First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth s mantle

Size: px
Start display at page:

Download "First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth s mantle"

Transcription

1 JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B10, 2462, doi: /2003jb002446, 2003 First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth s mantle Taku Tsuchiya Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Meguro, Tokyo, Japan Received 13 February 2003; revised 4 July 2003; accepted 14 July 2003; published 9 October [1] The P-V-T equation of state (EOS) of gold is the most frequently used pressure calibration standard in high-p-t in situ experiments. Empirically proposed EOS models, however, severely scatter under high-p-t conditions, which is a serious problem for studies of the deep Earth. In this study, the EOS of gold is predicted using a first-principles electronic structure calculation method without any empirical parameters. The calculated thermoelastic properties of gold compare favorably to experimental data at ambient conditions so that B T0 and BT0 0 are GPa and 6.12, respectively. Up to V/V a = 0.7, the calculated Grüneisen parameter of gold depends on volume according to the function g/g a =(V/V a ) z with g a of 3.16 and z of On the basis of these data, the validity of previous EOS models is discussed. It is found that the present ab initio EOS provides a 1.3 GPa higher pressure than Anderson s scale at 23 GPa and 1800 K and largely reduces the discrepancy observed between conditions at the transition of Mg 2 SiO 4 and the 660-km seismic discontinuity. However, a discrepancy of about 0.7 GPa still remains between the 660-km discontinuity and the postspinel transition. INDEX TERMS: 1025 Geochemistry: Composition of the mantle; 3630 Mineralogy and Petrology: Experimental mineralogy and petrology; 3919 Mineral Physics: Equations of state; 3939 Mineral Physics: Physical thermodynamics; 8124 Tectonophysics: Earth s interior composition and state; KEYWORDS: first-principles density functional calculation, pressure calibration standard, PVT thermal equation state, postspinel transition, 660-km seismic discontinuity Citation: Tsuchiya, T., First-principles prediction of the P-V-T equation of state of gold and the 660-km discontinuity in Earth s mantle, J. Geophys. Res., 108(B10), 2462, doi: /2003jb002446, Introduction [2] Gold is important metal in Earth science, because its pressure-volume-temperature (P-V-T ) equation of state (EOS) is the most frequently used pressure calibration standard for in situ high-pressure and high-temperature experiments [Mao et al., 1991; Fei et al., 1992; Meng et al., 1994; Funamori et al., 1996; Irifune et al., 1998; Kuroda et al., 2000; Hirose et al., 2001a, 2001b; Ono et al., 2001]. The characteristic properties of gold, its low rigidity and chemical stability, make it particularly suitable for this role [Tsuchiya and Kawamura, 2002a]. However, some recent in situ experiments have noted that the pressure values estimated by the thermal EOS of gold show significant gap depending on the model employed [Hirose et al., 2001a, 2001b; Shim et al., 2002]. Using the EOS proposed by Anderson et al. [1989], Irifune et al. [1998] first reported in their in situ study that the postspinel phase boundary of Mg 2 SiO 4 shifted to about 2 GPa lower than the pressure corresponding to the depth of the 660-km seismic discontinuity (23 24 GPa and K), implying that the decomposition of spinel occurs at a depth of 60 km Copyright 2003 by the American Geophysical Union /03/2003JB002446$09.00 shallower than the seismic discontinuity. Similar results were observed for the MgSiO 3 system [Hirose et al., 2001a, 2001b]. However, Hirose et al. [2001a] noted that the pressures at which the phase changes occur in these mantle minerals are more consistent with seismic observations when the EOS proposed by Jamieson et al. [1982] is used. [3] Such uncertainty in pressure measurements is a serious problem for high-p-t in situ experiments of mantle constituents. Because it is difficult to reliably determine the EOS model of gold using only empirical data under limited P-T conditions, it is meaningful to carry out a theoretical investigation. In the present study, the finite temperature thermodynamic properties of gold and its P-V-T thermal EOS are predicted from first-principles with no empirical parameters. On the basis of this ab initio EOS model, the validity of previous empirical models of gold are investigated in detail and, implications for the phase boundaries near the 660-km seismic discontinuity in Earth s mantle are discussed. 2. Previous Models of the EOS for Gold [4] Several EOS models for gold have been proposed [Jamieson et al., 1982; Heinz and Jeanloz, 1984; Anderson ECV 1-1

2 ECV 1-2 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD et al., 1989; Holzapfel et al., 2001; Shim et al., 2002] (hereafter these scales are referred by the abbreviation of their initials such as JFM, HJ, AIY, HHS and SDT, respectively). However, these models are not in agreement with each other at high pressures and temperatures [Shim et al., 2002], due to uncertainties in the experimental data or limitations inherent in the extrapolation of experimental data obtained under limited P-T conditions to much higher P-V-T conditions. In addition, experimental determination of the pressure dependence of thermodynamic properties such as thermal expansion, thermal pressure, and the Grüneisen parameter are essentially difficult. Hence simple assumptions are usually applied to estimate the pressure effect on such thermal properties, although their validity has not been established. [5] In the case of the JFM model, the EOS was determined using only shock compression (Hugoniot) data and heat capacity at ambient pressure. These limited data are clearly insufficient to obtain a thermal EOS with complete thermodynamic consistency. In the JFM model, the Hugoniot data were reduced to an isotherm using the simple but nontrivial assumption for the thermodynamic Grüneisen parameter of g/g a = V/V a, where g is the Grüneisen parameter and the subscript a indicates the value at ambient conditions. This relationship is modified to the form g/v = const. and has been often employed to analyze the Hugoniots of metal. However, its validity under a wide range of P-T conditions has never been established. [6] In contrast, the HJ model was constructed by blending a static and a shock wave data in addition to incorporating data of the thermal expansion, elastic constants and thermodynamic parameters at ambient pressure. The AIY model improved on the HJ EOS by taking into account the hightemperature anharmonicity to ensure better thermodynamic consistency. However, in terms of consistency with the shock data, the AIY model is worse than those of JFM and HJ. Moreover, it is likely that the room temperature static compression data used by HJ and AIY are not accurate at high pressure, since they were obtained using a diamondanvil cell with the pressure transmitting medium of alcohol. It is well known that the alcohol exhibits severe nonhydrostaticity at pressures over 20 GPa [Takemura, 2001]. In these models, the Grüneisen parameter was assumed to depend on volume as g/g a =(V/V a ) z, which is more versatile than the JFM model constraint. The exponent z, however, differs considerably between the HJ EOS (1.7) and the AIY EOS (2.5). [7] The EOS of HHS was derived only from shock wave and ultrasonic data. On the basis of their original equations, the volume dependence of g was extrapolated up to the strong compression limit of V/V a = 0. In this model, g showed a complicated behavior as a function of volume and hence, these authors claimed that the simple approximation of g/v = const. was unfavorable for gold even under small compression. However, the validity of their formulations for g is not well established. Most recently, the SDT model was obtained by using different static data from that used in the HJ model, which was measured by taking care of hydrostaticity. However, in order to compare it to the shock data, the SDT EOS was extrapolated to more than 550 GPa, based on the third-order Birch-Murnaghan equation [Birch, 1978]. It is not likely that a simple equation can adequately fit the entire pressure region from 0 to 550 GPa. Even if there is a good trend up to 6 megabar, this does not ensure that the EOS model is accurate to within a few GPa in the range of the Earth s mantle P-T conditions. Hence the temperature dependence of the adiabatic bulk modulus is too large even at ambient pressure. Moreover, the simplification that g/v = const. was employed again to construct this EOS. Thus the validity of the SDT model for the EOS of gold is also unclear. [8] Disagreement in g causes the largest uncertainty in the thermal properties of gold at high pressure. Differences between the proposed thermal pressures of gold at V/V a =1 are actually quite small (see Figure 4) and, except for the JFM EOS, completely agree with each other. The slight difference in the JFM model probably originates in the fact that no thermal property data at ambient pressure were used to determine this EOS. However, the deviation in thermal pressure does increase significantly with compression. At V/V a = 0.9, the JFM and AIY models show the highest and lowest values of thermal pressure, respectively, and their difference reaches 3 GPa at 2000 K. Moreover, this difference increases to more than 5 GPa at V/V a = 0.8 and 2000 K. 3. Calculation of Thermodynamics [9] For nonmagnetic metal, pressure can be represented as the sum of three terms: PV; ð TÞ ¼ P 0 V ð ÞþP ph ðv ; T ÞþP el ðv; TÞ: ð1þ Here, the first, second, and third terms are static pressure, lattice thermal pressure, and electronic thermal pressure, respectively. These are represented by the thermodynamic definition of pressure P i ðv; T Þ iðv; ; ð2þ T where f is the Helmholtz free energy density with respect to each degree of freedom. For static pressure, f is equivalent to the total energy usually called in first-principles study. f el is the electronic free energy density, which has been evaluated for gold from its electronic structure [Tsuchiya and Kawamura, 2002b]. f ph is the phonon free energy density, which is calculated in this study as follows. [10] The linear response method based on the densityfunctional theory (DFT) [Hohenberg and Kohn, 1964] and the density-functional perturbation theory (DFPT) [Baroni et al., 1987; Savrasov, 1996; Savrasov and Savrasov, 1996] has been successfully applied to the calculation of the lattice contribution to the free energy [Pavone et al., 1998] and other thermodynamic properties of solids [Karki et al., 2000]. The basic idea of DFPT for the phonon calculation is to accurately evaluate the second-order energy variation d 2 E caused by the nuclear displacement. The central purpose is to find the linear response of the charge density induced by the phonon. The dynamical matrix at any q vector is determined by these linear response calculations with explicit account of only the primitive lattice. [11] The finite temperature thermodynamic properties of a solid can be calculated by combination of the DFPT and the quasiharmonic approximation. Once the phonon dispersion

