Pole placement control: state space and polynomial approaches Lecture 3

Size: px
Start display at page:

Download "Pole placement control: state space and polynomial approaches Lecture 3"

Transcription

1 : state space and polynomial es Lecture 3 O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr o.sename 10th January 2014

2 Outline

3

4 The classical structure

5

6 Towards 2

7 The RST structure

8 Notations r is the reference signal, u(t) the input and y(t) the system output d u (t) and d y (t) are the disturbance signals, on the system input and output respectively n is the measurement noise (output) Here the RST design ology is presented for discrete-time, but it could be applied to continuous-time systems as well.

9 System data The system is given by : A(z) = a 0 z n + a 1 z n a n B(z) = b 0 z n + b 1 z n b n Usually A is assumed to be monic, i.e. a 0 = 1. The input is given by: S(z)u k = T (z)r k R(z)y k where R, S and T are some polynomials in z.

10 Closed-loop specifications Since the is a pole placement one, the specifications concern the characteristic polynomial of the closed-loop system. First: The aim is that the closed-loop system will follow a reference model given by: B m (z),such that: A m (z) deg(a m ) deg(b m ) and A m is monic and stable, Second: The underlying objective is to place the closed-loop poles to handle to transient behavior.

11 Other specifications As usually, specifications may concern disturbance rejection, noise effect attenuation, robustness (+ actuator saturation)... We then add some constraints synthesis as for instance Integral Action. Constraints: the closed-loop steady state errors in tracking and regulation should be zero. With the given action, the closed-loop system becomes: y k = B(z)T (z) A(z)S(z) + B(z)R(z) r k

12 Remarks The reference model denominator A m is often chosen of a lower degree than AS + BR B m is chosen to specify the closed-loop zeros.

13 RST form The polynomials R, S and T are defined by: R(z) = r 0 z n r + r 1 z n r r nr S(z) = s 0 z n s + s 1 z n s s ns T (z) = t 0 z n t + t 1 z n t t nt Thus the implementation of that ler requires: n s n r et n s n t Then both following cases are usually considered 1. the computational time can be neglected w.r.t the sampling period. Then : n r = n t = n s 2. The computational times equals the sampling period. Then: n r = n t = n s 1

14

15 As said before, an Integralaction is often necessary. On the other hand, the order of the closed-loop system may become very large according to the choice of the order of the polynomials R, S and T. The system under consideration is : H(z) = B(z) A(z) Assumption: B and A are co-prime and A is monic (a 0 = 1). (1)

16 It is usually required that the steady state gain between d y and y r is zero, which aims at providing: A(1)S(1) = 0 Then, if the system does not include an integrator (A(1) 0), S(z) must satisfy : S(1) = 0 and then include z 1. If many integrators are required then S(z) will include (z 1) l, with l > 1.

17 The system output y should follow (in closed-loop) the reference signal r, which corresponds to B(1)T (1) A(1)S(1) + B(1)R(1) = 1 Then T (z) should satisfy the following constraint: T (1) = R(1)

18

19 Step 1 Let decompose B as : B = B + B (2) where B + represents some zeros which are also some zeros of AS + BR (in order to get simplifiactions), thus being stable zeros, and B the remaining zeros (not being zeros of AS + BR) which may be unstable (or on the unitary circle) zeros. Let assume B + monic. The closed-loop system can be written as: B + B T AS + BR = B m A m B + B TA m = (AS + BR)B m Then the closed-loop stability implies that AS + BR have B no common zeros. Hence B m = B B m (3)

20 Step 2 B + is a factor from AS + BR and AS + BR = AS + B + B R, Therefore the zeros of B + are zeros of AS, and: where S, B + and S are monic polynomials. Then we obtain: S = B + S (4) B + B T B + (AS + B R) = B B T = A m AS + B R = B A m It can be conclude that T equals B m and AS + B R equals A m to a factor polynomial: m m T = B ma 0 (5) AS + B R = A m A 0 (6) where A 0 is usually referred to as the observer polynomial.

21 Step 3 To summarize BT and AS + BR both contain polynomials A 0 and B +, which leads to some simplification (leading to the tracking model). When an (or manu) integrator are included, S(z) should be replaced by (z 1) l S(z). The polynomial equation to be solved is then: B(z)T (z) A(z)(z 1) l S(z) + B(z)R(z) = B m(z) A m (z) Applying the previous ology, it leads: T (z) = B m(z)a 0 (z) (7) A(z)(z 1) l S (z) + B (z)r(z) = A m (z)a 0 (z) (8) Usaually B m(z) can be chosen as a simple constant gain, which ensures tracking performances (without steady state error) i.e. R(1)/A 0 (1).

