Roland Winston Schools of Engineering &Natural Sciences The University of California, Merced

Size: px
Start display at page:

Download "Roland Winston Schools of Engineering &Natural Sciences The University of California, Merced"

Transcription

1 Nonimaging Optics Applications in Solar Generation Contemporary Energy Issues EE 290N UC Berkeley March 2, 2009 Roland Winston Schools of Engineering &Natural Sciences The University of California, Merced KAON 2005 International Workshop, Northwestern University, June 13-17

2 Limits to Concentration from max sun ~ 0.5 we measure sun ~ 6000 (5670 ) Then from T 4 - solar surface flux~ 58.6 W/mm 2 The solar constant ~ 1.35 mw/mm 2 The second law of thermodynamics C max ~ 44,000 Coincidentally, C max = 1/sin 2

3 1/sin 2 θ Law of Maximum Concentration The irradiance, of sunlight, I, falls off as 1/r 2 so that at the orbit of earth, I 2 is 1/sin 2 θ xi 1, the irradiance emitted at the sun s surface. The 2 nd Law of Thermodynamics forbids concentrating I 2 to levels greater than I 1, since this would correspond to a brightness temperature greater than that of the sun. In a medium of refractive index n, one is allowed an additional factor of n 2 so that the equation can be generalized for an absorber immersed in a refractive medium as Nonimaging Optics 3

4 During a seminar at the Raman Institute (Bangalore) in 2000, Prof. V. Radhakrishnan asked me: How does geometrical optics know the second law of thermodynamics?

5 First and Second Law of Thermodynamics NIO is the theory of maximal efficiency radiative transfer It is axiomatic and algorithmic based As such, the subject depends much more on thermodynamics than on optics `

6

7 Chandra

8 B 3 P B 3 Q B 1 B 2 B 1 B 2 B 4 Q (a) (b) P Radiative transfer between walls in an enclosure

9 Strings 3-walls F12 = (A1 + A2 A3)/(2A1) 1 3 F13 = (A1 + A3 A2)/(2A1) F23 = (A2 + A3 A1)/(2A2) 2 qij = AiFij Fii = 0 F12 + F13 = 1 F21 + F23 = 1 F31 + F32 = 1 Ai Fij = Aj Fji 3 Eqs 3 Eqs

10 Strings 4-walls F12 + F13 + F14 = 1 F21 + F23 + F24 = 1 F14 = [(A5 + A6) (A2 + A3)]/(2A1) F23 = [(A5 + A6) (A1 + A4)]/(2A2)

11 Limit to Concentration F23 = [(A5 + A6) (A1 + A4)]/(2A2) = sin( as A3 goes to infinity This rotates for symmetric systems To sin 2 ( )

12 the string method slider 2D concentrator with acceptance (half) angle string absorbing surface

13 the string method

14 the string method

15 the string method

16 the string method

17 the string method stop here, because slope becomes infinite

18 the string method

19 Nonimaging Optics Fundamentals Edge-ray wave front C The Edge-Ray Principle A A Β'Α ΑC B' A B A BB' AC Β' Β Β Α' AA' sin AA' BB' / sin Compound Parabolic Concentrator (CPC) (tilted parabola sections) B B

20 Nonimaging Optics Fundamentals Edge-ray wave front C The Edge-Ray Principle A A 2D étendue = A A sin AA' BB' sin concentration limit in 2D! / B B 2D étendue = B B sin( /2) = B B

21 2D cylindrical optics: nonimaging optics basics: the string example: collimator for a tubular light source 2 R/sin slider method étendue conserved ideal design! tubular light source R kind of involute of the circle 21

22 Analogy of Fluid Dynamics and Optics fluid dynamics optics phase space (twice the dimensions of ordinary space ) general etendue positions momenta incompressible fluid positions directions of light rays multiplied by the index of refraction of the medium volume in phase space is conserved Nonimaging Optics 22

23 Imaging in Phase Space Example: points on a line. An imaging system is required to map those points on another line, called the image, without scrambling the points. In phase space Each point becomes a vertical line and the system is required to faithfully map line onto line. Nonimaging Optics 23

24 Edge-ray Principle Consider only the boundary or edge of all the rays. All we require is that the boundary is transported from the source to the target. The interior rays will come along. They cannot leak out because were they to cross the boundary they would first become the boundary, and it is the boundary that is being transported. Nonimaging Optics 24

25 Edge-ray Principle It is very much like transporting a container of an incompressible fluid, say water. The volume of container of rays is unchanged in the process. conservation of phase space volume. The fact that elements inside the container mix or the container itself is deformed is of no consequence. Nonimaging Optics 25

26 Edge-ray Principle To carry the analogy a bit further, suppose one were faced with the task of transporting a vessel (the volume in phase-space) filled with alphabet blocks spelling out a message. Then one would have to take care not to shake the container and thereby scramble the blocks. But if one merely needs to transport the blocks without regard to the message, the task is much easier. Nonimaging Optics 26