3 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD ECV 1-3 Figure 1. Calculated phonon dispersion relations at a = a.u. (solid curves), 7.3 a.u. (dashed curves), and 7.1 a.u. (dash-dotted curves). Filled circles are experimental results of the neutron inelastic scattering at ambient pressure [Lynn et al., 1973]. relation is obtained from the lattice dynamical calculation, the phonon energy density (u ph ) and the phonon free energy density ( f ph ) can be calculated as follows: u ph ðv ; TÞ ¼ X q;i f ph ðv ; TÞ ¼ k B T X q;i hw i ðq; V; T Þ 1 2 þ f BEðw i ; TÞ ln 2 sinh hw iðq; V ; TÞ 2k B T ; ð3þ ; ð4þ where q is the phonon wave vector, i the band index, f BE (w, T )=1/(e hw=k BT 1) the Bose-Einstein distribution function and k B the Boltzmann constant. The factor 1/2 in equation (3) is the contribution from zero-point vibration. Within the normal harmonic approximation (HA) for insulators, the frequency w is treated solely as a function of volume and is independent of temperature. However, w of metal does depend on temperature because of electronphonon coupling that increases with increasing temperature. Irrespective of this fact, we can expect that normal HA treatment does not bring a serious loss of accuracy for gold, since the thermal excitation of electrons is actually small in this metal [Tsuchiya and Kawamura, 2002b]. In this work, it was assumed that w = w(q, V). Using equation (2), we can then calculate the phonon thermal pressure using the f ph obtained here. Furthermore, the phonon entropy density (s ph ) may be calculated from the thermodynamic relationship: s ph ðv; T Þ ¼ u phðv ; T 4. Computational Details Þ f ph ðv ; TÞ : ð5þ T [12] In this study, the electronic structure of an fccformed Au crystal was calculated from the first-principles within the DFT and the local density approximation [Kohn and Sham, 1965]. For this purpose, I adopted the allelectron full-potential linear muffin-tin-orbital (FPLMTO) method that can simulate core state relaxation [Weyrich, 1988] and, hence, is especially suitable for the calculation of electronic and mechanical properties of solids under high pressure [Tsuchiya and Kawamura, 2001, 2002a, 2002b]. The detailed calculation conditions for the static lattice energy are fundamentally the same as those used previously [Tsuchiya and Kawamura, 2002a]. The Vosko-Wilk-Nasairtype formulation [Vosko et al., 1980] was applied to represent the exchange and correlation energy functional. I used 3k-spd LMTO basis set (27 orbitals) with tail energies (k 2 )of 0.1, 1.0, and 2.5 Ry. Moreover, a semicore panel for 5p at k 2 = 3.5 Ry was set to take into account the interatomic interactions of this state. Fully and scalar relativistic corrections for the core and valence states were recalculated after each self-consistent iteration, respectively. Static pressure P 0 (V ) was evaluated according to equation (2) by linearly interpolating the total energy variations with a cell parameter of ±0.001 at each volume. [13] On the other hand, for the phonon calculation, charge densities and potentials inside the muffin-tin spheres (MTS) were expanded using spherical harmonics up to l = 6. The d 2 E obtained has the same precision as setting l max to 8. The dynamical matrix was calculated as a function of the wave vector for a total of 29 q points for the irreducible Brillouin zone of the fcc cell. That corresponds to the (8, 8, 8) reciprocal lattice grid defined as q ijk =(i/i )G 1 +(j/j )G 2 + (k/k )G 3, where G a is the primitive translation in reciprocal space. Throughout the calculations, nonoverlapping MTS with radii of 2.3 a.u. were applied. [14] Phonon dispersions were calculated for a total of 13 cell parameters from 6.8 a.u. to 7.9 a.u. at intervals of 0.1 a.u. (1 a.u. = Å) in addition to the zeropressure cell parameter. EOS parameters of zero-pressure volume V 0 (T ), isothermal bulk modulus B T0 (T, P) and its pressure derivative B 0 T0(T, P) were determined by least

4 ECV 1-4 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD squares fit of the P-V relationship to Vinet s EOS function [Vinet et al., 1989]. 5. Results and Discussion 5.1. Phonon Dispersion and the Thermodynamics of Gold [15] The calculated phonon dispersion curves at cell parameters of a.u., 7.3 a.u. and 7.1 a.u. are plotted along the high symmetry direction in Figure 1. Here, a of a.u. is the predicted zero-temperature equilibrium lattice constant and 7.3 a.u. and 7.1 a.u. correspond to static pressures of 42 GPa and 83 GPa, respectively. Experimental results for neutron inelastic scattering at ambient pressure [Lynn et al., 1973] are also shown for comparison. We can see the excellent agreement between theory and experiment across the zone at zero pressure. This agreement is typical of FPLMTO+LDA+DFPTbased calculations for simple metals and semiconductors [Savrasov, 1996; Savrasov and Savrasov, 1996] and it is likely that the results for a wide range of volume have a similar accuracy. [16] I confirmed the temperature dependence of the X point phonon frequencies by Fermi-Dirac fermi surface smearing. At any volume, differences of only about 1% were found between frequencies at 0 K and 3000 K, even taking into account the electronic excitation. This results in a negligible contribution to the free energy and, consequently, to the thermal pressure. The assumption that w = w(q, V ) can, therefore, be adequately applied to gold, as expected. In Figure 2, the phonon energy density, the phonon free energy density and the phonon entropy density calculated according to equations (3 5) at several volumes, are shown as a function of temperature. At low temperature, the phonon total energy increases with increasing compression due to an increase of the zero point vibration energy (ZPVE), whereas it converges at higher temperatures (Figure 2a and its inset). The calculated entropy (Figure 2c) at0gpaand300kis47j/(molk).morethan99% of this comes from the phonon contribution and is in remarkable agreement with the measured standard entropy of 47.4 J/(mol K). This illustrates the quantitative reliability of the FPLMTO+DFPT+QHA method. These are the first data on the thermodynamic properties of gold calculated from first-principles theory Thermal Pressure [17] The phonon free energy converted as a function of volume is shown for several temperatures from 0 K+ZPVE to 2500 K in Figure 3. By using these free energy data, phonon thermal pressures can be predicted using equation (2). The total thermal pressure can be represented by the sum of the phonon contribution plus the electronic contribution (P th = P th,ph + P th,el ). Using data from previous work [Tsuchiya and Kawamura, 2002b] for the latter term, the thermal pressures of gold at volumes of V/V a = 1.0, 0.9 and 0.8 are shown in Figure 4, together with values from previous empirical models. [18] Figure 4 shows that the calculated thermal pressure agrees well with empirical values at V/V a = 1.0. Particularly, it appears to agree well with the JFM EOS. However, at ambient volume, other scales are likely to be more reliable Figure 2. Temperature dependencies of (a) the phonon energy density u ph, (b) the phonon free energy density f ph, and (c) the phonon entropy density s ph at 9 volumes from cm 3 /mol (a = 7.1 au) to cm 3 /mol (a = 7.9 au) with a = 0.1 au. The upper curve is at smaller volume in u ph and s ph, and the lower curve is at smaller volume in f ph, as shown by arrows. In the inset of Figure 2a, u ph from 0 to 250 K is enlarged. than the JFM, since this EOS was determined without taking into account the physical properties of gold at ambient pressure. It should be noted that the present calculation somewhat overestimates thermal pressure at ambient volume, with a discrepancy of about 0.6 GPa at 1500 K. This overestimation may be attributed to an anharmonic effect that cannot be completely included in the QHA level approximation. [19] At V/V a = 0.9 and 0.8, the empirical data scatter widely. The JFM and SDT equations of state clearly show larger thermal pressures than do the present ab initio values, while that of AIY is considerably lower. Although the HHS EOS is close to the ab initio value at V/V a = 0.9, the deviation increases at V/V a = 0.8. Consequently, among the several empirical models, the HJ model is closest to the