22 The following theorem states the existence of RST. Theorem There exists a proper (deg(s) deg(t ) and deg(s) deg(r)) if the following inequalities are satisfied: deg(a m ) deg(b m ) deg(a) deg(b) (9) deg(a 0 ) 2deg(A) deg(a m ) deg(b + ) 1 (10) When one (or more) integrators are included, there exists a RST ler such that (deg(s) + l deg(t ) and deg(s) + l deg(r)) if : deg(a m ) deg(b m ) deg(a) deg(b) (11) deg(a 0 ) 2deg(A) deg(a m ) deg(b + ) 1 + l (12)

23 The following theorem ensures the uniqueness of RST. Theorem The degree of R equals deg(a) 1 or, in the presence of an integrator deg(a) 1 + l. Furthermore the polynomials S and R are unique.

24 Two cases 1. the computational time can be neglected w.r.t the sampling period: deg(s) = deg(r) = deg(t ),then deg(a m ) deg(b m ) = deg(a) deg(b) (13) deg(a 0 ) = 2deg(A) deg(a m ) deg(b + ) 1 + l (14) deg(r) = deg(a) 1 + l (15) with l = 0 without integrator 2. The computational times equals the sampling period. Then: deg(s) 1 = deg(r) = deg(t ),then deg(a m ) deg(b m ) = deg(a) deg(b) + 1 (16) deg(a 0 ) = 2deg(A) deg(a m ) deg(b + ) + l (17) deg(r) = deg(a) 1 + l (18) with l = 0 without integrator

25 Design procedure Data Polynomials A(z) and B(z) Polynomials A m (z), B m (z) and A 0 (z) Conditions A(z) and B(z) have no common factors. B m (z) = B (z)b m(z) deg(a m ) deg(b m ) deg(a) deg(b) deg(a 0 ) 2deg(A) deg(a m ) deg(b + ) 1 + l deg(r ) = deg(a m ) + deg(a 0 ) deg(a) l deg(s) = deg(a) 1 + l Step 1 Factorization B(z) = B + (z)b (z) Step 2 Solve A(z)(z 1) l S (z) + B (z)r(z) = A m (z)a 0 (z) Step 3 Compute S(z) = B + (z)s (z) and T (z) = B m(z)a 0 (z)

26 Bezout equation The Bezout identity (or diophantine equation) is given by: A(z)X(z) + B(z)Y (z) = C(z) (19) Theorem The equation (19) has a solution if and only if the largest common divisor of A(z) and B(z) is a divisor of C(z). If there exists a solution (X 0 (z), Y 0 (z)) then : X(z) = X 0 (z) + S(z)B(z) and Y (z) = Y 0 (z) S(z)A(z) where S(z) is an arbitrory polynomial (solution as well). The Bezout equation can be rewritten as a linear system to be solved (using the equality of powers in z).

27 Bezout equation In the general case where: deg(a) = deg(b) = n and deg(r) = deg(s) 1 = n + l 1, (20) i.e. deg(a m A 0 ) = 2n + l. Denote: A (z) = A(z)(z 1) l = a 0 z n+l + a 1 z n+l a n+l B(z) = b 0 z n + b 1 z n b n S (z) = s 0 z n + s 1 z n s n R(z) = r 1 z n+l 1 + r 2 z n+l r n+l C(z) = c 0 z 2n+l + c 1 z 2n+l c 2n+l

28 Bezout equation The linear system to be solved is: MX = C,where a a 1 a b an a n 1... a 0 b n 1... b a n+1 an... a 1 bn b n 1... b a n+2 a n+1... a 2 0 bn b n 1... b M = a n+l a n+l 1... a l 0 bn bn 1 b a n+l... a l+1 0 bn b an+l a n+l bn bn a n+l bn (21) C = ( c 0 c 1... c n+l c 2n+l ) T and X = ( s 0 s 1... s n r 1... r n+l ) T for which the resolution is done by gaussian elimination.

29 Bezout equation Remark When the degrees of polynomials do not satisfy equalities (20) we need to cancel the unuseful terms. If deg(b) = n 1 then b 0 = 0. There exists an algorithm based on polynomial division, well adapted to solve such an equation.

30 Equivalence and The use of an ler is equivalent to the following ler : u k = F d (zi n A d + B d F d + L d C d ) 1 L d y k +[I n F d (zi n A d + B d F d + L d C d ) 1 B d ]G d r k which corresponds to a two-degrees of freedom ler u k = R(z) S(z) y k + T (z) S(z) r k and this can be implemented in an RST form.