27 Nonimaging Optics 27

28 BRIGHTER THAN THE SUN an experiment on the roof of the U of C HEP Building Roof top Physics

29 Ultra High Flux Experiment

30

31

32

33

34 Availability of Solar Flux over a range Suns Conc.= 1-4 Fixed Heating&Cooling, PV Conc.= Conc.= ,000 1 axis tracking and seasonal 2 axis tracking (dish&tower) Power generation, Heating&Cooling, Low CPV Power generation High CPV Conc.= 20, ,000 2 axis tracking Solar Furnace, Materials, Lasers, Space Propulsion, Experiments

35 Can a Stationary Solar Concentrator Exist? C parabolic trough <= 1/ sin30 0 << 1! (NO) C nature = 1/sin30 0 = 2! (Yes) A factor 2 is significant for thermal conversion permitting T = C For PV conversion, C is boosted by index of refraction (say, n=1.5) C=3-4 for fixed concentrators For tracking concentrators C can be 100,000!

36 Flat plate collectors are limited to temperatures below 100 C 80% 70% Compound Parabolic Concentrator Efficiency 60% 50% 40% 30% 20% 10% 0% Flat plate collector Temperature above ambient [ C] (for 1,000 W/m 2 )

37

38 Engine 26 Fire House in Chicago

39 UC Merced 250C Thermal Test Loop

40 Coriolis Force Flow Meter

41 XCPC Solar Thermal Collector at UC Merced Solar Testing Facility

42

43 Nonimaging Optics 43

44 Nonimaging Optics 44

45 Nonimaging Optics 45

46 Nonimaging Optics 46

47 Nonimaging Optics 47

48 Nonimaging Optics 48

49 Nonimaging Optics 49

50

51 70.00% 65.00% Efficiency vs Temperature U-Tube 60.00% 55.00% 50.00% 45.00% 40.00% 80g/s NS 100g/s NS 120g/s NS 140g/s NS 80g/s EW 100g/s EW 120g/s 35.00% 30.00% Temperature [C]

52 60.00% 50.00% 40.00% 30.00% Efficiency (PSolRad) 20.00% 10.00% 0.00% Azimuth Angle

53

54 PALO ALTO WATER SolFocus Array

55 3D Rendering of Our New Design PMMA cover Secondary mirror Solar cell on heat spreader Primary mirror Heat sink

56 Features of Our New Design Light impinging on the primary mirror is not focused onto the cell, but onto the secondary mirror This results in a uniform cell illumination with an average concentration of 500 suns Secondary mirror Light radially distributed along cell Focal ring on secondary mirror Primary mirror

57 Dimensions (in mm)

58 Theoretical limit (n=1.5; 60 exit angle) Theoretical limit (n=1; 60 exit angle) Dielectric TIR Aplanat (circular) XR (circular) Two aplanatic (air filled) mirrors + prism Two aplanatic (glass filled) mirrors Fresnel lens without secondary AR... Aspectratio (depth/aperture diameter) 3 2 AR=0.3 AR=0.3 AR=0.6 1 AR=0.3 0 AR= ,000 1,200 1,400 58

59 With Apologies to Benny Goodman It don t mean a thing If it doesn t have Sin =n/ C

60 California State Mining Mineral Museum

61 The Client Fricot Nugget Needs & Wants Redesigned fixture lighting Redesigned spot lighting No heat No UV Museum contains over 13,000 objects including mining artifacts, rare specimens of crystalline gold, well as mineral specimens from California and around the world. Historical relevance form CA s birth as gold country

62 Day Lighting System How it works

63 Sunlight enters primary mirror

64 Light is reflected to secondary mirror Reflects back down to glass filter Light then propagates to Large Core Plastic Optic Fiber (LCPOF)

65 Direct Sunlight Light Out Concentrated 500X Light Tube

66 Refurbishing the Lighting Lab

67 Construction Team Stair s

68 Testing and Data 1 meter diameter circle 5 rings

69 Data Analysis Light Output Being Measured = 446 Lumens Light from 60 Watt light bulb = 870 Lumens

70 Data Analysis First Quadrant Lux Gradient:

71 Data Analysis Contour plots of the Lux gradients from one tube: 1 Lux = 1 Lumen/m 2

72 Design Issues Problem: Light Discoloration Solution: Theatrical Lighting Film

73 Design Issues Problem: Tracker Stepping Solution: Take readings at the instant of brightest light

74 Future Goals Next Semester Complete More Testing Ready tracker for installation at CSMMM Construct Replica Display Box Overall Goals Developing a ballast system for hybrid lighting Lighting the existing museum Developing plans for lighting the new museum

75 What s Ahead? Can we evade the Etendue limit of Concentration? YES, by down-shifting the solar spectrum. R. L Garwin (1960), Eli Yablonvitch (1980) and others Nonimaging Optics 75

76 Recall, B=dP/dAdLdM so P/A = [BdLdM] another useful relation, B= (1/ P/Mode Now, [dldm] = sin 2 so the best we can do with optics is to boost P/A by 1/sin 2 But if we down-shift the solar spectrum B can be boosted by exp[h( which is >>>>>1! Nonimaging Optics 76

77 Thank you

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design

An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design An Evacuated PV/Thermal Hybrid Collector with the Tube/XCPC design Lun Jiang Chuanjin Lan Yong Sin Kim Yanbao Ma Roland Winston University of California, Merced 4200 N.Lake Rd, Merced CA 95348 ljiang2@ucmerced.edu

More information

Roland Winston. Science of Nonimaging Optics: The Thermodynamic Connection. SinBerBEST) annual meeting for 2013.

