Part 3: Introduction to Master Equation and Complex Initial Conditions in Lattice Microbes

Size: px
Start display at page:

Download "Part 3: Introduction to Master Equation and Complex Initial Conditions in Lattice Microbes"

Transcription

1 Part 3: Introduction to Master Equation Cells: and Complex Initial Conditions in Lattice re cells Microbes en Biophysics, and UC urgh, June 6-8, 2016 rson Joseph R. Peterson and Michael J. Hallock Luthey-Schulten Laboratory University of Illinois at Urbana-Champaign NIH Workshop on Computational Biophysics November 17th, 2016 George Institute of Technology Atlanta, GA, USA

2 Introduction to Master Equation and LM Simulations Theory Master Equation Chemical Master Equation Stochastic Gene Expression Predator-Prey Model Effect of DNA Replication Reaction-Diffusion Master Equation Min System Creating Complex Geometries in Lattice Microbes

3 Biological Modeling at Different Scales Atoms Subcellular structure Single cells Multicellular organisms & populations 1Å 1nm 10nm 100nm 1µm 10µm 100µm 1mm 1cm 10cm Length scale CG Timesteps Femtoseconds Picoseconds Microseconds ns µs ms s hr Molecules to Macromolecular assemblies Whole Cells and Colonies

4 Master Equation Deterministic ODE Probabilistic ODE d~x dt = A~x dp (~s, t) dt = AP (~s, t) State Vector ~s = 0 s 1 s 2 1 C A Transition Matrix (Probability of Birth/Death) A(t) =A(0) s N

5 Chemical Master Equation dp (~s, t) dt = AP (~s, t) A = R S Transition Matrix Represents Chemical Reactions by: Rate Matrix 0 1 T R= 1 2 M C A S = 0 Stoichiometric Matrix s 1,1 s 1,2 s,m s 1,M s N,M 1 C A where: and: i s i,j are propensities for a reaction to occur are the counts of each reactant

6 Chemical Master Equation dp ( ~ s, t) dt = NX µ=1 µ (~s s µ )P (~s s µ,t) µ (~s)p (~s, t) Transition propensities are related to macroscopic rate constants: First order: s i k! pi (~s) =ks i Second order: s i + s j k! pi (~s) = k V s is j Probability of reaction µ occurring in some time is: µ (~s)dt

7 Chemical Master Equation dp ( ~ s, t) dt = NX µ=1 µ (~s s µ )P (~s s µ,t) µ (~s)p (~s, t) s-3 s-2 s-1 s s+1 s+2 s+3

8 Chemical Master Equation dp ( ~ s, t) dt = NX µ=1 µ (~s s µ )P (~s s µ,t) µ (~s)p (~s, t) t + dt t + dt s-3 s-2 s-1 s s+1 s+2 s+3

9 Chemical Master Equation dp ( ~ s, t) dt = NX µ=1 µ (~s s µ )P (~s s µ,t) µ (~s)p (~s, t) t + dt t + dt s-3 s-2 s-1 s s+1 s+2 s+3

10 Stochastic Gene Expression Reaction Scheme D k t! D + m M k d! ; Constitutive Gene Expression dm ODE dt = k t k d m Chemical Master Equation dp (m, t) dt = k t P (m, t) k d mp (m, t) + k t P (m 1,t)+k d (m + 1)P (m +1,t)

11 Stochastic Gene Expression

12 Stochastic Gene Expression

13 Stochastic Gene Expression

14 Stochastic Gene Expression 100 Replicates

15 Exact Solution to Constitutive Gene Expression Moment Generating F (z,t) Function = 1X m=0 1X m=0 z m P (m, t) mz m 1 P (m, t) dp (m, t) dt CME = k t P (m, t) k d mp (m, t) + k t P (m 1,t)+k d (m + 1)P (m +1,t) Multiply by z m and sum over (z,t) = k t 1 X m=0 + k t 1 X m=0 z m P (m, t) k d 1 X m=0 z m P (m 1,t)+k d 1 X Factor out z and Compute Moments = k t F (z,t) k d zf(z,t) + k t zf(z,t)+k mz m P (m, t) m=0 z m (m + 1)P (m +1,t)

16 Exact Solution to Constitutive Gene = k t F (z,t) k d zf(z,t) + k t zf(z,t)+k Assume Steady-State and Solve F (z,t) =Ce k t k d z Taylor Expand and Group Terms F (z) =e k t k d 1 X m=0 m k t k d m! z m P (m) = e k t k d k t k d m m!