31 Sensitivity functions The two structure requires to define specific sensitivity functions. with S (z) = A(z)S(z) P c (z) K S (z) = A(z)R(z) P c (z) and T (z) = B(z)R(z) P c (z) and S G (z) = B(z)S(z) P c (z) P c (z) = A(z)S(z) + B(z)R(z) (22) (23)

32 Sensitivity functions Figure: Input and Output sensitivity functions

Pole-Placement Design A Polynomial Approach

Pole-Placement Design A Polynomial Approach TU Berlin Discrete-Time Control Systems 1 Pole-Placement Design A Polynomial Approach Overview A Simple Design Problem The Diophantine Equation More Realistic Assumptions TU Berlin Discrete-Time Control

More information

Pole placement control: state space and polynomial approaches Lecture 2

Pole placement control: state space and polynomial approaches Lecture 2 : state space and polynomial approaches Lecture 2 : a state O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename -based November 21, 2017 Outline : a state

More information

EECE 460 : Control System Design

EECE 460 : Control System Design EECE 460 : Control System Design SISO Pole Placement Guy A. Dumont UBC EECE January 2011 Guy A. Dumont (UBC EECE) EECE 460: Pole Placement January 2011 1 / 29 Contents 1 Preview 2 Polynomial Pole Placement

More information

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers

LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers LABORATORY OF AUTOMATION SYSTEMS Analytical design of digital controllers Claudio Melchiorri Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna email: claudio.melchiorri@unibo.it

More information

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method

Methods for analysis and control of dynamical systems Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.gipsa-lab.fr/ o.sename 5th February 2015 Outline

More information

FRTN 15 Predictive Control

FRTN 15 Predictive Control Department of AUTOMATIC CONTROL FRTN 5 Predictive Control Final Exam March 4, 27, 8am - 3pm General Instructions This is an open book exam. You may use any book you want, including the slides from the

More information

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30 289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

More information

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang

CBE507 LECTURE III Controller Design Using State-space Methods. Professor Dae Ryook Yang CBE507 LECTURE III Controller Design Using State-space Methods Professor Dae Ryook Yang Fall 2013 Dept. of Chemical and Biological Engineering Korea University Korea University III -1 Overview States What

More information

Lecture 13: Internal Model Principle and Repetitive Control

Lecture 13: Internal Model Principle and Repetitive Control ME 233, UC Berkeley, Spring 2014 Xu Chen Lecture 13: Internal Model Principle and Repetitive Control Big picture review of integral control in PID design example: 0 Es) C s) Ds) + + P s) Y s) where P s)

More information

Methods for analysis and control of. Lecture 6: Introduction to digital control

Methods for analysis and control of. Lecture 6: Introduction to digital control Methods for analysis and of Lecture 6: to digital O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename 6th May 2009 Outline Some interesting books:

More information

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing

A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR. Ryszard Gessing A FEEDBACK STRUCTURE WITH HIGHER ORDER DERIVATIVES IN REGULATOR Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Pole placement control: state space and polynomial approaches Lecture 1

Pole placement control: state space and polynomial approaches Lecture 1 : state space and polynomial approaches Lecture 1 dynamical O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.fr www.gipsa-lab.fr/ o.sename November 7, 2017 Outline dynamical dynamical

More information

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08

Fall 線性系統 Linear Systems. Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian. NTU-EE Sep07 Jan08 Fall 2007 線性系統 Linear Systems Chapter 08 State Feedback & State Estimators (SISO) Feng-Li Lian NTU-EE Sep07 Jan08 Materials used in these lecture notes are adopted from Linear System Theory & Design, 3rd.

More information

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials.

1. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials. Partial Fraction Expansion All the polynomials in this note are assumed to be complex polynomials A rational function / is a quotient of two polynomials P, Q with 0 By Fundamental Theorem of algebra, =

More information

Linear State Feedback Controller Design

Linear State Feedback Controller Design Assignment For EE5101 - Linear Systems Sem I AY2010/2011 Linear State Feedback Controller Design Phang Swee King A0033585A Email: king@nus.edu.sg NGS/ECE Dept. Faculty of Engineering National University

More information

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems. Process Dynamics and Control Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

More information

Control System Design

Control System Design ELEC ENG 4CL4: Control System Design Notes for Lecture #14 Wednesday, February 5, 2003 Dr. Ian C. Bruce Room: CRL-229 Phone ext.: 26984 Email: ibruce@mail.ece.mcmaster.ca Chapter 7 Synthesis of SISO Controllers

More information

Methods for analysis and control of. Lecture 4: The root locus design method

Methods for analysis and control of. Lecture 4: The root locus design method Methods for analysis and control of Lecture 4: The root locus design method O. Sename 1 1 Gipsa-lab, CNRS-INPG, FRANCE Olivier.Sename@gipsa-lab.inpg.fr www.lag.ensieg.inpg.fr/sename Lead Lag 17th March

More information

Digital Signal Processing, Homework 2, Spring 2013, Prof. C.D. Chung. n; 0 n N 1, x [n] = N; N n. ) (n N) u [n N], z N 1. x [n] = u [ n 1] + Y (z) =