Roland Winston. Science of Nonimaging Optics: The Thermodynamic Connection. SinBerBEST) annual meeting for 2013. Science of Nonimaging Optics: The Thermodynamic Connection Roland Winston Schools of Natural Science and Engineering, University of California Merced Director, California Advanced Solar Technologies Institute

More information

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh

Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh Design Optimisation of Compound Parabolic Concentrator (CPC) for Improved Performance M. M. Isa, R. Abd-Rahman, H. H. Goh Abstract A compound parabolic concentrator (CPC) is a wellknown non-imaging concentrator

More information

Thermal Analysis of Solar Collectors

Thermal Analysis of Solar Collectors Thermal Analysis of Solar Collectors Soteris A. Kalogirou Cyprus University of Technology Limassol, Cyprus Contents Types of collectors Stationary Sun tracking Thermal analysis of collectors Flat plate

More information

Thermal conversion of solar radiation. c =

Thermal conversion of solar radiation. c = Thermal conversion of solar radiation The conversion of solar radiation into thermal energy happens in nature by absorption in earth surface, planetary ocean and vegetation Solar collectors are utilized

More information

High Collection Nonimaging Optics

High Collection Nonimaging Optics High Collection Nonimaging Optics W. T. WELFORD Optics Section Department of Physics Imperial College of Science, Technology and Medicine University of London London, England R. WINSTON Enrico Fermi Institute

More information

SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEMS Vol. I - High Temperature Solar Concentrators - Robert Pitz-Paal HIGH TEMPERATURE SOLAR CONCENTRATORS

SOLAR ENERGY CONVERSION AND PHOTOENERGY SYSTEMS Vol. I - High Temperature Solar Concentrators - Robert Pitz-Paal HIGH TEMPERATURE SOLAR CONCENTRATORS HIGH TEMPERATURE SOLAR CONCENTRATORS Robert Institute of Technical Thermodynamics, German Aerospace Center (DLR), Germany Keywords: Optical concentration ratio, central receiver systems, dish/stirling,

More information

UNIT FOUR SOLAR COLLECTORS

UNIT FOUR SOLAR COLLECTORS ME 476 Solar Energy UNIT FOUR SOLAR COLLECTORS Flat Plate Collectors Outline 2 What are flat plate collectors? Types of flat plate collectors Applications of flat plate collectors Materials of construction

More information

Astronomy 203 practice final examination

Astronomy 203 practice final examination Astronomy 203 practice final examination Fall 1999 If this were a real, in-class examination, you would be reminded here of the exam rules, which are as follows: You may consult only one page of formulas

More information

B.Tech. First Semester Examination Physics-1 (PHY-101F)

B.Tech. First Semester Examination Physics-1 (PHY-101F) B.Tech. First Semester Examination Physics-1 (PHY-101F) Note : Attempt FIVE questions in all taking least two questions from each Part. All questions carry equal marks Part-A Q. 1. (a) What are Newton's

More information

This leads to or ( )( ). 8. B LED s are Light Emitting Diodes 9. D The expression for the period of a simple pendulum at small angles is.

This leads to or ( )( ). 8. B LED s are Light Emitting Diodes 9. D The expression for the period of a simple pendulum at small angles is. 2013 PhysicsBowl Solutions # Ans # Ans # Ans # Ans # Ans 1 C 11 E 21 E 31 D 41 A 2 B 12 C 22 B 32 E 42 C 3 D 13 E 23 D 33 A 43 A 4 E 14 B 24 B 34 A 44 E 5 A 15 D 25 A 35 C 45 C 6 C 16 D 26 B 36 C 46 E

More information

Optics.

Optics. Optics www.optics.rochester.edu/classes/opt100/opt100page.html Course outline Light is a Ray (Geometrical Optics) 1. Nature of light 2. Production and measurement of light 3. Geometrical optics 4. Matrix

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE

CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 49 CHAPTER 3 PROBLEM DEFINITION AND OBJECTIVE 3.1 MOTIVATION Concentrating solar power is a principle of increasing solar power density. It can be demonstrated to set a piece of paper on fire by using

More information

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber

Construction and performance analysis of a three dimensional compound parabolic concentrator for a spherical absorber 558 Journal of Scientific & Industrial Research J SCI IND RES VOL 66 JULY 2007 Vol. 66, July 2007, pp. 558-564 Construction and performance analysis of a three dimensional compound parabolic concentrator

More information

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur

Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Physics I : Oscillations and Waves Prof. S. Bharadwaj Department of Physics and Meteorology Indian Institute of Technology, Kharagpur Lecture - 21 Diffraction-II Good morning. In the last class, we had

More information

Lab #13: Polarization

Lab #13: Polarization Lab #13: Polarization Introduction In this experiment we will investigate various properties associated with polarized light. We will study both its generation and application. Real world applications