5 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD ECV 1-5 Figure 3. Volume dependencies of the phonon free energy density f ph. The number shown indicates temperature, and dashed lines in the left panel are the results at intermediate temperature between the upper and lower solid lines. ab initio thermal pressure and its volume dependence. Note that in the present calculations, thermodynamic properties are obtained by fully nonempirical procedure in contrast to previous models. Moreover, the quantitative agreement of the phonon dispersion at ambient pressure ensures high reliability of the predicted thermal pressures. The fact that these thermal pressures have values intermediate to the widely scattering experimental values is remarkable Thermal Equation of State [20] On the basis of these thermodynamic data, we can obtain full information about the P-V-T EOS of gold (Table 1) without any empirical assumptions or adjustable parameters. The predicted isotherms at several temperatures are shown in Figure 5 together with the empirical 300 K isotherms of HJ (=AIY), HHS and SDT. The theoretical 300 K isotherm is in good agreement with HJ up to 20 GPa, whereas HHS and SDT give somewhat larger and smaller volumes, respectively, than the present EOS. The volume of the HJ model, however, gradually becomes smaller than the present isotherm and this deviation grows with pressure. These discrepancies mainly relate to the difference in B 0 0 of each model (Table 1). Reported values of B 0 0 range from 5.0 (SDT) to 6.2 (HHS). HJ and SDT used a B 0 0 value determined from static data, while HHS used a B 0 0 value from ultrasonic data. The present ab initio value of B 0 0 of 6.12 is close to the value of the ultrasonic determination. The JFM model is not shown in Figure 5, since it is close to that Figure 4. Total thermal pressure at the values V/V a of 1, 0.9, and 0.8. Solid lines are the present results. Previous empirical estimations are shown by circles [Jamieson et al., 1982] (JFM), diamonds [Heinz and Jeanloz, 1984] (HJ), triangles [Anderson et al., 1989] (AIY), inverted triangles [Holzapfel et al., 2001] (HHS), and squares [Shim et al., 2002] (SDT).

6 ECV 1-6 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD Figure 5. Calculated isotherms at five temperatures of 0 K + ZPVE, 300 K, 1000 K, 1500 K, and 2000 K sequentially from the bottom. Experimental 300 K isotherms are also plotted as dashed curves (HJ), long dashed curves (HHS), and dotted curves (SDT) for comparison. of HJ, although it shows a slightly larger volume than all other models up to pressures of 30 GPa. [21] Calculated physical properties of gold, thermal expansivity a =1/V(@V/@T ) P, isothermal bulk modulus B T =[ 1/V(@V/@P) T ] 1 and adiabatic bulk modulus B S = [ 1/V(@V/@P) S ] 1, are shown in Figure 6, in addition to isobaric specific heat C P =(@u/@t ) P, where u is the total energy density from the phonon and electron degree of freedom. These quantities are summarized in Table 2, which shows that all the calculated values at ambient conditions compare well to experimental data. However, Figure 6 shows that errors appear at temperatures higher than the Debye temperature, which is significant for thermal expansion. This is clearly due to neglect of the anharmonic effect in the present calculations. Within the QHA, intrinsic anharmonicity arising from phonon-phonon interactions is not taken into account. However, the error in gold is smaller than that of the previous QHA calculation for MgO [Karki et al., 2000]. It may be expected that the anharmonic effect is smaller in simple metals than in oxides because oxides usually have high frequency optic phonon modes that yield Table 1. Isochors for Gold From This Study a 1 V/V a 300 K 500 K 1000 K 1500 K 2000 K 2500 K a Unit of pressure is given in GPa. Figure 6. Calculated temperature dependence of (a) thermal expansion a, (b) isothermal and adiabatic bulk modulus B T (solid lines) and B S (dashed lines), and (c) isobaric heat capacity C P at pressures of 0 GPa, 24 GPa, and 72 GPa. In Figure 6a, circles are zero-pressure experimental values of Touloukian et al. [1977]. In Figure 6b, filled and open circles are zero-pressure experimental values of B T of Anderson et al. [1989] and B S of Neighbours and Alers [1958] and Chang and Himmel [1966], respectively. In Figure 6c, circles are zero-pressure experimental values of C P of Touloukian et al. [1977]. large vibrational energies at high temperature. Moreover, in general, the anharmonic effect becomes less important with increasing pressure because of ascent of the Debye temperature and the melting temperature. These effects are discussed later in more detail Grüneisen Parameter [22] Next, we investigate the validity of the empirical relationship for thermal behavior assumed in the previous studies is investigated. The thermodynamic Grüneisen parameter g is defined as g ¼ ab SV C P ¼ ab TV C V : ð6þ

7 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD ECV 1-7 Table 2. Several Physical Quantities of Gold at Zero Pressure and 298 K a Parameter Theory Experiment V a,cm 3 /mol a, 10 5 /K B T, GPa BT C P, J/mol K g a z D, K a Experimental data are from Jamieson et al. [1982], Heinz and Jeanloz [1984], Anderson et al. [1989], Holzapfel et al. [2001], and Shim et al. [2002]. By substituting the thermodynamic definition for each quantity and by considering that thermal pressure is the pressure change at constant volume, g can be modified as g ¼ th : th V The calculated relationships between thermal pressure and internal energy density are shown in Figure 7a. Up to u th = 60 kj/mol which corresponds to 2405 K (see Figure 2a), linear relationships between thermal pressure and internal energy density are found. This means that the Grüneisen parameter is constant with respect to temperature under isochoric conditions. The volume dependence of the Grüneisen parameter is plotted in Figure 7b, together with previous empirical data. The present value of g can be perfectly fit to the function (g/g a )=(V/V a ) z and give g a = 3.16 and z = This means that the assumption that (g/g a ) = (V/V a ) z used in the HJ and AIY models is plausible, at least for the present volume range. [23] As shown in Figure 7b, the value of g in the JFM model, followed by those of SDT and AIY. HJ s g is close to the present ab initio value. These g values are reflected in the magnitude of the thermal pressure of each model, since at constant volume, a larger g gives a larger thermal pressure (equation (7)). On the other hand, the logarithmic volume derivative z represents the volume dependence of g. The larger z means a more rapid decrease in thermal pressure with volume compression. If z is close to 1, thermal pressure over 300 K hardly depends on volume at all (see JFM and SDT in Figure 4). However, the present ab initio results clearly demonstrate a change of thermal pressure that is dependent on volume. This is caused by the decrease in nonlinear behavior between f ph and V with increasing compression (Figure 3). Therefore we conclude that the assumption z = 1 employed by JFM and SDT is unfavorable for gold. In the SDT model, a large g is necessary to reproduce the Hugoniot, since this EOS was based on the compressible room temperature isotherm model (Figure 5). Moreover, z was determined from data at a larger compression than V/V a of In fact, highpressure data tend to show z close to 1, because the volume dependence of g becomes constant with increasing compression as shown in Figure 7b. HHS s g does not seem to be suitable, since the complex volume dependence of g assumed in this model does not satisfy the relationship (g/g a )=(V/V a ) z. [24] The ab initio z (=2.15) is closest to the z of AIY (=2.4). However, rather than z, it is the magnitude of g itself that is actually meaningful in the physical sense. Therefore it should be noted that the ab initio g is closest to HJ s g over a wide pressure range Melting Temperature [25] On the basis of the classical mean field potential (MFP) approach, Wang et al. [2001] proposed the following melting formula T m ¼ AV 2=3 2 ; where T m is the melting temperature and is the characteristic temperature. If is regarded as a generalized Debye temperature, this equation is equivalent to the Lindemann law. Since A is an adjustable parameter determined from a fit to the observed zero-pressure melting temperature, the formula is not first-principles. However, this simple formula may be used to estimate the pressure dependence of the melting temperature in order to discuss the anharmonicity under pressure. Using the well-established value of T m0 of 1063 C and the calculated Debye temperature, the predicted melting curve of gold is shown in Figure 8. It is evident from Figure 8 that the melting temperature increases with increasing pressure (2000 K at ð8þ Figure 7. (a) Calculated relationship between thermal pressure and internal energy density at V/V 0 =1 (solid line), 0.9 (dashed line), and 0.8 (dash-dotted line) and (b) volume dependence of the Grüneisen parameter g. In Figure 7b the solid curve is the present result, and dashed curves are previous experimental results.