Digital Signal Processing, Homework 2, Spring 2013, Prof. C.D. Chung. n; 0 n N 1, x [n] = N; N n. ) (n N) u [n N], z N 1. x [n] = u [ n 1] + Y (z) = Digital Signal Processing, Homework, Spring 0, Prof CD Chung (05%) Page 67, Problem Determine the z-transform of the sequence n; 0 n N, x [n] N; N n x [n] n; 0 n N, N; N n nx [n], z d dz X (z) ) nu [n],

More information

Control Systems. Root Locus & Pole Assignment. L. Lanari

Control Systems. Root Locus & Pole Assignment. L. Lanari Control Systems Root Locus & Pole Assignment L. Lanari Outline root-locus definition main rules for hand plotting root locus as a design tool other use of the root locus pole assignment Lanari: CS - Root

More information

TRACKING AND DISTURBANCE REJECTION

TRACKING AND DISTURBANCE REJECTION TRACKING AND DISTURBANCE REJECTION Sadegh Bolouki Lecture slides for ECE 515 University of Illinois, Urbana-Champaign Fall 2016 S. Bolouki (UIUC) 1 / 13 General objective: The output to track a reference

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

Lecture 04: Discrete Frequency Domain Analysis (z-transform)

Lecture 04: Discrete Frequency Domain Analysis (z-transform) Lecture 04: Discrete Frequency Domain Analysis (z-transform) John Chiverton School of Information Technology Mae Fah Luang University 1st Semester 2009/ 2552 Outline Overview Lecture Contents Introduction

More information

Introduction & Laplace Transforms Lectures 1 & 2

Introduction & Laplace Transforms Lectures 1 & 2 Introduction & Lectures 1 & 2, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Control System Definition of a Control System Group of components that collectively

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

More information

Chapter 15 - Solved Problems

Chapter 15 - Solved Problems Chapter 5 - Solved Problems Solved Problem 5.. Contributed by - Alvaro Liendo, Universidad Tecnica Federico Santa Maria, Consider a plant having a nominal model given by G o (s) = s + 2 The aim of the

More information

ELEG 305: Digital Signal Processing

ELEG 305: Digital Signal Processing ELEG 305: Digital Signal Processing Lecture 4: Inverse z Transforms & z Domain Analysis Kenneth E. Barner Department of Electrical and Computer Engineering University of Delaware Fall 008 K. E. Barner

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries

Raktim Bhattacharya. . AERO 632: Design of Advance Flight Control System. Preliminaries . AERO 632: of Advance Flight Control System. Preliminaries Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. Preliminaries Signals & Systems Laplace

More information

Need for transformation?

Need for transformation? Z-TRANSFORM In today s class Z-transform Unilateral Z-transform Bilateral Z-transform Region of Convergence Inverse Z-transform Power Series method Partial Fraction method Solution of difference equations

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 3, Part 2: Introduction to Affine Parametrisation School of Electrical Engineering and Computer Science Lecture 3, Part 2: Affine Parametrisation p. 1/29 Outline

More information

State Feedback and State Estimators Linear System Theory and Design, Chapter 8.

State Feedback and State Estimators Linear System Theory and Design, Chapter 8. 1 Linear System Theory and Design, http://zitompul.wordpress.com 2 0 1 4 2 Homework 7: State Estimators (a) For the same system as discussed in previous slides, design another closed-loop state estimator,

More information

Control Systems Design

Control Systems Design ELEC4410 Control Systems Design Lecture 18: State Feedback Tracking and State Estimation Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science Lecture 18:

More information

ROBUST DIGITAL CONTROL USING POLE PLACEMENT WITH SENSITIVITY FUNCTION SHAPING METHOD

ROBUST DIGITAL CONTROL USING POLE PLACEMENT WITH SENSITIVITY FUNCTION SHAPING METHOD INTERNATIONAL JOURNAL OF ROBUST AND NONLINEAR CONTROL, VOL. 8, 191 210 (1998) ROBUST DIGITAL CONTROL USING POLE PLACEMENT WITH SENSITIVITY FUNCTION SHAPING METHOD I.D. LANDAU* AND A. KARIMI Laboratoire

More information

Module 6: Deadbeat Response Design Lecture Note 1

Module 6: Deadbeat Response Design Lecture Note 1 Module 6: Deadbeat Response Design Lecture Note 1 1 Design of digital control systems with dead beat response So far we have discussed the design methods which are extensions of continuous time design

More information

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27

ECEN 605 LINEAR SYSTEMS. Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability 1/27 1/27 ECEN 605 LINEAR SYSTEMS Lecture 20 Characteristics of Feedback Control Systems II Feedback and Stability Feedback System Consider the feedback system u + G ol (s) y Figure 1: A unity feedback system