More information

EE 119 Homework 2. 4 o

EE 119 Homework 2. 4 o EE 119 Homework 2 Professor: Jeff Bokor TA: Xi Luo Due Tuesday, Feb 9 th 2010 (Please submit your answers in EE119 homework box located in 240 Cory Hall) 1. (a) In class, the angle of deviation (δ) has

More information

16. More About Polarization

16. More About Polarization 16. More About Polarization Polarization control Wave plates Circular polarizers Reflection & polarization Scattering & polarization Birefringent materials have more than one refractive index A special

More information

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using

4. Dispersion. The index of refraction of the prism at the input wavelength can be calculated using 4. Dispersion In this lab we will explore how the index of refraction of a material depends on the of the incident light. We first study the phenomenon of minimum deviation of a prism. We then measure

More information

Name Final Exam May 1, 2017

Name Final Exam May 1, 2017 Name Final Exam May 1, 217 This test consists of five parts. Please note that in parts II through V, you can skip one question of those offered. Some possibly useful formulas appear below. Constants, etc.

More information

Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years.

Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years. Carbon Dating The decay of radioactive nuclei can be used to measure the age of artifacts, fossils, and rocks. The half-life of C 14 is 5730 years. a) If a sample shows only one-fourth of its estimated

More information

Name : Roll No. :.. Invigilator s Signature :.. CS/B.Tech/SEM-2/PH-201/2010 2010 ENGINEERING PHYSICS Time Allotted : 3 Hours Full Marks : 70 The figures in the margin indicate full marks. Candidates are

More information

TECHNICAL CONCEPT AND SOME POSSIBLE APPLICATIONS FOR HIGH-TEMPERATURE PARABOLIC BLIND-REFLECTING SOLAR CONCENTRATORS

TECHNICAL CONCEPT AND SOME POSSIBLE APPLICATIONS FOR HIGH-TEMPERATURE PARABOLIC BLIND-REFLECTING SOLAR CONCENTRATORS EuroSun 98 III.2.52-1 V.Vasylyev TECHNICAL CONCEPT AND SOME POSSIBLE APPLICATIONS FOR HIGH-TEMPERATURE PARABOLIC BLIND-REFLECTING SOLAR CONCENTRATORS VIKTOR VASYLYEV Solar-Environmental Res. Center, Institute

More information

(Refer Slide Time: 01:17)

(Refer Slide Time: 01:17) Heat and Mass Transfer Prof. S.P. Sukhatme Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. 7 Heat Conduction 4 Today we are going to look at some one dimensional

More information

Fundamentals of Solar Thermochemical Processes

Fundamentals of Solar Thermochemical Processes Solar Fuels & Materials Page 2 Fundamentals of Solar Thermochemical Processes Prof. Aldo Steinfeld ETH Zurich Department of Mechanical and Process Engineering ETH-Zentrum ML-J42.1 8092 Zurich Switzerland

More information

AS 101: Day Lab #2 Summer Spectroscopy

AS 101: Day Lab #2 Summer Spectroscopy Spectroscopy Goals To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are related To see spectral lines from different elements in emission and

More information

Geometric Optics. Scott Freese. Physics 262

Geometric Optics. Scott Freese. Physics 262 Geometric Optics Scott Freese Physics 262 10 April 2008 Abstract The primary goal for this experiment was to learn the basic physics of the concept of geometric optics. The specific concepts to be focused

More information

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline

Lecture 2: Geometrical Optics 1. Spherical Waves. From Waves to Rays. Lenses. Chromatic Aberrations. Mirrors. Outline Lecture 2: Geometrical Optics 1 Outline 1 Spherical Waves 2 From Waves to Rays 3 Lenses 4 Chromatic Aberrations 5 Mirrors Christoph U. Keller, Utrecht University, C.U.Keller@uu.nl Astronomical Telescopes

More information

Sunlight and its Properties II. EE 446/646 Y. Baghzouz

Sunlight and its Properties II. EE 446/646 Y. Baghzouz Sunlight and its Properties II EE 446/646 Y. Baghzouz Solar Time (ST) and Civil (clock) Time (CT) There are two adjustments that need to be made in order to convert ST to CT: The first is the Longitude

More information

Measurements in Optics for Civil Engineers

Measurements in Optics for Civil Engineers Measurements in Optics for Civil Engineers I. FOCAL LENGTH OF LENSES The behavior of simplest optical devices can be described by the method of geometrical optics. For convex or converging and concave

More information

Experimental study on heat losses from external type receiver of a solar parabolic dish collector

Experimental study on heat losses from external type receiver of a solar parabolic dish collector IOP Conference Series: Materials Science and Engineering PAPER OPEN ACCESS Experimental study on heat losses from external type receiver of a solar parabolic dish collector To cite this article: V Thirunavukkarasu

More information

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors

Lecture 2: Basic Astronomical Optics. Prisms, Lenses, and Mirrors Lecture 2: Basic Astronomical Optics Prisms, Lenses, and Mirrors Basic Optical Elements Refraction (Lenses) No longer used for large telescopes Widely used for instrument optics Reflection (mirrors) Widely