8 ECV 1-8 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD 10 GPa and 6400 K at 130 GPa) and is much larger than the mantle geotherm. This provides supports that the anharmonic effect in gold decreases with pressure and becomes insignificant at mantle P-T conditions km Seismic Discontinuity [26] Recent in situ experiments for determination of the postspinel [Irifune et al., 1998], postilmenite [Hirose et al., 2001b] and postgarnet [Hirose et al., 2001a] phase boundaries in the MgO-SiO 2 (with some Al 2 O 3 ) system were carried out using the gold EOS of AIY. The present results suggest that this model tends to underestimate the pressure value. Phase boundaries modified by the present ab initio scale are shown in Figure 9. In the revised phase diagram, in the PT region of GPa and K, the ab initio EOS results in phase boundaries that are shifted about 0.9 GPa lower than JFM, 0.6 GPa higher than HJ, 1.3 GPa higher than AIY, 0.7 GPa higher than HHS and 0.5 GPa higher than SDT. [27] The present EOS for gold greatly reduces the discrepancy between the postspinel transition pressure measured by AIY and the pressure at the 660-km seismic discontinuity (shown by the vertical dashed line in Figure 9). However, the postspinel and the postilmenite transitions occur at still lower pressure. If the postspinel transition in fact occurs at 660 km depth, the transition temperature is too low compared to the typical mantle geotherm at this depth ( K). On the other hand, with respect to the transition pressure, the revised postgarnet transition appears to be a more favorable candidate for the origin of the 660-km seismic discontinuity. This is, however, unlikely, since the postgarnet transition pressure strongly depends on the Al 2 O 3 content with a positive Clapeyron slope [Hirose et al., 2001a] whereas seismological information suggests that the discontinuity is quite sharp and is caused by a phase change with a negative Clapeyron slope. [28] Attribution of the 660-km discontinuity to the postspinel transition still results in a discrepancy that cannot be fully compensated even after applying corrections from the ab initio EOS model of gold. A gap of GPa still Figure 8. Melting temperature of gold calculated as a function of pressure based on the mean field potential method. Figure 9. Phase boundaries of some important mantle constituents. The dashed lines show boundaries determined using the AIY model, and the solid lines show the results obtained using the present equation of state. Dotted lines are linear extrapolations of dashed lines. The original spinel! perovskite + periclase transition, the garnet + perovskite! perovskite transition, and the ilmenite!perovskite transition are from Irifune et al. [1998], Hirose et al. [2001a], and Hirose et al. [2001b], respectively. The postgarnet transition shown here is for a composition of MgSiO mol% Al 2 O 3. The dashed vertical lines at 23.5 GPa indicate the pressure corresponding to the 660-km seismic discontinuity. remains between the transition pressure and the pressure at 660 km depth. This is comparable to another computational analysis of MgO using empirical model potentials [Matsui and Nishiyama, 2002], which also suggested that AIY underestimates pressure by about 0.6 GPa. Although this may only be a coincidence, the following considerations should be noted. Matsui and Nishiyama [2002] argued that a source of uncertainty most likely exists in the temperature measurement. In in situ experiments using multianvil apparatus, temperature is measured by a thermocouple placed in the pressure cell. However, no correction of pressure effect on the thermal electromotive force (emf ) of thermocouple metals is applied, since such quantities are not well known. If the discrepancy remaining in the present analysis can be attributed to the temperature measurement, the error in the temperature would need to be K. 6. Conclusion [29] In this study, I have predicted the thermodynamic properties and the P-V-T equation of state of gold based on fully nonempirical techniques within the framework of the first-principles theory, with following results. (1) a combination of the local density functional theory and the firstprinciples lattice dynamics method allows prediction of the thermodynamics of gold quite accurately with no adjustable parameters; (2) it is confirmed that the relationship g/g a =

9 TSUCHIYA: FIRST-PRINCIPLES PREDICTION OF EQUATION OF STATE OF GOLD ECV 1-9 (V/V a ) z, assumed in some previous studies, is adequate for gold, at least up to V/V a = 0.7; (3) the predicted values of the EOS parameters of B Ta, B 0 Ta, g a and z are GPa, 6.12, 3.16 and 2.15, respectively, which agree well with experimental values; (4) the ab initio EOS model reduced the discrepancies between the observed phase boundaries of spinel, ilmenite and garnet and the seismic discontinuity. However, a gap of about 0.7 GPa still remains between the postspinel transition pressure and the 660-km discontinuity. Further investigation of possible sources of error, including that associated with the temperature measurement, are important to obtain an exact pressure standard. [30] Acknowledgments. T. T. thanks K. Hirose, M. Matsui, K. Kondo, E. Ito, E. Ohtani and E. Takahashi for their helpful comments. T. T. also acknowledges D. Alfè and an anonymous referee for their critical reviews and C. Floss for her cooperation for linguistic editings. This study was supported by Research Fellowships of the Japan Society for the Promotion of Science (JSPS) for Young Scientists. References Anderson, O. L., D. G. Isaak, and S. Yamamoto, Anharmonicity and the equation of state for gold, J. Appl. Phys., 65, , Baroni, S., P. Giannozzi, and A. Testa, Green s-function approach to linear response in solids, Phys. Rev. Lett., 58, , Birch, F., Finite strain isotherm and velocities for single-crystal and polycrystalline NaCl at high pressures and 300 K, J. Geophys. Res., 83, , Chang, Y. A., and L. Himmel, Temperature dependence of elastic constants of Cu, Ag, and Au above room temperature, J. Appl. Phys., 37, 3567, Fei, Y., H. Mao, J. Shu, G. Parthasarathy, W. A. Bassett, and J. Ko, Simultaneous high-p, high-t X ray diffraction study of b-(mg,fe) 2 SiO 4 to 26 GPa and 900 K, J. Geophys. Res., 97, , Funamori, N., T. Yagi, W. Utsumi, T. Kondo, T. Uchida, and M. Funamori, Thermoelastic properties of MgSiO 3 perovskite determined by in situ X ray observations up to 30 GPa and 2000 K, J. Geophys. Res., 101, , Heinz, D. L., and R. Jeanloz, The equation of state of the gold calibration standard, J. Appl. Phys., 55, , Hirose, K., Y. Fei, S. Ono, T. Yagi, and K. Funakoshi, In situ measurements of the phase transition boundary in Mg 3 Al 2 Si 3 O 12 : Implications for the nature of the seismic discontinuities in the Earth s mantle, Earth Planet. Sci. Lett., 184, , 2001a. Hirose, K., T. Komabayashi, M. Murakami, and K. Funakoshi, In situ measurements of the majorite-akimotoite-perovskite phase transition boundaries in MgSiO 3, Geophys. Res. Lett., 28, , 2001b. Hohenberg, P., and W. Kohn, Inhomogeneous electron gas, Phys. Rev. B, 136, , Holzapfel, W. B., M. Hartwig, and W. Sievers, Equations of state for Cu, Ag, and Au for wide ranges in temperature and pressure up to 500 GPa and above, J. Phys. Chem. Ref. Data, 30, , Irifune, T., et al., The postspinel phase boundary in Mg 2 SiO 4 determined by in situ x-ray diffraction, Science, 279, , Jamieson, J. C., J. N. Fritz, and M. H. Manghnani, Pressure measurement at high temperature in x-ray diffraction studies: Gold as a primary standard, in High-Pressure Research in Geophysics, edited by S. Akimoto and M. H. Manghnani, pp , Cent. for Acad. Publ., Tokyo, Karki, B. B., R. M. Wentzcovitch, S. de Gironcoli, and S. Baroni, Highpressure lattice dynamics and thermoelasticity of MgO, Phys. Rev. B, 61, , Kohn, W., and L. J. Sham, Self-consistent equations including exchange and correlation effects, Phys. Rev. A, 140, , Kuroda, K., T. Irifune, T. Inoue, N. Nishiyama, M. Miyashita, K. Funakoshi, and W. Utsumi, Determination of the phase boundary between ilmenite and perovskite in MgSiO 3 by in situ X-ray diffraction and quench experiments, Phys. Chem. Miner., 27, , Lynn, J. W., H. G. Smith, and R. M. Nicklow, Lattice dynamics of gold, Phys. Rev. B, 8, , Mao, H. K., R. J. Hemley, Y. Fei, J. F. Shu, L. C. Chen, A. P. Jephcoat, and Y. Wu, Effect of pressure, temperature, and composition on lattice parameters and density of (Fe,Mg) SiO 3 -perovskites to 30 GPa, J. Geophys. Res., 96, , Matsui, M., and N. Nishiyama, Comparison between the Au and MgO pressure calibration standards at high temperature, Geophys. Res. Lett., 29(10), 1368, doi: /2001gl014161, Meng, Y., Y. Fei, D. J. Weidner, G. D. Gwanmesia, and J. Hu, Hydrostatic compression of g-mg 2 SiO 4 to mantle pressures and 700 K: Thermal equation of state and related thermoelastic properties, Phys. Chem. Miner., 21, , Neighbours, J. R., and G. A. Alers, Elastic constants of silver and gold, Phys. Rev., 111, , Ono,S.,T.Katsura,E.Ito,M.Kanzaki,A.Yoneda,M.J.Walter, S. Urakawa, W. Utsumi, and K. Funakoshi, In situ observation of ilmenite-perovskite phase transition in MgSiO 3 using synchrotron radiation, Geophys. Res. Lett., 28, , Pavone, P., S. Baroni, and S. de Gironcoli, a $ b phase transition in tin: A theoretical study based on density-functional perturbation theory, Phys. Rev. B, 57, 10,421 10,423, Savrasov, S. Y., Linear-response theory and lattice dynamics: A muffin-tinorbital approach, Phys. Rev. B, 54, 16,470 16,486, Savrasov, S. Y., and D. Y. Savrasov, Electron-phonon interactions and related physical properties of metals from linear-response theory, Phys. Rev. B, 54, 16,487 16,500, Shim, S. H., T. S. Duffy, and K. Takemura, Equation of state of gold and its application to the phase boundaries near 660 km depth in Earth s mantle, Earth Planet. Sci. Lett., 203, , Takemura, K., Evaluation of the hydrostaticity of a helium-pressure medium with powder x-ray diffraction techniques, J. Appl. Phys., 89, , Touloukian, Y. S., R. K. Kirby, R. E. Taylor, and P. D. Desai, Thermophysical Properties of Matter, vol. 12, Thermal Expansion-Metallic Elements and Alloys, Plenum, New York, Tsuchiya, T., and K. Kawamura, Systematics of elasticity: Ab initio study in B1-type alkaline Earth oxides, J. Chem. Phys., 114, 10,086 10,093, Tsuchiya, T., and K. Kawamura, Ab initio study of pressure effect on elastic properties of crystalline Au, J. Chem. Phys., 116, , 2002a. Tsuchiya, T., and K. Kawamura, First-principles electronic thermal pressure of metal Au and Pt, Phys. Rev. B, 66, , 2002b. Vinet, P., J. H. Rose, J. Ferrante, and J. R. Smith, Universal features of the equation of state of solids, J. Phys. Condens. Matter, 1, , Vosko, S. H., L. Wilk, and M. Nusair, Accurate spin-dependent electron liquid correlation energies for local spin density calculations: A critical analysis, Can. J. Phys., 58, , Wang, Y., R. Ahuja, and B. Johansson, Melting of iron and other metals at Earth s core conditions: A simplified computational approach, Phys. Rev. B, 65, , Weyrich, K. H., Full-potential linear muffin-tin-orbital method, Phys. Rev. B, 37, 10,269 10,282, T. Tsuchiya, Department of Earth and Planetary Sciences, Tokyo Institute of Technology, Ookayama, Meguro, Tokyo , Japan. (takut@geo.titech.ac.jp)

Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments

Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jb005813, 2009 Unified analyses for P-V-T equation of state of MgO: A solution for pressure-scale problems in high P-T experiments Yoshinori

More information

Computational support for a pyrolitic lower mantle containing ferric iron

Computational support for a pyrolitic lower mantle containing ferric iron SUPPLEMENTARY INFORMATION DOI: 1.138/NGEO2458 Computational support for a pyrolitic lower mantle containing ferric iron Xianlong Wang, Taku Tsuchiya and Atsushi Hase NATURE GEOSCIENCE www.nature.com/naturegeoscience

More information

Equation of state of (Mg 0.8,Fe 0.2 ) 2 SiO 4 ringwoodite from synchrotron X-ray diffraction up to 20 GPa and 1700 K

Equation of state of (Mg 0.8,Fe 0.2 ) 2 SiO 4 ringwoodite from synchrotron X-ray diffraction up to 20 GPa and 1700 K Eur. J. Mineral. 2006, 18, 523-528 Equation of state of (Mg 0.8,Fe 0.2 ) 2 SiO 4 ringwoodite from synchrotron X-ray diffraction up to 20 GPa and 1700 K MASANORI MATSUI 1, *, TOMOO KATSURA 2, AKIRA KUWATA

More information

INTRODUCTION TO THE PHYSICS OF THE EARTH S INTERIOR

INTRODUCTION TO THE PHYSICS OF THE EARTH S INTERIOR INTRODUCTION TO THE PHYSICS OF THE EARTH S INTERIOR SECOND EDITION JEAN-PAULPOIRIER Institut de Physique du Globe de Paris PUBLISHED BY THE PRESS SYNDICATE OF THE UNIVERSITY OF CAMBRIDGE The Pitt Building,

More information

Elasticity, the fourth-rank tensor defining the strain of crystalline

Elasticity, the fourth-rank tensor defining the strain of crystalline Elasticity of MgO and a primary pressure scale to 55 GPa Chang-Sheng Zha*, Ho-kwang Mao, and Russell J. Hemley Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington,

More information

ARTICLE IN PRESS. Received 26 April 2004; received in revised form 28 April 2004; accepted 11 May 2004 Available online

ARTICLE IN PRESS. Received 26 April 2004; received in revised form 28 April 2004; accepted 11 May 2004 Available online Earth and Planetary Science Letters xx (2004) xxx xxx www.elsevier.com/locate/epsl Phase transition in MgSiO 3 perovskite in the earth s lower mantle Taku Tsuchiya*, Jun Tsuchiya, Koichiro Umemoto, Renata

More information

Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity

Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L24607, doi:10.1029/2004gl021306, 2004 Absence of density crossover between basalt and peridotite in the cold slabs passing through 660 km discontinuity Konstantin

More information

Strong temperature dependence of the first pressure derivative of isothermal bulk modulus at zero pressure

Strong temperature dependence of the first pressure derivative of isothermal bulk modulus at zero pressure JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 112,, doi:10.1029/2006jb004865, 2007 Strong temperature dependence of the first pressure derivative of isothermal bulk modulus at zero pressure Yigang Zhang, 1 Dapeng

More information

P-V-T equation of state of MgSiO 3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle

P-V-T equation of state of MgSiO 3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the lower mantle JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 117,, doi:10.1029/2011jb008988, 2012 P-V-T equation of state of MgSiO 3 perovskite based on the MgO pressure scale: A comprehensive reference for mineralogy of the

More information

Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals

Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals Pressure Volume Temperature (P-V-T) Relationships and Thermo elastic Properties of Geophysical Minerals A PROPOSAL FOR Ph.D PROGRAMME BY MONIKA PANWAR UNDER THE SUPERVISION OF DR SANJAY PANWAR ASSISTANT

More information

EOS-FIT V6.0 R.J. ANGEL

EOS-FIT V6.0 R.J. ANGEL EOS-FIT V6. R.J. AGEL Crystallography Laboratory, Dept. Geological Sciences, Virginia Tech, Blacksburg, VA46, USA http://www.geol.vt.edu/profs/rja/ ITRODUCTIO EosFit started as a program to fit equations

More information

Pressure Volume Temperature Equation of State

Pressure Volume Temperature Equation of State Pressure Volume Temperature Equation of State S.-H. Dan Shim ( ) Acknowledgement: NSF-CSEDI, NSF-FESD, NSF-EAR, NASA-NExSS, Keck Equations relating state variables (pressure, temperature, volume, or energy).

More information

First-principles thermoelasticity of bcc iron under pressure

First-principles thermoelasticity of bcc iron under pressure First-principles thermoelasticity of bcc iron under pressure Xianwei Sha and R. E. Cohen Carnegie Institution of Washington, 5251 Broad Branch Road, NW, Washington, D.C. 20015, USA Received 17 May 2006;

More information

Equations of State. Tiziana Boffa Ballaran

Equations of State. Tiziana Boffa Ballaran Equations o State iziana Boa Ballaran Why EoS? he Earth s interior is divided globally into layers having distinct seismic properties Speed with which body waves travel through the Earth s interior are

More information

α phase In the lower mantle, dominant mineralogy is perovskite [(Mg,Fe)SiO 3 ] The pyrolite mantle consists of: 60% olivine and 40% pyroxene.

α phase In the lower mantle, dominant mineralogy is perovskite [(Mg,Fe)SiO 3 ] The pyrolite mantle consists of: 60% olivine and 40% pyroxene. Summary of Dan Shim s lecture on 3/1/05 Phase transitions in the Earth s mantle In this lecture, we focused on phase transitions associated with the transition zone 1. 410 km alpha olivine beta wadsleyite

More information

Why cold slabs stagnate in the transition zone

Why cold slabs stagnate in the transition zone GSA Data Repository 2015085 Model 1 Model 2 Model 3 Model 4 Model 5 Model 6 Why cold slabs stagnate in the transition zone Scott D. King 1,2, Daniel J. Frost 2, and David C. Rubie 2 1 Department of Geosciences,

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

First-principles calculations on MgO: Phonon theory versus mean-field potential approach

First-principles calculations on MgO: Phonon theory versus mean-field potential approach JOURNAL OF APPLIED PHYSICS 100, 023533 2006 First-principles calculations on MgO: Phonon theory versus mean-field potential approach Y. Wang, a Z.-K. Liu, and L.-Q. Chen Materials Science and Engineering,

More information

Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine

Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine Physics of the Earth and Planetary Interiors 157 (2006) 188 195 Thermal equation of state of (Mg 0.9 Fe 0.1 ) 2 SiO 4 olivine Wei Liu, Baosheng Li Mineral Physics Institute, Stony Brook University, Stony

More information

Interpreting Geophysical Data for Mantle Dynamics. Wendy Panero University of Michigan

Interpreting Geophysical Data for Mantle Dynamics. Wendy Panero University of Michigan Interpreting Geophysical Data for Mantle Dynamics Wendy Panero University of Michigan Chemical Constraints on Density Distribution Atomic Fraction 1.0 0.8 0.6 0.4 opx cpx C2/c garnet il olivine wadsleyite

More information

Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures

Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures Bull. Mater. Sci., ol. 35, No., August, pp. 31 37. c Indian Academy of Sciences. Analysis of volume expansion data for periclase, lime, corundum and spinel at high temperatures BPSINGH, H CHANDRA, R SHYAM

More information

On Dynamic and Elastic Stability of Lanthanum Carbide

On Dynamic and Elastic Stability of Lanthanum Carbide Journal of Physics: Conference Series On Dynamic and Elastic Stability of Lanthanum Carbide To cite this article: B D Sahoo et al 212 J. Phys.: Conf. Ser. 377 1287 Recent citations - Theoretical prediction

More information

Structural Calculations phase stability, surfaces, interfaces etc

Structural Calculations phase stability, surfaces, interfaces etc Structural Calculations phase stability, surfaces, interfaces etc Keith Refson STFC Rutherford Appleton Laboratory September 19, 2007 Phase Equilibrium 2 Energy-Volume curves..................................................................