More information

Algebra. Pang-Cheng, Wu. January 22, 2016

Algebra. Pang-Cheng, Wu. January 22, 2016 Algebra Pang-Cheng, Wu January 22, 2016 Abstract For preparing competitions, one should focus on some techniques and important theorems. This time, I want to talk about a method for solving inequality

More information

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design

ECSE 4962 Control Systems Design. A Brief Tutorial on Control Design ECSE 4962 Control Systems Design A Brief Tutorial on Control Design Instructor: Professor John T. Wen TA: Ben Potsaid http://www.cat.rpi.edu/~wen/ecse4962s04/ Don t Wait Until The Last Minute! You got

More information

Control System Design

Control System Design ELEC4410 Control System Design Lecture 19: Feedback from Estimated States and Discrete-Time Control Design Julio H. Braslavsky julio@ee.newcastle.edu.au School of Electrical Engineering and Computer Science

More information

Chapter 13 Digital Control

Chapter 13 Digital Control Chapter 13 Digital Control Chapter 12 was concerned with building models for systems acting under digital control. We next turn to the question of control itself. Topics to be covered include: why one

More information

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes

21.4. Engineering Applications of z-transforms. Introduction. Prerequisites. Learning Outcomes Engineering Applications of z-transforms 21.4 Introduction In this Section we shall apply the basic theory of z-transforms to help us to obtain the response or output sequence for a discrete system. This

More information

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o

Chapter 7 Interconnected Systems and Feedback: Well-Posedness, Stability, and Performance 7. Introduction Feedback control is a powerful approach to o Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 7 Interconnected

More information

Model Reference Adaptive Control for Multi-Input Multi-Output Nonlinear Systems Using Neural Networks

Model Reference Adaptive Control for Multi-Input Multi-Output Nonlinear Systems Using Neural Networks Model Reference Adaptive Control for MultiInput MultiOutput Nonlinear Systems Using Neural Networks Jiunshian Phuah, Jianming Lu, and Takashi Yahagi Graduate School of Science and Technology, Chiba University,

More information

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing

RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS. Ryszard Gessing RELAY CONTROL WITH PARALLEL COMPENSATOR FOR NONMINIMUM PHASE PLANTS Ryszard Gessing Politechnika Śl aska Instytut Automatyki, ul. Akademicka 16, 44-101 Gliwice, Poland, fax: +4832 372127, email: gessing@ia.gliwice.edu.pl

More information

Module 9: State Feedback Control Design Lecture Note 1

Module 9: State Feedback Control Design Lecture Note 1 Module 9: State Feedback Control Design Lecture Note 1 The design techniques described in the preceding lectures are based on the transfer function of a system. In this lecture we would discuss the state

More information

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller

10/8/2015. Control Design. Pole-placement by state-space methods. Process to be controlled. State controller Pole-placement by state-space methods Control Design To be considered in controller design * Compensate the effect of load disturbances * Reduce the effect of measurement noise * Setpoint following (target

More information

DIGITAL CONTROLLER DESIGN

DIGITAL CONTROLLER DESIGN ECE4540/5540: Digital Control Systems 5 DIGITAL CONTROLLER DESIGN 5.: Direct digital design: Steady-state accuracy We have spent quite a bit of time discussing digital hybrid system analysis, and some

More information

Parametrization of all plants that have the same optimal LQG controller*

Parametrization of all plants that have the same optimal LQG controller* Proceedings of the 35th Conference on Decision and Control Kobe, Japan December 1996 Parametrization of all plants that have the same optimal LQG controller* Franky De Bruyne f, Brian D. 0. Anderson t,

More information

Controls Problems for Qualifying Exam - Spring 2014

Controls Problems for Qualifying Exam - Spring 2014 Controls Problems for Qualifying Exam - Spring 2014 Problem 1 Consider the system block diagram given in Figure 1. Find the overall transfer function T(s) = C(s)/R(s). Note that this transfer function

More information

Time Response of Systems

Time Response of Systems Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

More information

Close Loop System Identification of Dynamic Parameters of an Airplane. Michal Chvojka

Close Loop System Identification of Dynamic Parameters of an Airplane. Michal Chvojka Close Loop System Identification of Dynamic Parameters of an Airplane Michal Chvojka October 2004 Chapter 1 Closed Loop System Identification Identifiability of Closed Loop Systems Sometimes it is important

More information

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli

Control Systems I. Lecture 2: Modeling. Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch Emilio Frazzoli Control Systems I Lecture 2: Modeling Suggested Readings: Åström & Murray Ch. 2-3, Guzzella Ch. 2-3 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich September 29, 2017 E. Frazzoli