More information

SIMPLE LOW CONCENTRATING MODULE DESIGN INCRESES SOLAR CELL OUTPUT 25%

SIMPLE LOW CONCENTRATING MODULE DESIGN INCRESES SOLAR CELL OUTPUT 25% SIMPLE LOW CONCENTRATING MODULE DESIGN INCRESES SOLAR CELL OUTPUT 25% Daniel Simon 3D Solar, Inc. 5555 N. Sheridan Rd. #1003 Chicago, IL 60640 e-mail: daniel@3dsolar.com ABSTRACT We present a simple low

More information

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2016 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Exam 4 (Final) Solutions

Exam 4 (Final) Solutions PHY049 Spring 006 Prof. Darin Acosta Prof. Greg Stewart May 1, 006 Exam 4 (Final) Solutions 1. Four charges are arranged into a square with side length a=1 cm as shown in the figure. The charges (clockwise

More information

POLARIZATION OF LIGHT

POLARIZATION OF LIGHT POLARIZATION OF LIGHT OVERALL GOALS The Polarization of Light lab strongly emphasizes connecting mathematical formalism with measurable results. It is not your job to understand every aspect of the theory,

More information

LAB 10: OPTICAL MATERIALS AND DISPERSION I

LAB 10: OPTICAL MATERIALS AND DISPERSION I OPTI 202L - Geometrical and Instrumental Optics Lab LAB 10: OPTICAL MATERIALS AND DISPERSION I 10-1 Measuring the refractive index of a material is one of the most fundamental optical measurements, and

More information

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado

Experiment 3 1. The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado Experiment 3 1 Introduction The Michelson Interferometer and the He- Ne Laser Physics 2150 Experiment No. 3 University of Colorado The Michelson interferometer is one example of an optical interferometer.

More information

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed.

n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. 8.2.11 Star Test n The visual examination of the image of a point source is one of the most basic and important tests that can be performed. Interpretation of the image is to a large degree a matter of

More information

Glint and Glare Analysis

Glint and Glare Analysis Oasis C7 CPV Tracker Glint and Glare Analysis Abstract. Assessment of potential hazards from glint and glare from concentrated solar installations is an important requirement for public safety. This paper

More information

Michelson Interferometer

Michelson Interferometer Michelson Interferometer Objective Determination of the wave length of the light of the helium-neon laser by means of Michelson interferometer subsectionprinciple and Task Light is made to produce interference

More information

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING

COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COVENANT UNIVERSITY NIGERIA TUTORIAL KIT OMEGA SEMESTER PROGRAMME: MECHANICAL ENGINEERING COURSE: MCE 524 DISCLAIMER The contents of this document are intended for practice and leaning purposes at the

More information

TA/TI survey. Phy Phy

TA/TI survey.   Phy Phy TA/TI survey https://webapps.pas.rochester.edu/secure/phpq/ Phy121 7 60 73 Phy123 1 6 11 Chapter 34 The Wave Nature of Light; Interference Units of Chapter 34 34-5 Interference in Thin Films 34-6 Michelson

More information

DAY LABORATORY EXERCISE: SPECTROSCOPY

DAY LABORATORY EXERCISE: SPECTROSCOPY AS101 - Day Laboratory: Spectroscopy Page 1 DAY LABORATORY EXERCISE: SPECTROSCOPY Goals: To see light dispersed into its constituent colors To study how temperature, light intensity, and light color are

More information

PH2200 Practice Final Exam Summer 2003

PH2200 Practice Final Exam Summer 2003 INSTRUCTIONS 1. Write your name and student identification number on the answer sheet. 2. Please cover your answer sheet at all times. 3. This is a closed book exam. You may use the PH2200 formula sheet

More information

Electricity & Optics

Electricity & Optics Physics 24100 Electricity & Optics Lecture 26 Chapter 33 sec. 1-4 Fall 2017 Semester Professor Koltick Interference of Light Interference phenomena are a consequence of the wave-like nature of light Electric

More information

A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS

A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS A NOVEL IMAGING LIGHT FUNNEL AND ITS COLLECTING HEAT EXPERIMENTS Zehui CHANG a,b, Hongfei ZHENG a,c*, Yingjun YANG a, Tao TAO a, Xiaodi XUE a a School of Mechanical Engineering, Beijing Institute of Technology,

More information

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS

COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS COMBINED MEASUREMENT OF THERMAL AND OPTICAL PROPERTIES OF RECEIVERS FOR PARABOLIC TROUGH COLLECTORS Johannes Pernpeintner 1, Björn Schiricke 2, Eckhard Lüpfert 2, Niels Lichtenthäler 2, Ansgar Macke 2

More information

Fundamental Limitations of Solar Cells

Fundamental Limitations of Solar Cells 2018 Lecture 2 Fundamental Limitations of Solar Cells Dr Kieran Cheetham MPhys (hons) CPhys MInstP MIET L3 Key Question Why can't a solar cell have a 100% efficiency? (Or even close to 100%?) Can you answer

More information

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002

: Imaging Systems Laboratory II. Laboratory 6: The Polarization of Light April 16 & 18, 2002 151-232: Imaging Systems Laboratory II Laboratory 6: The Polarization of Light April 16 & 18, 22 Abstract. In this lab, we will investigate linear and circular polarization of light. Linearly polarized

More information

Tuesday, December 11th. To be handed in both as a hard copy (in my mailbox in LGRT 1127A) and on SPARK (as a turnitin assignment).