More information

Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard

Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard American Mineralogist, Volume 97, pages 1670 1675, 2012 Simultaneous sound velocity and density measurements of NaCl at high temperatures and pressures: Application as a primary pressure standard Masanori

More information

Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications

Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 113,, doi:10.1029/2007jb005275, 2008 Pressure-volume-temperature relations in MgO: An ultrahigh pressure-temperature scale for planetary sciences applications Zhongqing

More information

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY

FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY FULL POTENTIAL LINEARIZED AUGMENTED PLANE WAVE (FP-LAPW) IN THE FRAMEWORK OF DENSITY FUNCTIONAL THEORY C.A. Madu and B.N Onwuagba Department of Physics, Federal University of Technology Owerri, Nigeria

More information

Multi-disciplinary Impact of the Deep Mantle Postperovskite

Multi-disciplinary Impact of the Deep Mantle Postperovskite Multi-disciplinary Impact of the Deep Mantle Postperovskite Phase Transition Thorne Lay 1 Dion Heinz 2 Miaki Ishii 3 Sang-Heon Shim 4 Jun Tsuchiya 5 Taku Tsuchiya 5 Renata Wentzcovitch 5 David Yuen 6 1

More information

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India.

Department of Physics, Anna University, Sardar Patel Road, Guindy, Chennai -25, India. Advanced Materials Research Online: 2013-02-13 ISSN: 1662-8985, Vol. 665, pp 43-48 doi:10.4028/www.scientific.net/amr.665.43 2013 Trans Tech Publications, Switzerland Electronic Structure and Ground State

More information

Elasticity of single crystal and polycrystalline MgSiO 3 perovskite by Brillouin spectroscopy

Elasticity of single crystal and polycrystalline MgSiO 3 perovskite by Brillouin spectroscopy GEOPHYSICAL RESEARCH LETTERS, VOL. 31, L06620, doi:10.1029/2004gl019559, 2004 Elasticity of single crystal and polycrystalline MgSiO 3 perovskite by Brillouin spectroscopy Stanislav V. Sinogeikin Department

More information

Octahedral tilting evolution and phase transition in orthorhombic NaMgF 3 perovskite under pressure

Octahedral tilting evolution and phase transition in orthorhombic NaMgF 3 perovskite under pressure GEOPHYSICAL RESEARCH LETTERS, VOL. 32, L04304, doi:10.1029/2004gl022068, 2005 Octahedral tilting evolution and phase transition in orthorhombic NaMgF 3 perovskite under pressure H.-Z. Liu, 1,2 J. Chen,

More information

arxiv: v1 [cond-mat.mtrl-sci] 30 Apr 2014

arxiv: v1 [cond-mat.mtrl-sci] 30 Apr 2014 arxiv:1404.7805v1 [cond-mat.mtrl-sci] 30 Apr 2014 Equations of state of magnesium perovskite and postperovskite: diagnostics from ab initio simulations Roman Belousov September 26, 2018 Abstract Mauro

More information

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure

Supplementary Information for. Universal elastic-hardening-driven mechanical instability in α-quartz and quartz. homeotypes under pressure Supplementary Information for Universal elastic-hardening-driven mechanical instability in α-quartz and quartz homeotypes under pressure Juncai Dong, Hailiang Zhu, and Dongliang Chen * Beijing Synchrotron

More information

FIRST PRINCIPLES STUDY OF AlBi

FIRST PRINCIPLES STUDY OF AlBi Available at: http://publications.ictp.it IC/2008/025 United Nations Educational, Scientific and Cultural Organization and International Atomic Energy Agency THE ABDUS SALAM INTERNATIONAL CENTRE FOR THEORETICAL

More information

ELASTICITY AND CONSTITUTION OF THE EARTH'S INTERIOR*

ELASTICITY AND CONSTITUTION OF THE EARTH'S INTERIOR* JOURNAL OF GEOPHYSICAL RESEARCH VOLUME 57, NO. 2 JUNE, 1952 ELASTICITY AND CONSTITUTION OF THE EARTH'S INTERIOR* BY FRANCIS BIRCtt Harvard University, Cambridge, Massachusetts (Received January 18, 1952)

More information

Ab initio elasticity and thermal equation of state of MgSiO 3 perovskite

Ab initio elasticity and thermal equation of state of MgSiO 3 perovskite Earth and Planetary Science Letters 184 (2001) 555^560 Express Letter www.elsevier.com/locate/epsl Ab initio elasticity and thermal equation of state of MgSiO 3 perovskite Artem R. Oganov *, John P. Brodholt,

More information

THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES

THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES THERMOPHYSICAL PROPERTIES OF THORIUM COMPOUNDS FROM FIRST PRINCIPLES Vinayak Mishra a,* and Shashank Chaturvedi a a Computational Analysis Division, Bhabha Atomic Research Centre, Visakhapatnam 530012,

More information

Spin crossovers in the Earth mantle. Spin crossovers in the Earth mantle

Spin crossovers in the Earth mantle. Spin crossovers in the Earth mantle Spin crossovers in the Earth mantle Spin crossovers in the Earth mantle Renata M. Wentzcovitch Dept. of Chemical Engineering and Materials Science Minnesota Supercomputing Institute Collaborators Han Hsu

More information

Structural, vibrational and thermodynamic properties of Mg 2 SiO 4 and MgSiO 3 minerals from first-principles simulations

Structural, vibrational and thermodynamic properties of Mg 2 SiO 4 and MgSiO 3 minerals from first-principles simulations 1 2 3 4 5 6 7 8 Structural, vibrational and thermodynamic properties of Mg 2 SiO 4 and MgSiO 3 minerals from first-principles simulations E. R. Hernández,a, J. Brodholt b, D. Alfè b a Instituto de Ciencia

More information

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity

Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Strain-related Tensorial Properties: Elasticity, Piezoelectricity and Photoelasticity Torino, Italy, September 4-9, 2016 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it

More information

The equation of state of CaSiO perovskite to 108 GPa at 300 K

The equation of state of CaSiO perovskite to 108 GPa at 300 K Ž. Physics of the Earth and Planetary Interiors 120 2000 27 8 www.elsevier.comrlocaterpepi The equation of state of CaSiO perovskite to 108 GPa at 00 K Sang-Heon Shim a,), Thomas S. Duffy a, Guoyin Shen

More information

Supplementary Information

Supplementary Information Supplementary Information Supplementary Figure 1: Electronic Kohn-Sham potential profile of a charged monolayer MoTe 2 calculated using PBE-DFT. Plotted is the averaged electronic Kohn- Sham potential

More information

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B01203, doi: /2008jb005900, 2009

JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114, B01203, doi: /2008jb005900, 2009 Click Here for Full Article JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 114,, doi:10.1029/2008jb005900, 2009 The MgSiO 3 system at high pressure: Thermodynamic properties of perovskite, postperovskite, and melt

More information

Pressure dependence of electrical conductivity of (Mg,Fe)SiO 3 ilmenite

Pressure dependence of electrical conductivity of (Mg,Fe)SiO 3 ilmenite Phys Chem Minerals (2007) 34:249 255 DOI 10.1007/s00269-007-0143-0 ORIGINAL PAPER Pressure dependence of electrical conductivity of (Mg,Fe)SiO 3 ilmenite Tomoo Katsura Æ Sho Yokoshi Æ Kazuyuki Kawabe Æ

More information

PHYSICAL REVIEW B 75,

PHYSICAL REVIEW B 75, Ruby, metals, and MgO as alternative pressure scales: A semiempirical description of shockwave, ultrasonic, x-ray, and thermochemical data at high temperatures and pressures Peter I. Dorogokupets 1, *

More information

Post-perovskite 1. Galley Proofs

Post-perovskite 1. Galley Proofs 16 September 2005 21:39 YB061180.tex McGraw Hill YB of Science & Technology Keystroked: 29/08/2005 Initial MS Page Sequence Stamp: 02350 Article Title: Post-perovskite Article ID: YB061180 1st Classification

More information

Melting of Li, K, Rb and Cs at high pressure

Melting of Li, K, Rb and Cs at high pressure Melting of Li, K, Rb and Cs at high pressure R N Singh and S Arafin Abstract Lindemann s melting law has been used to develop analytical expression to determine the pressure (P) dependence of the melting

More information

status solidi Structural and electronic properties of ScSb, ScAs, ScP and ScN

status solidi Structural and electronic properties of ScSb, ScAs, ScP and ScN physica pss status solidi basic solid state physics b Structural and electronic properties of ScSb, ScAs, ScP and ScN AbdelGhani Tebboune 1, Djamel Rached, AbdelNour Benzair 3, Nadir Sekkal, 5,, and A.