More information

Process Control J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016

Process Control J.P. CORRIOU. Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 2016 Process Control J.P. CORRIOU Reaction and Process Engineering Laboratory University of Lorraine-CNRS, Nancy (France) Zhejiang University 206 J.P. Corriou (LRGP) Process Control Zhejiang University 206

More information

Iterative Feedback Tuning for robust controller design and optimization

Iterative Feedback Tuning for robust controller design and optimization Iterative Feedback Tuning for robust controller design and optimization Hynek Procházka, Michel Gevers, Brian D.O. Anderson, Christel Ferrera Abstract This paper introduces a new approach for robust controller

More information

Digital Control Systems

Digital Control Systems Digital Control Systems Lecture Summary #4 This summary discussed some graphical methods their use to determine the stability the stability margins of closed loop systems. A. Nyquist criterion Nyquist

More information

MODELING OF CONTROL SYSTEMS

MODELING OF CONTROL SYSTEMS 1 MODELING OF CONTROL SYSTEMS Feb-15 Dr. Mohammed Morsy Outline Introduction Differential equations and Linearization of nonlinear mathematical models Transfer function and impulse response function Laplace

More information

Automatic Control (TSRT15): Lecture 7

Automatic Control (TSRT15): Lecture 7 Automatic Control (TSRT15): Lecture 7 Tianshi Chen Division of Automatic Control Dept. of Electrical Engineering Email: tschen@isy.liu.se Phone: 13-282226 Office: B-house extrance 25-27 Outline 2 Feedforward

More information

Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions)

Lecture 9. Welcome back! Coming week labs: Today: Lab 16 System Identification (2 sessions) 232 Welcome back! Coming week labs: Lecture 9 Lab 16 System Identification (2 sessions) Today: Review of Lab 15 System identification (ala ME4232) Time domain Frequency domain 1 Future Labs To develop

More information

Uncertainty and Robustness for SISO Systems

Uncertainty and Robustness for SISO Systems Uncertainty and Robustness for SISO Systems ELEC 571L Robust Multivariable Control prepared by: Greg Stewart Outline Nature of uncertainty (models and signals). Physical sources of model uncertainty. Mathematical

More information

Optimal Polynomial Control for Discrete-Time Systems

Optimal Polynomial Control for Discrete-Time Systems 1 Optimal Polynomial Control for Discrete-Time Systems Prof Guy Beale Electrical and Computer Engineering Department George Mason University Fairfax, Virginia Correspondence concerning this paper should

More information

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1

School of Mechanical Engineering Purdue University. ME375 Feedback Control - 1 Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Dynamic Response .. AERO 422: Active Controls for Aerospace Vehicles Dynamic Response Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University. . Previous Class...........

More information

EE 422G - Signals and Systems Laboratory

EE 422G - Signals and Systems Laboratory EE 4G - Signals and Systems Laboratory Lab 9 PID Control Kevin D. Donohue Department of Electrical and Computer Engineering University of Kentucky Lexington, KY 40506 April, 04 Objectives: Identify the

More information

Direct adaptive suppression of multiple unknown vibrations using an inertial actuator

Direct adaptive suppression of multiple unknown vibrations using an inertial actuator Author manuscript, published in "Conference on Decision and Control, Atlanta : États-Unis (21" 49th IEEE Conference on Decision and Control December 15-17, 21 Hilton Atlanta Hotel, Atlanta, GA, USA Direct

More information

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004

Lecture 9. Introduction to Kalman Filtering. Linear Quadratic Gaussian Control (LQG) G. Hovland 2004 MER42 Advanced Control Lecture 9 Introduction to Kalman Filtering Linear Quadratic Gaussian Control (LQG) G. Hovland 24 Announcement No tutorials on hursday mornings 8-9am I will be present in all practical

More information

An Introduction to Control Systems

An Introduction to Control Systems An Introduction to Control Systems Signals and Systems: 3C1 Control Systems Handout 1 Dr. David Corrigan Electronic and Electrical Engineering corrigad@tcd.ie November 21, 2012 Recall the concept of a

More information

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules

State Regulator. Advanced Control. design of controllers using pole placement and LQ design rules Advanced Control State Regulator Scope design of controllers using pole placement and LQ design rules Keywords pole placement, optimal control, LQ regulator, weighting matrixes Prerequisites Contact state

More information

Chapter 7 - Solved Problems

Chapter 7 - Solved Problems Chapter 7 - Solved Problems Solved Problem 7.1. A continuous time system has transfer function G o (s) given by G o (s) = B o(s) A o (s) = 2 (s 1)(s + 2) = 2 s 2 + s 2 (1) Find a controller of minimal

More information

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance.