Tuesday, December 11th. To be handed in both as a hard copy (in my mailbox in LGRT 1127A) and on SPARK (as a turnitin assignment). Tuesday, December 11th. Announcements. Homework 10 (paper/project topics, etc.) due on Thursday (last class). Final papers/projects will be due by 5PM on Friday, December 21st. To be handed in both as

More information

Astronomy. Optics and Telescopes

Astronomy. Optics and Telescopes Astronomy A. Dayle Hancock adhancock@wm.edu Small 239 Office hours: MTWR 10-11am Optics and Telescopes - Refraction, lenses and refracting telescopes - Mirrors and reflecting telescopes - Diffraction limit,

More information

MOCK cet paper II 2012 (PHYSICS)

MOCK cet paper II 2012 (PHYSICS) MOCK cet paper II 2012 (PHYSICS) 1. The equations of two sound waves are given by Y 1 = 3 sin 100πt and Y 2 = 4 Sin 150 πt. The ratio of the intensities of sound produced in the medium is 1)1:2 2) 1:4

More information

AST 101 Intro to Astronomy: Stars & Galaxies

AST 101 Intro to Astronomy: Stars & Galaxies AST 101 Intro to Astronomy: Stars & Galaxies Telescopes Mauna Kea Observatories, Big Island, HI Imaging with our Eyes pupil allows light to enter the eye lens focuses light to create an image retina detects

More information

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008

Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Lab 10: Spectroscopy & the Hydrogen Atom Phy208 Fall 2008 Name Section This sheet is the lab document your TA will use to score your lab. It is to be turned in at the end of lab. To receive full credit

More information

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School

Being a Physicist Unit 5. Summary Sheets. Gleniffer High School Being a Physicist Unit 5 Summary Sheets Gleniffer High School 0 Experiences & Outcomes I can explain how sound vibrations are carried by waves through air, water and other materials SCN 2-11a By exploring

More information

Experiment #4: Optical Spectrometer and the Prism Deviation

Experiment #4: Optical Spectrometer and the Prism Deviation Experiment #4: Optical Spectrometer and the Prism Deviation Carl Adams October 2, 2011 1 Purpose In the first part of this lab you will set up and become familiar with an optical spectrometer. In the second

More information

Concentration of fiber transmitted solar energy by CPC for solar thermal utilization

Concentration of fiber transmitted solar energy by CPC for solar thermal utilization J Phys. IV France 9 (1999) Concentration of fiber transmitted solar energy by CPC for solar thermal utilization H. Yugami, M. Yano, H. Naito and H. ~ rashi~ Graduate School of Engineering, Tohoku University,

More information

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017

Conceptual Physics. Luis A. Anchordoqui. Department of Physics and Astronomy Lehman College, City University of New York. Lesson VI October 3, 2017 Conceptual Physics Luis A. Anchordoqui Department of Physics and Astronomy Lehman College, City University of New York Lesson VI October 3, 2017 https://arxiv.org/abs/1711.07445 L. A. Anchordoqui (CUNY)

More information

Simplified Collector Performance Model

Simplified Collector Performance Model Simplified Collector Performance Model Prediction of the thermal output of various solar collectors: The quantity of thermal energy produced by any solar collector can be described by the energy balance

More information

Analysis of reflected intensities of linearly polarized electromagnetic plane waves on parabolic boundary surfaces with different focal lengths

Analysis of reflected intensities of linearly polarized electromagnetic plane waves on parabolic boundary surfaces with different focal lengths DOI 10.1007/s1596-013-0156-7 RESEARCH ARTICLE Analysis of reflected intensities of linearly polarized electromagnetic plane waves on parabolic boundary surfaces with different focal lengths Hossein Arbab

More information

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR

HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING COLLECTOR 5 th International Conference on Energy Sustainability ASME August 7-10, 2011, Grand Hyatt Washington, Washington DC, USA ESFuelCell2011-54254 HEAT LOSS CHARACTERISTICS OF A ROOF INTEGRATED SOLAR MICRO-CONCENTRATING

More information

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A)

PHYS 102 Exams. PHYS 102 Exam 3 PRINT (A) PHYS 102 Exams PHYS 102 Exam 3 PRINT (A) The next two questions pertain to the situation described below. A metal ring, in the page, is in a region of uniform magnetic field pointing out of the page as

More information

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis

Radiometry. Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput. ECE 5616 Curtis Radiometry Basics Extended Sources Blackbody Radiation Cos4 th power Lasers and lamps Throughput Radiometry Terms Note: Power is sometimes in units of Lumens. This is the same as power in watts (J/s) except

More information

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color.

1. In Young s double slit experiment, when the illumination is white light, the higherorder fringes are in color. TRUE-FALSE STATEMENTS: ELECTRICITY: 1. Electric field lines originate on negative charges. 2. The flux of the electric field over a closed surface is proportional to the net charge enclosed by the surface.