17 Exact Solution to Constitutive Gene Expression P (m) = e k t k d k t k d m m! hmi = k t k d Var[m] = k t k d Exact Distribution Simulated Distribution

18 Lotka-Volterra (Predator-Prey) Model ODEs Prey k a " " X Predator dx dt = k a k p XY X +Y Y k p " " 2Y k d " " dy dt = k pxy k d Y

19 Lotka-Volterra (Predator-Prey) Deterministic Solution

20 Lotka-Volterra Simulations Stable Limit Cycle Predator Extinction Event

21 Effects of DNA Replication on mrna Noise [2] Replication Schematically ori Replication Model [1] 40 Minute Doubling Time Cell Division replication fork Rounds of Replication DNA Replication Fork 0min Gene 2 80min Gene 1 ter t D 45min ori ter Reaction System I Example Simulation II III D(t) k t! D(t)+m m k d!? 1) Cooper and Helmstetter, (1968) J. Mol. Biol. 31:519. 2) J.R. Peterson, J.A. Cole, J. Fei, T. Ha, Z. Luthey-Schulten, (2015) PNAS, 112: t r t d Time (min) 200cells t D = 70min t r = 25min

22 Exact Solution Constitutively Expressed Genes are Poisson-Distributed throughout the cell cycle ( kt 2 m(t) = m(t) = k d 0 <t<t r k t k d 2 e k d(t t r ) t r <t<t D Time-averaging CME yields moments of apple hmi = hmi 1 1+f + e fk dt D 1 k d t D Var[m] =hmi hmi 2 + hmi 2 1 Fano[m] =1 hmi + hmi2 1 hmi P (~s) f = t D apple 1+3f + 8e fk dt D e 2fk dt D 7 2k d t D apple 1+3f + 8e fk dt D e 2fk dt D 7 2k d t D t D t r Only mean, degradation rate and doubling time are needed

23 Model Validation Simulations Experiments [1] t D = 40min hmi = 10 f =0.35 k d =0.126min 1 1 Ignoring mrna dynamics gives large errors Analytical theory nearly exact 1) Jones et al, (2014) Science, 346:1533.

24 Region of importance Error in noise when neglecting mrna relaxation* 0.6 Mean mrna cspe ptsg hfq atph eno cyoc ompc = F sim F TI F TI Half-Life (min) Effect is large when: mrna half-life is large mean mrna count is high * 70 min doubling time

25 Other Noise Sources Regulated Gene expression RNA polymerase variability (<m>/10 Fano units) Relaxing assumption that mrna relaxes before cell division

26 Conflicting Interpretation of Experiments Transcriptional regulation Gene duplication RNAP variability Potential Misinterpretation Fano factor contribution of Experimental Data Parameters t D = 40min 1.5 hmi = 10 1 f = No Gene Duplication Time Independent Model Time Dependent Model k d =0.126min 1

27 Reaction-Diffusion Master Equation dp (~s, t) dt = AP (~s, t) A = R S + D

28 Reaction-Diffusion Master Equation dp (~s, t) dt = AP (~s, t) A = R S + D Physical Space x-1 x x+1

29 Reaction-Diffusion Master Equation dp (~s, t) dt = AP (~s, t) A = R S + D d i 2 x-1 x x+1

30 Reaction-Diffusion Master Equation dp (~s, t) dt = AP (~s, t) A = R S + D d i 2 x-1 x x+1

31 Min System Example Sets up the center plane for cell division

32 Min System Example Schematic Reaction System Cytoplasm MinDADP k1 k5 MinDEm MinDATP MinE k4 k2 MinDm k3 MinDm MinDm Extracellular Space J.R. Peterson, M.J. Hallock, J.A. Cole, Z. Luthey-Schulten, (2013) PyHPC '13: Proceedings of the 3rd Workshop on Python for High-Performance and Scientific Computing.