06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Chapter 06 Feedback 06 Feedback Control System Characteristics The role of error signals to characterize feedback control system performance. Lesson of the Course Fondamenti di Controlli Automatici of

More information

State Observers and the Kalman filter

State Observers and the Kalman filter Modelling and Control of Dynamic Systems State Observers and the Kalman filter Prof. Oreste S. Bursi University of Trento Page 1 Feedback System State variable feedback system: Control feedback law:u =

More information

Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data.

Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data. ISS0031 Modeling and Identification Lecture 7: Discrete-time Models. Modeling of Physical Systems. Preprocessing Experimental Data. Aleksei Tepljakov, Ph.D. October 21, 2015 Discrete-time Transfer Functions

More information

Ch. 7: Z-transform Reading

Ch. 7: Z-transform Reading c J. Fessler, June 9, 3, 6:3 (student version) 7. Ch. 7: Z-transform Definition Properties linearity / superposition time shift convolution: y[n] =h[n] x[n] Y (z) =H(z) X(z) Inverse z-transform by coefficient

More information

Classify a transfer function to see which order or ramp it can follow and with which expected error.

Classify a transfer function to see which order or ramp it can follow and with which expected error. Dr. J. Tani, Prof. Dr. E. Frazzoli 5-059-00 Control Systems I (Autumn 208) Exercise Set 0 Topic: Specifications for Feedback Systems Discussion: 30.. 208 Learning objectives: The student can grizzi@ethz.ch,

More information

Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs

Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs Control of linear systems subject to time-domain constraints with polynomial pole placement and LMIs Didier Henrion 1,2,3,4 Sophie Tarbouriech 1 Vladimír Kučera 3,5 February 12, 2004 Abstract: The paper

More information

Lifted approach to ILC/Repetitive Control

Lifted approach to ILC/Repetitive Control Lifted approach to ILC/Repetitive Control Okko H. Bosgra Maarten Steinbuch TUD Delft Centre for Systems and Control TU/e Control System Technology Dutch Institute of Systems and Control DISC winter semester

More information

26 Feedback Example: The Inverted Pendulum

26 Feedback Example: The Inverted Pendulum 6 Feedback Example: The Inverted Pendulum Solutions to Recommended Problems S6. Ld 0(t) (a) Ldz6(t) = g0(t) a(t) + Lx(t), Ld (t) dt - ga(t) = Lx(t) Taking the Laplace transform of both sides yields szlo(s)

More information

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University

H 2 Optimal State Feedback Control Synthesis. Raktim Bhattacharya Aerospace Engineering, Texas A&M University H 2 Optimal State Feedback Control Synthesis Raktim Bhattacharya Aerospace Engineering, Texas A&M University Motivation Motivation w(t) u(t) G K y(t) z(t) w(t) are exogenous signals reference, process

More information

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

More information

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems

EE451/551: Digital Control. Chapter 3: Modeling of Digital Control Systems EE451/551: Digital Control Chapter 3: Modeling of Digital Control Systems Common Digital Control Configurations AsnotedinCh1 commondigitalcontrolconfigurations As noted in Ch 1, common digital control

More information

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich

Control Systems I. Lecture 6: Poles and Zeros. Readings: Emilio Frazzoli. Institute for Dynamic Systems and Control D-MAVT ETH Zürich Control Systems I Lecture 6: Poles and Zeros Readings: Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich October 27, 2017 E. Frazzoli (ETH) Lecture 6: Control Systems I 27/10/2017

More information

2 Problem formulation. Fig. 1 Unity-feedback system. where A(s) and B(s) are coprime polynomials. The reference input is.

2 Problem formulation. Fig. 1 Unity-feedback system. where A(s) and B(s) are coprime polynomials. The reference input is. Synthesis of pole-zero assignment control law with minimum control input M.-H. TU C.-M. Lin Indexiny ferms: Control systems, Pules and zeros. Internal stability Abstract: A new method of control system

More information

Section 8.3 Partial Fraction Decomposition

Section 8.3 Partial Fraction Decomposition Section 8.6 Lecture Notes Page 1 of 10 Section 8.3 Partial Fraction Decomposition Partial fraction decomposition involves decomposing a rational function, or reversing the process of combining two or more

More information

Chapter 2 Review of Linear and Nonlinear Controller Designs

Chapter 2 Review of Linear and Nonlinear Controller Designs Chapter 2 Review of Linear and Nonlinear Controller Designs This Chapter reviews several flight controller designs for unmanned rotorcraft. 1 Flight control systems have been proposed and tested on a wide

More information

Note. Design via State Space

Note. Design via State Space Note Design via State Space Reference: Norman S. Nise, Sections 3.5, 3.6, 7.8, 12.1, 12.2, and 12.8 of Control Systems Engineering, 7 th Edition, John Wiley & Sons, INC., 2014 Department of Mechanical

More information

Lecture 7 (Weeks 13-14)

Lecture 7 (Weeks 13-14) Lecture 7 (Weeks 13-14) Introduction to Multivariable Control (SP - Chapters 3 & 4) Eugenio Schuster schuster@lehigh.edu Mechanical Engineering and Mechanics Lehigh University Lecture 7 (Weeks 13-14) p.