More information

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 Jul 1997

arxiv:cond-mat/ v1 [cond-mat.mtrl-sci] 14 Jul 1997 Inverse versus Normal NiAs Structures as High Pressure Phases of FeO and MnO arxiv:cond-mat/9707139v1 [cond-mat.mtrl-sci] 14 Jul 1997 Z. Fang, K. Terakura, H. Sawada, T. Miyazaki & I. Solovyev JRCAT, Angstrom

More information

A BADER S TOPOLOGICAL APPROACH FOR THE CHARACTERIZATION OF PRESSURE INDUCED PHASE TRANSITIONS

A BADER S TOPOLOGICAL APPROACH FOR THE CHARACTERIZATION OF PRESSURE INDUCED PHASE TRANSITIONS A BADER S TOPOLOGICAL APPROACH FOR THE CHARACTERIZATION OF PRESSURE INDUCED PHASE TRANSITIONS FILIPPO PARISI Dipartimento di Matematica e Geoscienze, Università di Trieste, Via E. Weiss 2, 34128 Trieste,

More information

I. INTRODUCTION We investigate from first-principles the thermal equation of state of body-centered cubic (bcc) tantalum, a group V transition metal,

I. INTRODUCTION We investigate from first-principles the thermal equation of state of body-centered cubic (bcc) tantalum, a group V transition metal, Thermal equation of state of tantalum Ronald E. Cohen (1;2) and O. Gülseren (1;3;4) (1) Geophysical Laboratory and Center for High Pressure Research, Carnegie Institution of Washington, 5251 Broad Branch

More information

research papers Theoretical determination of the structures of CaSiO 3 perovskites 1. Introduction Razvan Caracas* and Renata M.

research papers Theoretical determination of the structures of CaSiO 3 perovskites 1. Introduction Razvan Caracas* and Renata M. Acta Crystallographica Section B Structural Science ISSN 0108-7681 Theoretical determination of the structures of CaSiO 3 perovskites Razvan Caracas* and Renata M. Wentzcovitch University of Minnesota,

More information

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were

Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were Supplementary Figure 1 Two-dimensional map of the spin-orbit coupling correction to the scalar-relativistic DFT/LDA band gap. The calculations were performed for the Platonic model of PbI 3 -based perovskites

More information

Equilibrium state of a metal slab and surface stress

Equilibrium state of a metal slab and surface stress PHYSICAL REVIEW B VOLUME 60, NUMBER 23 15 DECEMBER 1999-I Equilibrium state of a metal slab and surface stress P. M. Marcus IBM Research Division, T. J. Watson Research Center, Yorktown Heights, New York

More information

2.01 Overview Mineral Physics: Past, Present, and Future

2.01 Overview Mineral Physics: Past, Present, and Future 2.01 Overview Mineral Physics: Past, Present, and Future G. D. Price, University College London, London, UK ª 2007 Elsevier B.V. All rights reserved. References 5 Mineral physics involves the application

More information

First-principles studies on electrical resistivity of iron under pressure. Xianwei Sha * and R. E. Cohen

First-principles studies on electrical resistivity of iron under pressure. Xianwei Sha * and R. E. Cohen First-principles studies on elecical resistivity of iron under pressure Xianwei Sha * and R. E. Cohen Carnegie Institution of Washington, 551 Broad Branch Road, NW, Washington, D. C. 0015, U. S. A. Absact

More information

arxiv: v1 [cond-mat.mtrl-sci] 18 Sep 2013

arxiv: v1 [cond-mat.mtrl-sci] 18 Sep 2013 Accuracy of generalized gradient approximation functionals for density functional perturbation theory calculations arxiv:1309.4805v1 [cond-mat.mtrl-sci] 18 Sep 2013 Lianhua He, 1 Fang Liu, 2 Geoffroy Hautier,

More information

Equation of State of Dense Helium

Equation of State of Dense Helium Iowa State University From the SelectedWorks of Richard Alan Lesar October 31, 1988 Equation of State of Dense Helium Richard Alan Lesar, Los Alamos National Laboratory Available at: https://works.bepress.com/richard_lesar/27/

More information

Effect of water on the spinel-postspinel transformation in Mg 2 SiO 4

Effect of water on the spinel-postspinel transformation in Mg 2 SiO 4 Effect of water on the spinel-postspinel transformation in Mg 2 SiO 4 * Pressures for spinel postspinel phase boundary has been subject of debate - XRD measurements indicates that the transition pressure

More information

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo

High Temperature High Pressure Properties of Silica From Quantum Monte Carlo High Temperature High Pressure Properties of Silica From Quantum Monte Carlo K.P. Driver, R.E. Cohen, Z. Wu, B. Militzer, P. Lopez Rios, M. Towler, R. Needs, and J.W. Wilkins Funding: NSF, DOE; Computation:

More information

PBS: FROM SOLIDS TO CLUSTERS

PBS: FROM SOLIDS TO CLUSTERS PBS: FROM SOLIDS TO CLUSTERS E. HOFFMANN AND P. ENTEL Theoretische Tieftemperaturphysik Gerhard-Mercator-Universität Duisburg, Lotharstraße 1 47048 Duisburg, Germany Semiconducting nanocrystallites like

More information

Band calculations: Theory and Applications

Band calculations: Theory and Applications Band calculations: Theory and Applications Lecture 2: Different approximations for the exchange-correlation correlation functional in DFT Local density approximation () Generalized gradient approximation

More information

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50

CHAPTER 3 WIEN2k. Chapter 3 : WIEN2k 50 CHAPTER 3 WIEN2k WIEN2k is one of the fastest and reliable simulation codes among computational methods. All the computational work presented on lanthanide intermetallic compounds has been performed by

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

PLEASE SCROLL DOWN FOR ARTICLE

PLEASE SCROLL DOWN FOR ARTICLE This article was downloaded by: [Whitaker, Matthew L.][State University of New York at Stony Brook] On: 28 September 2008 Access details: Access Details: [subscription number 788676199] Publisher Taylor

More information

An EAM potential for the dynamical simulation of Ni-Al alloys

An EAM potential for the dynamical simulation of Ni-Al alloys J. At. Mol. Sci. doi: 10.4208/jams.022310.031210a Vol. 1, No. 3, pp. 253-261 August 2010 An EAM potential for the dynamical simulation of Ni-Al alloys Jian-Hua Zhang, Shun-Qing Wu, Yu-Hua Wen, and Zi-Zhong

More information

Physics of the Earth and Planetary Interiors

Physics of the Earth and Planetary Interiors Physics of the Earth and Planetary Interiors 176 (2009) 98 108 Contents lists available at ScienceDirect Physics of the Earth and Planetary Interiors journal homepage: www.elsevier.com/locate/pepi Optimal

More information

Thermodynamics of hexagonal-close-packed iron under Earth s core conditions

Thermodynamics of hexagonal-close-packed iron under Earth s core conditions PHYSICAL REVIEW B, VOLUME 64, 045123 Thermodynamics of hexagonal-close-packed iron under Earth s core conditions D. Alfè, 1,2 G. D. Price, 1 and M. J. Gillan 2 1 Research School of Geological and Geophysical

More information

SHEAR WAVE VELOCITY JUMP AT THE OLIVINE- SPINEL TRANSFORMATION IN Fe2SiO4 BY ULTRASONIC MEASUREMENTS IN SITU. Akira FUKIZAWA* and Hajimu KINOSHITA**

SHEAR WAVE VELOCITY JUMP AT THE OLIVINE- SPINEL TRANSFORMATION IN Fe2SiO4 BY ULTRASONIC MEASUREMENTS IN SITU. Akira FUKIZAWA* and Hajimu KINOSHITA** J. Phys. Earth, 30, 245-253, 1982 SHEAR WAVE VELOCITY JUMP AT THE OLIVINE- SPINEL TRANSFORMATION IN Fe2SiO4 BY ULTRASONIC MEASUREMENTS IN SITU Akira FUKIZAWA* and Hajimu KINOSHITA** * Institute for Solid

More information

Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa

Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa ELSEVIER Earth and Planetary Science Letters 159 (1998) 25 33 Brillouin scattering and X-ray diffraction of San Carlos olivine: direct pressure determination to 32 GPa Chang-sheng Zha a, Thomas S. Duffy

More information

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS

CHAPTER 6. ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 143 CHAPTER 6 ELECTRONIC AND MAGNETIC STRUCTURE OF ZINC-BLENDE TYPE CaX (X = P, As and Sb) COMPOUNDS 6.1 INTRODUCTION Almost the complete search for possible magnetic materials has been performed utilizing

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS

STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS Chapter 3 STRONG CONFIGURATIONAL DEPENDENCE OF ELASTIC PROPERTIES OF A CU-ZR BINARY MODEL METALLIC GLASS We report the strong dependence of elastic properties on configurational changes in a Cu-Zr binary

More information

Structural and Optical Properties of ZnSe under Pressure

Structural and Optical Properties of ZnSe under Pressure www.stmjournals.com Structural and Optical Properties of ZnSe under Pressure A. Asad, A. Afaq* Center of Excellence in Solid State Physics, University of the Punjab Lahore-54590, Pakistan Abstract The