33 Effect of in vivo crowding on repressor re-binding Complex Geometries in Lattice Microbes Examining Propensity for a Transcription Factor to Rebind to DNA after Unbinding as a Function of Packing Fraction E. Roberts, J. Stone,L. Sepulveda, W.M. Hwu, ZLS, IEEE, 2009

34 Complex Geometries in Lattice Microbes

35 Complex Geometries in Lattice Microbes 4 programmatically generated epithelial cells c4/ed/ 7fc4ed17cfa66eb820a99d6fbf 3055fc.jpg

36 Acknowledgements Collaborators Luthey-Schulten Laboratory Funding and Computer Time

Simulating ribosome biogenesis in replicating whole cells

Simulating ribosome biogenesis in replicating whole cells Simulating ribosome biogenesis in replicating whole cells Tyler Earnest / PI: Zan Luthey-Schulten (UIUC) NCSA Blue Waters Symposium for Petascale Science and Beyond: June 15, 2016 Multi-scale modeling

More information

Every step in the process of gene expression includes some

Every step in the process of gene expression includes some Effects of DNA replication on mrna noise Joseph R. Peterson a,1, John A. Cole b,1, Jingyi Fei c,d, Taekjip Ha a,b,c,d,e,f, and Zaida A. Luthey-Schulten a,b,c,d, a Department of Chemistry, University of

More information

Cellular Processes in Bacterial Cells

Cellular Processes in Bacterial Cells Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes Part III Towards in silico Cells: Simulating processes in entire cells Zaida (Zan) Luthey-Schulten

More information

Lecture 7: Simple genetic circuits I

Lecture 7: Simple genetic circuits I Lecture 7: Simple genetic circuits I Paul C Bressloff (Fall 2018) 7.1 Transcription and translation In Fig. 20 we show the two main stages in the expression of a single gene according to the central dogma.

More information

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements

2. Mathematical descriptions. (i) the master equation (ii) Langevin theory. 3. Single cell measurements 1. Why stochastic?. Mathematical descriptions (i) the master equation (ii) Langevin theory 3. Single cell measurements 4. Consequences Any chemical reaction is stochastic. k P d φ dp dt = k d P deterministic

More information

Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes

Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes Part II - Applications of MultiSeq Evolution of Translation: Dynamics of Recognition in RNA:Protein Complexes Part III Towards in silico Cells: Simulating processes in entire cells Zaida (Zan) Luthey-Schulten!

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech Version 1.0b, September 14, 2014 c 2014 by Princeton University Press All rights reserved. This is the electronic edition

More information

Simulation of Chemical Reactions

Simulation of Chemical Reactions Simulation of Chemical Reactions Cameron Finucane & Alejandro Ribeiro Dept. of Electrical and Systems Engineering University of Pennsylvania aribeiro@seas.upenn.edu http://www.seas.upenn.edu/users/~aribeiro/

More information

A Simple Protein Synthesis Model

A Simple Protein Synthesis Model A Simple Protein Synthesis Model James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University September 3, 213 Outline A Simple Protein Synthesis Model

More information

BME 5742 Biosystems Modeling and Control

BME 5742 Biosystems Modeling and Control BME 5742 Biosystems Modeling and Control Lecture 24 Unregulated Gene Expression Model Dr. Zvi Roth (FAU) 1 The genetic material inside a cell, encoded in its DNA, governs the response of a cell to various

More information

Intrinsic Noise in Nonlinear Gene Regulation Inference

Intrinsic Noise in Nonlinear Gene Regulation Inference Intrinsic Noise in Nonlinear Gene Regulation Inference Chao Du Department of Statistics, University of Virginia Joint Work with Wing H. Wong, Department of Statistics, Stanford University Transcription

More information

Stochastic model of mrna production

Stochastic model of mrna production Stochastic model of mrna production We assume that the number of mrna (m) of a gene can change either due to the production of a mrna by transcription of DNA (which occurs at a rate α) or due to degradation

More information

arxiv: v2 [q-bio.qm] 12 Jan 2017

arxiv: v2 [q-bio.qm] 12 Jan 2017 Approximation and inference methods for stochastic biochemical kinetics - a tutorial review arxiv:1608.06582v2 [q-bio.qm] 12 Jan 2017 David Schnoerr 1,2,3, Guido Sanguinetti 2,3, and Ramon Grima 1,3,*

More information

Modeling and Systems Analysis of Gene Regulatory Networks

Modeling and Systems Analysis of Gene Regulatory Networks Modeling and Systems Analysis of Gene Regulatory Networks Mustafa Khammash Center for Control Dynamical-Systems and Computations University of California, Santa Barbara Outline Deterministic A case study:

More information

Extending the Tools of Chemical Reaction Engineering to the Molecular Scale

Extending the Tools of Chemical Reaction Engineering to the Molecular Scale Extending the Tools of Chemical Reaction Engineering to the Molecular Scale Multiple-time-scale order reduction for stochastic kinetics James B. Rawlings Department of Chemical and Biological Engineering

More information

Gene Regulation and Expression

Gene Regulation and Expression THINK ABOUT IT Think of a library filled with how-to books. Would you ever need to use all of those books at the same time? Of course not. Now picture a tiny bacterium that contains more than 4000 genes.