More information

Seminar BELA STAR SIMULATOR

Seminar BELA STAR SIMULATOR Seminar BELA STAR SIMULATOR Sumita Chakraborty, Michael Affolter, Jakob Neubert (external contractor), Stefan Graf, Daniele Piazza and many more Universität Bern Content > Mercury > BepiColombo > MPO and

More information

Basic Optical Concepts. Oliver Dross, LPI Europe

Basic Optical Concepts. Oliver Dross, LPI Europe Basic Optical Concepts Oliver Dross, LPI Europe 1 Refraction- Snell's Law Snell s Law: Sin( φi ) Sin( φ ) f = n n f i n i Media Boundary φ i n f φ φ f angle of exitance 90 80 70 60 50 40 30 20 10 0 internal

More information

Measuring the Solar Constant

Measuring the Solar Constant SOLAR PHYSICS AND TERRESTRIAL EFFECTS Measuring the Solar Constant Relevant Reading Purpose Chapter 2, section 1 With this activity, we will let solar radiation raise the temperature of a measured quantity

More information

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3

Concave mirrors. Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 Concave mirrors Which of the following ray tracings is correct? A: only 1 B: only 2 C: only 3 D: all E: 2& 3 1 2 3 c F Point C: geometrical center of the mirror, F: focal point 2 Concave mirrors Which

More information

DISPERSION AND SPECTRA CHAPTER 20

DISPERSION AND SPECTRA CHAPTER 20 CHAPTER 20 DISPERSION AND SPECTRA 20.1 DISPERSION As mentioned earlier, the refractive index of a material depends slightly on the wavelength of light. The relation between the two may be approximately

More information

Deviations from Malus Law

Deviations from Malus Law From: Steve Scott, Jinseok Ko, Howard Yuh To: MSE Enthusiasts Re: MSE Memo #18a: Linear Polarizers and Flat Glass Plates Date: January 16, 2004 This memo discusses three issues: 1. When we measure the

More information

Chapter 1 - The Nature of Light

Chapter 1 - The Nature of Light David J. Starling Penn State Hazleton PHYS 214 Electromagnetic radiation comes in many forms, differing only in wavelength, frequency or energy. Electromagnetic radiation comes in many forms, differing

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fundamentals of light

Fundamentals of light Fundamentals of light CHAPTER 1 Introduction Environmental issues Limited resources. Consumption. Sustainability Environmental damage will result in environmental changes (climate change, global warming,

More information

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth)

Fluids density Pascal s principle (pressure vs. depth) Equation of continuity Buoyant force Bernoulli s (pressure, velocity, depth) Final Exam All Finals week in the testing center. 50 multiple choice questions. Equations on the back of the test. Calculators are allowed on the test. There is a practice test in the packet. Exam 1 Review

More information

Physics Hour Examination Light and Optics - Version 1

Physics Hour Examination Light and Optics - Version 1 Physics Hour Examination Light and Optics - Version 1 How Do We See Colors? Warning: Multiple Choice questions may have more than one correct answer. They are graded 3 points of each correct answer circled

More information

What can laser light do for (or to) me?

What can laser light do for (or to) me? What can laser light do for (or to) me? Phys 1020, Day 15: Questions? Refection, refraction LASERS: 14.3 Next Up: Finish lasers Cameras and optics 1 Eyes to web: Final Project Info Light travels more slowly

More information

Astr 2310 Thurs. March 3, 2016 Today s Topics

Astr 2310 Thurs. March 3, 2016 Today s Topics Astr 2310 Thurs. March 3, 2016 Today s Topics Chapter 6: Telescopes and Detectors Optical Telescopes Simple Optics and Image Formation Resolution and Magnification Invisible Astronomy Ground-based Radio

More information

Principles of Solar Thermal Conversion

Principles of Solar Thermal Conversion Principles of Solar Thermal Conversion Conversion to Work Heat from a solar collector may be used to drive a heat engine operating in a cycle to produce work. A heat engine may be used for such applications

More information

Dept. of Physics, MIT Manipal 1

Dept. of Physics, MIT Manipal 1 Chapter 1: Optics 1. In the phenomenon of interference, there is A Annihilation of light energy B Addition of energy C Redistribution energy D Creation of energy 2. Interference fringes are obtained using

More information

Polarizers and Retarders

Polarizers and Retarders Phys 531 Lecture 20 11 November 2004 Polarizers and Retarders Last time, discussed basics of polarization Linear, circular, elliptical states Describe by polarization vector ĵ Today: Describe elements

More information

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector

The Comparison between the Effects of Using Two Plane Mirrors Concentrator and that without Mirror on the Flat- Plate Collector ICCHT2010 5 th International Conference on Cooling and Heating Technologies, Bandung, Indonesia 911 December 2010 The Comparison beteen the ffects of Using To Plane Mirrors Concentrator and that ithout

More information

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT.

