigan-Flint) Rajib Ganguly (University of Michigan-Flint) A major theme in most recent simulations of galaxy evolution is AGN feedback, quantified by the kinetic luminosity, or power. In this ongoing work, we wish

More information

Light and Matter(LC)

Light and Matter(LC) Light and Matter(LC) Every astronomy book that I ve seen has at least one chapter dedicated to the physics of light. Why are astronomers so interested in light? Everything* that we know about Astronomical

More information

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and

6. Interstellar Medium. Emission nebulae are diffuse patches of emission surrounding hot O and 6-1 6. Interstellar Medium 6.1 Nebulae Emission nebulae are diffuse patches of emission surrounding hot O and early B-type stars. Gas is ionized and heated by radiation from the parent stars. In size,

More information

Susan Cartwright Our Evolving Universe 1

Susan Cartwright Our Evolving Universe 1 Atoms and Starlight Why do the stars shine? planets shine by reflected sunlight but what generates the Sun s light? What does starlight tell us about the stars? their temperature their chemical composition

More information

Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice!

Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice! Deep Surveys or How We Learn About the Early Universe When We Can t Measure All that Would Be Nice! Presented at the AAS Seminar on Infrared Astronomy, AAS Meeting, Jan 7, 2003, Seattle Marcia Rieke mrieke@as.

More information