More information

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB)

the noisy gene Biology of the Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) Biology of the the noisy gene Universidad Autónoma de Madrid Jan 2008 Juan F. Poyatos Spanish National Biotechnology Centre (CNB) day III: noisy bacteria - Regulation of noise (B. subtilis) - Intrinsic/Extrinsic

More information

Lecture 1 Modeling in Biology: an introduction

Lecture 1 Modeling in Biology: an introduction Lecture 1 in Biology: an introduction Luca Bortolussi 1 Alberto Policriti 2 1 Dipartimento di Matematica ed Informatica Università degli studi di Trieste Via Valerio 12/a, 34100 Trieste. luca@dmi.units.it

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process https://www.youtube.com/

More information

System Biology - Deterministic & Stochastic Dynamical Systems

System Biology - Deterministic & Stochastic Dynamical Systems System Biology - Deterministic & Stochastic Dynamical Systems System Biology - Deterministic & Stochastic Dynamical Systems 1 The Cell System Biology - Deterministic & Stochastic Dynamical Systems 2 The

More information

Bioinformatics: Network Analysis

Bioinformatics: Network Analysis Bioinformatics: Network Analysis Kinetics of Gene Regulation COMP 572 (BIOS 572 / BIOE 564) - Fall 2013 Luay Nakhleh, Rice University 1 The simplest model of gene expression involves only two steps: the

More information

Genetic transcription and regulation

Genetic transcription and regulation Genetic transcription and regulation Central dogma of biology DNA codes for DNA DNA codes for RNA RNA codes for proteins not surprisingly, many points for regulation of the process DNA codes for DNA replication

More information

Engineering of Repressilator

Engineering of Repressilator The Utilization of Monte Carlo Techniques to Simulate the Repressilator: A Cyclic Oscillatory System Seetal Erramilli 1,2 and Joel R. Stiles 1,3,4 1 Bioengineering and Bioinformatics Summer Institute,

More information

Boulder 07: Modelling Stochastic Gene Expression

Boulder 07: Modelling Stochastic Gene Expression Boulder 7: Modelling Stochastic Gene Expression Peter Swain, Physiology, McGill University swain@cnd.mcgill.ca The whys and wherefores of stochasticity A system evolves stochastically if its dynamics is

More information

Influence of Nuclear Substructure on Gene Regulation and Expression

Influence of Nuclear Substructure on Gene Regulation and Expression Influence of Nuclear Substructure on Gene Regulation and Expression Samuel Isaacson in collaboration with: Carolyn Larabell (UCSF/LBL), David McQueen (NYU), Charles Peskin (NYU) Why is stochasticity in

More information

56:198:582 Biological Networks Lecture 8

56:198:582 Biological Networks Lecture 8 56:198:582 Biological Networks Lecture 8 Course organization Two complementary approaches to modeling and understanding biological networks Constraint-based modeling (Palsson) System-wide Metabolism Steady-state

More information

Statistical Physics of Self-Replication

Statistical Physics of Self-Replication Statistical Physics of Self-Replication Review of paper by Jeremy England Mobolaji Williams Shakhnovich Journal Club Nov. 18, 2016 1 Theoretical Physics of Living Systems Ambitious: Develop new mathematical/

More information

Stochastic Processes around Central Dogma

Stochastic Processes around Central Dogma Stochastic Processes around Central Dogma Hao Ge haoge@pu.edu.cn Beijing International Center for Mathematical Research Biodynamic Optical Imaging Center Peing University, China http://www.bicmr.org/personal/gehao/

More information

More Protein Synthesis and a Model for Protein Transcription Error Rates

More Protein Synthesis and a Model for Protein Transcription Error Rates More Protein Synthesis and a Model for Protein James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University October 3, 2013 Outline 1 Signal Patterns Example

More information

Lecture 4: Transcription networks basic concepts

Lecture 4: Transcription networks basic concepts Lecture 4: Transcription networks basic concepts - Activators and repressors - Input functions; Logic input functions; Multidimensional input functions - Dynamics and response time 2.1 Introduction The

More information

Systems Biology in Photosynthesis INTRODUCTION

Systems Biology in Photosynthesis INTRODUCTION 1 / 26 Systems Biology in Photosynthesis INTRODUCTION Rainer Machné Institute for Theoretical Chemistry, University of Vienna, Austria PSI - Photon System Instruments, Czech Republic Brno, April, 2011

More information

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS?