OPSE FINAL EXAM Fall 2015 YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. CLOSED BOOK. Equation Sheet is provided. YOU MUST SHOW YOUR WORK. ANSWERS THAT ARE NOT JUSTIFIED WILL BE GIVEN ZERO CREDIT. ALL NUMERICAL ANSERS MUST HAVE UNITS INDICATED. (Except dimensionless units like

More information

Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi

Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi Energy Efficiency, Acoustics & Daylighting in building Prof. B. Bhattacharjee Department of Civil Engineering Indian Institute of Technology, Delhi Lecture 50 Daylighting (contd.) So, we will look into

More information

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on atomoptic.

Ray Optics. 30 teaching hours (every wednesday 9-12am) labs as possible, tutoring (see NW s homepage on  atomoptic. Erasmus Mundus Mundus OptSciTech Nathalie Westbrook Ray Optics 30 teaching hours (every wednesday 9-12am) including lectures, problems in class and regular assignments,, as many labs as possible, tutoring

More information

MARKING SCHEME SET 55/1/MT Q. No. Expected Answer / Value Points Marks Total Marks. Section A

MARKING SCHEME SET 55/1/MT Q. No. Expected Answer / Value Points Marks Total Marks. Section A MARKING SCHEME SET 55//MT Q. No. Expected Answer / Value Points Marks Total Marks Set,Q Set2,Q5 Set,Q4 Section A Set,Q2 Set2,Q4 Set,Q5 Set,Q Set2,Q2 Set,Q Set,Q4 Set2,Q Set,Q2 Set,Q5 Set2,Q Set,Q Set,Q6

More information

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference

Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Some properties of waves: Huygens principle Superposition Coherence Interference Young s double-slit experiment Thin-film interference Phys 2435: Chap. 35, Pg 1 Geometrical Optics Assumption: the dimensions

More information

Being a Chemist. Summary Sheets. Gleniffer High School

Being a Chemist. Summary Sheets. Gleniffer High School Being a Chemist Summary Sheets Gleniffer High School 0 State that the light year is a measure of astronomical distance State the speed at which light travels Give examples of the relative distance between

More information

University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points

University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm. Maximum score: 200 points 1 University of California, Berkeley Physics H7C Spring 2011 (Yury Kolomensky) THE FINAL EXAM Monday, May 9, 7 10pm Maximum score: 200 points NAME: SID #: You are given 180 minutes for this exam. You are

More information

Tutorials. 1. Autocollimator. Angle Dekkor. General

Tutorials. 1. Autocollimator. Angle Dekkor. General Tutorials 1. Autocollimator General An autocollimator is a Precise Optical Instrument for measurement of small angle deviations with very high sensitivity. Autocollimator is essentially an infinity telescope

More information

Topic 4: Waves 4.3 Wave characteristics

Topic 4: Waves 4.3 Wave characteristics Guidance: Students will be expected to calculate the resultant of two waves or pulses both graphically and algebraically Methods of polarization will be restricted to the use of polarizing filters and

More information

Padua, Italy. Theoretical competition

Padua, Italy. Theoretical competition 30th International Physics Olympiad Padua, Italy Theoretical competition Thursday, July 22nd, 1999 Please read this first: 1. The time available is 5 hours for 3 problems. 2. Use only the pen provided.

More information

Fresnel Equations cont.

Fresnel Equations cont. Lecture 11 Chapter 4 Fresnel quations cont. Total internal reflection and evanescent waves Optical properties of metals Familiar aspects of the interaction of light and matter Fresnel quations: phases

More information

Key objectives in Lighting design

Key objectives in Lighting design Key objectives in Lighting design Visual performance Physiological conditions Visual quality no strong "contrasts" good "color rendering" adequate "light levels" no "disturbing reflections" no direct "glare"

More information

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011

Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Physics 9 Fall 2011 Homework 9 Fall October 28, 2011 Make sure your name is on your homework, and please box your final answer. Because we will be giving partial credit, be sure to attempt all the problems,

More information

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS

GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS GEOMETRICAL OPTICS Practical 1. Part II. OPTICAL SYSTEMS 1 Introduction Optical systems can consist of a one element (a one lens or a mirror, a magnifying glass), two or three lenses (an eyepiece, theatrical

More information

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves.

3/9/2011. Outline Chapter 7 Waves Water Waves Water Waves. Water waves are really circular. They are an example of Mechanical waves. Outline Chapter 7 Waves 7-1. Water Waves 7-2. Transverse and Longitudinal Waves 7-3. Describing Waves 7-4. Standing Waves 7-5. Sound 7-6. Doppler Effect 7-7. Musical Sounds 7-8. Electromagnetic Waves 7-9.

More information

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants.

PHYSICS 253 SAMPLE FINAL EXAM. Student Number. The last two pages of the exam have some equations and some physical constants. PHYSICS 253 SAMPLE FINAL EXAM Name Student Number CHECK ONE: Instructor 1 10:00 Instructor 2 1:00 Note that problems 1-19 are worth 2 points each, while problem 20 is worth 15 points and problems 21 and

More information

EA Notes (Scen 101), Tillery Chapter 7. Light

EA Notes (Scen 101), Tillery Chapter 7. Light EA Notes (Scen 101), Tillery Chapter 7 Light Introduction Light is hard to study because you can't see it, you only see it's effects. Newton tried to explain the energy in a light beam as the KE of a particle

More information