More information

Common rail injection system controller design using input-to-state linearization and optimal control strategy with integral action

Common rail injection system controller design using input-to-state linearization and optimal control strategy with integral action 2013 European Control Conference (ECC) July 17-19, 2013, Zürich, Switzerland. Common rail injection system controller design using input-to-state linearization and optimal control strategy with integral

More information

YTÜ Mechanical Engineering Department

YTÜ Mechanical Engineering Department YTÜ Mechanical Engineering Department Lecture of Special Laboratory of Machine Theory, System Dynamics and Control Division Coupled Tank 1 Level Control with using Feedforward PI Controller Lab Report

More information

Systems Analysis and Control

Systems Analysis and Control Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

More information

ANTI-WIND-UP SOLUTION FOR A TWO DEGREES OF FREEDOM CONTROLLER

ANTI-WIND-UP SOLUTION FOR A TWO DEGREES OF FREEDOM CONTROLLER NTI-WIND-UP SOLUTION FOR TWO DEGREES OF FREEDOM CONTROLLER Lucrecia Gava (a), níbal Zanini (b) (a), (b) Laboratorio de Control - Facultad de Ingeniería - Universidad de Buenos ires - ITHES - CONICET (a)

More information

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu

Modelling and Control of Dynamic Systems. Stability of Linear Systems. Sven Laur University of Tartu Modelling and Control of Dynamic Systems Stability of Linear Systems Sven Laur University of Tartu Motivating Example Naive open-loop control r[k] Controller Ĉ[z] u[k] ε 1 [k] System Ĝ[z] y[k] ε 2 [k]

More information

Outline. Classical Control. Lecture 1

Outline. Classical Control. Lecture 1 Outline Outline Outline 1 Introduction 2 Prerequisites Block diagram for system modeling Modeling Mechanical Electrical Outline Introduction Background Basic Systems Models/Transfers functions 1 Introduction

More information

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012

MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 MATH4406 (Control Theory) Unit 1: Introduction Prepared by Yoni Nazarathy, July 21, 2012 Unit Outline Introduction to the course: Course goals, assessment, etc... What is Control Theory A bit of jargon,

More information

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems

Ultimate State. MEM 355 Performance Enhancement of Dynamical Systems Ultimate State MEM 355 Performance Enhancement of Dnamical Sstems Harr G. Kwatn Department of Mechanical Engineering & Mechanics Drexel Universit Outline Design Criteria two step process Ultimate state

More information

EECE Adaptive Control

EECE Adaptive Control EECE 574 - Adaptive Control Model-Reference Adaptive Control - Part I Guy Dumont Department of Electrical and Computer Engineering University of British Columbia January 2010 Guy Dumont (UBC EECE) EECE

More information

Wind Turbine Control

Wind Turbine Control Wind Turbine Control W. E. Leithead University of Strathclyde, Glasgow Supergen Student Workshop 1 Outline 1. Introduction 2. Control Basics 3. General Control Objectives 4. Constant Speed Pitch Regulated

More information

Predictive Control- Exercise Session 4 Adaptive Control: Self Tuning Regulators and Model Reference Adaptive Systems

Predictive Control- Exercise Session 4 Adaptive Control: Self Tuning Regulators and Model Reference Adaptive Systems Predictive Control- Exercise Session 4 Adaptive Control: Self Tning Reglators and Model Reference Adaptive Systems 1. Indirect Self Tning Reglator: Consider the system where G(s)=G 1 (s)g 2 (s) G 1 (s)=

More information

Trajectory tracking control and feedforward

Trajectory tracking control and feedforward Trajectory tracking control and feedforward Aim of this chapter : Jan Swevers May 2013 Learn basic principles of feedforward design for trajectory tracking Focus is on feedforward filter design: comparison

More information

Lab 9a. Linear Predictive Coding for Speech Processing

Lab 9a. Linear Predictive Coding for Speech Processing EE275Lab October 27, 2007 Lab 9a. Linear Predictive Coding for Speech Processing Pitch Period Impulse Train Generator Voiced/Unvoiced Speech Switch Vocal Tract Parameters Time-Varying Digital Filter H(z)

More information

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin

Chapter 9 Observers, Model-based Controllers 9. Introduction In here we deal with the general case where only a subset of the states, or linear combin Lectures on Dynamic Systems and Control Mohammed Dahleh Munther A. Dahleh George Verghese Department of Electrical Engineering and Computer Science Massachuasetts Institute of Technology c Chapter 9 Observers,

More information