Anatoly B. Kolomeisky. Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Anatoly B. Kolomeisky Department of Chemistry CAN WE UNDERSTAND THE COMPLEX DYNAMICS OF MOTOR PROTEINS USING SIMPLE STOCHASTIC MODELS? Motor Proteins Enzymes that convert the chemical energy into mechanical

More information

Introduction to Mathematical Physiology I - Biochemical Reactions

Introduction to Mathematical Physiology I - Biochemical Reactions Introduction to Mathematical Physiology I - Biochemical Reactions J. P. Keener Mathematics Department Math Physiology p.1/28 Introduction The Dilemma of Modern Biology The amount of data being collected

More information

Stochastic Process Algebra models of a Circadian Clock

Stochastic Process Algebra models of a Circadian Clock Stochastic Process Algebra models of a Circadian Clock Jeremy T. Bradley Thomas Thorne Department of Computing, Imperial College London 180 Queen s Gate, London SW7 2BZ, United Kingdom Email: jb@doc.ic.ac.uk

More information

Dynamics of the Mixed Feedback Loop Integrated with MicroRNA

Dynamics of the Mixed Feedback Loop Integrated with MicroRNA The Second International Symposium on Optimization and Systems Biology (OSB 08) Lijiang, China, October 31 November 3, 2008 Copyright 2008 ORSC & APORC, pp. 174 181 Dynamics of the Mixed Feedback Loop

More information

Bistability and a differential equation model of the lac operon

Bistability and a differential equation model of the lac operon Bistability and a differential equation model of the lac operon Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Fall 2016 M. Macauley

More information

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2?

Is chaos possible in 1d? - yes - no - I don t know. What is the long term behavior for the following system if x(0) = π/2? Is chaos possible in 1d? - yes - no - I don t know What is the long term behavior for the following system if x(0) = π/2? In the insect outbreak problem, what kind of bifurcation occurs at fixed value

More information

A synthetic oscillatory network of transcriptional regulators

A synthetic oscillatory network of transcriptional regulators A synthetic oscillatory network of transcriptional regulators Michael B. Elowitz & Stanislas Leibler, Nature, 403, 2000 igem Team Heidelberg 2008 Journal Club Andreas Kühne Introduction Networks of interacting

More information

Computational Cell Biology Lecture 4

Computational Cell Biology Lecture 4 Computational Cell Biology Lecture 4 Case Study: Basic Modeling in Gene Expression Yang Cao Department of Computer Science DNA Structure and Base Pair Gene Expression Gene is just a small part of DNA.

More information

Chapter 2 Biochemical Reaction Networks

Chapter 2 Biochemical Reaction Networks Chapter 2 Biochemical Reaction Networks This chapter is a basic introduction to chemical reactions and chemical species. Different ways of quantifying the abundance of molecules lead to the notions of

More information

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction.

where a + b = 2 (this is the general case) These all come from the fact that this is an overall second order reaction. Chapter 7 Problems Page of 6 //007 7. Hydrolysis of ethyl acetate is as follows: EtAc + OH - Ac - + EtOH. At 5 ºC, the disappearance of OH - is used to determine the extent of the reaction, leading to

More information

Basic Synthetic Biology circuits

Basic Synthetic Biology circuits Basic Synthetic Biology circuits Note: these practices were obtained from the Computer Modelling Practicals lecture by Vincent Rouilly and Geoff Baldwin at Imperial College s course of Introduction to

More information

CS-E5880 Modeling biological networks Gene regulatory networks

CS-E5880 Modeling biological networks Gene regulatory networks CS-E5880 Modeling biological networks Gene regulatory networks Jukka Intosalmi (based on slides by Harri Lähdesmäki) Department of Computer Science Aalto University January 12, 2018 Outline Modeling gene