More information

Temperature and pressure dependence of the Raman frequency shifts in anthracene

Temperature and pressure dependence of the Raman frequency shifts in anthracene Indian Journal of Pure & Applied Physics Vol. 54, August 2016, pp. 489-494 Temperature and pressure dependence of the Raman frequency shifts in anthracene H Özdemir & H Yurtseven* Department of Physics,

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi:10.1038/nature11294 Review of previous works on deep-liquid properties The major parameters controlling the buoyancy of deep-mantle melts are (i) the changes in atomic packing

More information

Surface stress and relaxation in metals

Surface stress and relaxation in metals J. Phys.: Condens. Matter 12 (2000) 5541 5550. Printed in the UK PII: S0953-8984(00)11386-4 Surface stress and relaxation in metals P M Marcus, Xianghong Qian and Wolfgang Hübner IBM Research Center, Yorktown

More information

Thermal elasticity of (Fe x,mg 1 x ) 2 SiO 4 olivine and wadsleyite

Thermal elasticity of (Fe x,mg 1 x ) 2 SiO 4 olivine and wadsleyite GEOPHYSICAL RESEARCH LETTERS, VOL. 40, 290 294, doi:10.1002/grl.50131, 2013 Thermal elasticity of (Fe x,mg 1 x ) 2 SiO 4 olivine and wadsleyite M. Núñez-Valdez, 1 Z. Wu, 2 Y. G. Yu, 3 and R. M. Wentzcovitch

More information

Ab initio molecular dynamics study of CaSiO 3 perovskite at P-T conditions of Earth s lower mantle

Ab initio molecular dynamics study of CaSiO 3 perovskite at P-T conditions of Earth s lower mantle PHYSICAL REVIEW B 73, 184106 2006 Ab initio molecular dynamics study of CaSiO 3 perovskite at P-T conditions of Earth s lower mantle Donat J. Adams* and Artem R. Oganov Laboratory of Crystallography, Department

More information

Impact of size and temperature on thermal expansion of nanomaterials

Impact of size and temperature on thermal expansion of nanomaterials PRAMANA c Indian Academy of Sciences Vol. 84, No. 4 journal of April 205 physics pp. 609 69 Impact of size and temperature on thermal expansion of nanomaterials MADAN SINGH, and MAHIPAL SINGH 2 Department

More information

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

Table of Contents [ttc]

Table of Contents [ttc] Table of Contents [ttc] 1. Equilibrium Thermodynamics I: Introduction Thermodynamics overview. [tln2] Preliminary list of state variables. [tln1] Physical constants. [tsl47] Equations of state. [tln78]

More information

Grüneisen parameters and isothermal equations of state

Grüneisen parameters and isothermal equations of state American Mineralogist, Volume 85, pages xxx xxx, Grüneisen parameters and isothermal equations of state L. VOČADLO,, * J.P. POIRER, AND G.D. PRICE Department of Geological Sciences, University College

More information

Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods

Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods Physics Procedia 3 (2010) 1437 1441 www.elsevier.com/locate/procedia Electronic structure of solid FeO at high pressures by quantum Monte Carlo methods Jindřich Kolorenč a and Lubos Mitas a a Department

More information

Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO 3 perovskite

Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO 3 perovskite Physics of the Earth and Planetary Interiors 122 (2000) 277 288 Comparative study of quasiharmonic lattice dynamics, molecular dynamics and Debye model applied to MgSiO 3 perovskite Artem R. Oganov, John

More information

Solid State Theory: Band Structure Methods

Solid State Theory: Band Structure Methods Solid State Theory: Band Structure Methods Lilia Boeri Wed., 11:00-12:30 HS P3 (PH02112) http://itp.tugraz.at/lv/boeri/ele/ Who am I? Assistant Professor, Institute for Theoretical and Computational Physics,

More information

Properties of calcium fluoride up to 95 kbar: A theoretical study

Properties of calcium fluoride up to 95 kbar: A theoretical study Bull. Mater. Sci., Vol. 33, No. 4, August 2010, pp. 413 418. Indian Academy of Sciences. Properties of calcium fluoride up to 95 kbar: A theoretical study CHUN-SHENG WANG School of Traffic and Transportation,

More information

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana?

All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? All-Electron Full-Potential Calculations at O(ASA) Speed A Fata Morgana? SFB 484, Teilprojekt D6 October 5, 2007 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Outline 1 2 3 Back in the 1930 s... John C. Slater

More information

Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO 3 orthopyroxene

Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO 3 orthopyroxene Equation of state of the postperovskite phase synthesized from a natural (Mg,Fe)SiO 3 orthopyroxene Sean R. Shieh*, Thomas S. Duffy, Atsushi Kubo, Guoyin Shen, Vitali B. Prakapenka, Nagayoshi Sata, Kei

More information

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of

Chapter 4. The Effect of Elastic Softening and Cooperativity on the Fragility of Chapter 4 The Effect of Elastic Softening and Cooperativity on the Fragility of Glass-Forming Metallic Liquids Key words: Amorphous metals, Shear transformation zones, Ultrasonic measurement, Compression

More information

Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga

Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga JOURNAL OF GEOPHYSICAL RESEARCH, VOL. 108, NO. B6, 2288, doi:10.1029/2002jb002161, 2003 Stress field in the subducting lithosphere and comparison with deep earthquakes in Tonga A. Guest 1 and G. Schubert

More information

Structural and thermal properties of Fe 2 (Zr,Nb) system in C15, C14 and C36 Laves phases: First-Principles study

Structural and thermal properties of Fe 2 (Zr,Nb) system in C15, C14 and C36 Laves phases: First-Principles study Structural and thermal properties of Fe 2 (Zr,Nb) system in, and Laves phases: First-Principles study L. RABAHI 1, D. BRADAI 2 and A. KELLOU 3 1 Centre National de Recherche en Soudage et Contrôle, Route

More information

Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth s lower mantle

Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth s lower mantle Earth and Planetary Science Letters 223 (2004) 381 393 www.elsevier.com/locate/epsl Equations of state of the high-pressure phases of a natural peridotite and implications for the Earth s lower mantle

More information

Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle.

Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle. International Journal of Scientific & Engineering Research Volume 4, Issue 1, January-2013 1 Estimation of diffusion coefficients of Cr 3+ Ga 3+ in MgO at temperatures of the Earth s lower mantle. and

More information

Chemical bonding, elasticity, and valence force field models: A case study for -Pt 2 Si and PtSi

Chemical bonding, elasticity, and valence force field models: A case study for -Pt 2 Si and PtSi PHYSICAL REVIEW B, VOLUME 64, 550 Chemical bonding, elasticity, and valence force field models: A case study for -Pt 2 Si and PtSi J. E. Klepeis, O. Beckstein, 2 O. Pankratov, 2 and G. L. W. Hart 3 Lawrence

More information

ELECTRONIC AND MAGNETIC PROPERTIES OF BERKELIUM MONONITRIDE BKN: A FIRST- PRINCIPLES STUDY

ELECTRONIC AND MAGNETIC PROPERTIES OF BERKELIUM MONONITRIDE BKN: A FIRST- PRINCIPLES STUDY ELECTRONIC AND MAGNETIC PROPERTIES OF BERKELIUM MONONITRIDE BKN: A FIRST- PRINCIPLES STUDY Gitanjali Pagare Department of Physics, Sarojini Naidu Govt. Girls P. G. Auto. College, Bhopal ( India) ABSTRACT

More information

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC

Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC 286 Brazilian Journal of Physics, vol. 36, no. 2A, June, 2006 Improved Electronic Structure and Optical Properties of sp-hybridized Semiconductors Using LDA+U SIC Clas Persson and Susanne Mirbt Department

More information

Elastic anomalies in a spin-crossover system: ferropericlase at lower. mantle conditions

Elastic anomalies in a spin-crossover system: ferropericlase at lower. mantle conditions Elastic anomalies in a spin-crossover system: ferropericlase at lower mantle conditions Zhongqing Wu, 1,2,3 João F. Justo, 1,4 and Renata M. Wentzcovitch 1,5,* 1 Department of Chemical Engineering and

More information

The upper mantle is the source of almost all magmas. It contains major

The upper mantle is the source of almost all magmas. It contains major The Upper Mantle and Transition Zone Daniel J. Frost * DOI: 10.2113/GSELEMENTS.4.3.171 The upper mantle is the source of almost all magmas. It contains major transitions in rheological and thermal behaviour

More information

Anomalous thermodynamics properties in. ferropericlase throughout its spin crossover transition

Anomalous thermodynamics properties in. ferropericlase throughout its spin crossover transition 1 Anomalous thermodynamics properties in ferropericlase throughout its spin crossover transition Z. Wu, 1,2 J. F. Justo, 1,2,3 C. R. S. da Silva, 2 S. de Gironcoli, 4,5 and R. M. Wentzcovitch 1,2 1 epartment

More information

SIO 224. Thermodynamics of phase transitions

SIO 224. Thermodynamics of phase transitions SIO 224 Thermodynamics of phase transitions 1. The Gibbs Free Energy When discussing phase transformations, we usually work in the P, T domain in which G, the Gibbs free energy is the most useful function.

More information