More information

Bistability in ODE and Boolean network models

Bistability in ODE and Boolean network models Bistability in ODE and Boolean network models Matthew Macauley Department of Mathematical Sciences Clemson University http://www.math.clemson.edu/~macaule/ Math 4500, Spring 2017 M. Macauley (Clemson)

More information

Stochastic Processes around Central Dogma

Stochastic Processes around Central Dogma Stochastic Processes around Central Dogma Hao Ge haoge@pku.edu.cn Beijing International Center for Mathematical Research Biodynamic Optical Imaging Center Peking University, China http://www.bicmr.org/personal/gehao/

More information

13.4 Gene Regulation and Expression

13.4 Gene Regulation and Expression 13.4 Gene Regulation and Expression Lesson Objectives Describe gene regulation in prokaryotes. Explain how most eukaryotic genes are regulated. Relate gene regulation to development in multicellular organisms.

More information

Name: SBI 4U. Gene Expression Quiz. Overall Expectation:

Name: SBI 4U. Gene Expression Quiz. Overall Expectation: Gene Expression Quiz Overall Expectation: - Demonstrate an understanding of concepts related to molecular genetics, and how genetic modification is applied in industry and agriculture Specific Expectation(s):

More information

Simple model of mrna production

Simple model of mrna production Simple model of mrna production We assume that the number of mrna (m) of a gene can change either due to the production of a mrna by transcription of DNA (which occurs at a constant rate α) or due to degradation

More information

Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back

Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back Gene Expression as a Stochastic Process: From Gene Number Distributions to Protein Statistics and Back June 19, 2007 Motivation & Basics A Stochastic Approach to Gene Expression Application to Experimental

More information

Matteo Figliuzzi

Matteo Figliuzzi Supervisors: Prof. Andrea De Martino, Prof. Enzo Marinari Dottorato in sica, XXVI ciclo (N,1) model (N,M) model 25-10-2013 Systems Biology & Networks (N,1) model (N,M) model Arabidopsis regulatory network

More information

Biomolecular Feedback Systems

Biomolecular Feedback Systems Biomolecular Feedback Systems Domitilla Del Vecchio MIT Richard M. Murray Caltech DRAFT v0.4a, January 16, 2011 c California Institute of Technology All rights reserved. This manuscript is for review purposes

More information

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall

Biology. Biology. Slide 1 of 26. End Show. Copyright Pearson Prentice Hall Biology Biology 1 of 26 Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 2 of 26 Gene Regulation: An Example Gene Regulation: An Example

More information

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde

Gillespie s Algorithm and its Approximations. Des Higham Department of Mathematics and Statistics University of Strathclyde Gillespie s Algorithm and its Approximations Des Higham Department of Mathematics and Statistics University of Strathclyde djh@maths.strath.ac.uk The Three Lectures 1 Gillespie s algorithm and its relation

More information

Large data sets and complex models: A view from Systems Biology

Large data sets and complex models: A view from Systems Biology Large data sets and comple models: A view from Systems Biology Bärbel Finenstädt, Department of Statistics, University of Warwic OWaSP worshop October 5 Joint wor with Mathematical and Statistical Modelling:

More information

When do diffusion-limited trajectories become memoryless?

When do diffusion-limited trajectories become memoryless? When do diffusion-limited trajectories become memoryless? Maciej Dobrzyński CWI (Center for Mathematics and Computer Science) Kruislaan 413, 1098 SJ Amsterdam, The Netherlands Abstract Stochastic description

More information

Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1

Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1 Lecture 5: Processes and Timescales: Rates for the fundamental processes 5.1 Reading Assignment for Lectures 5-6: Phillips, Kondev, Theriot (PKT), Chapter 3 Life is not static. Organisms as a whole are

More information

Bacterial growth control & control by bacterial growth. PICB, Shanghai July 18, 2008

Bacterial growth control & control by bacterial growth. PICB, Shanghai July 18, 2008 Bacterial growth control & control by bacterial growth PICB, Shanghai July 18, 2008 Systems biology: from molecules to physiology Physiology: the working of a living organism; reproduction & adaptation

More information

A systems approach to biology

A systems approach to biology A systems approach to biology SB200 Lecture 5 30 September 2008 Jeremy Gunawardena jeremy@hms.harvard.edu Recap of Lecture 4 matrix exponential exp(a) = 1 + A + A2/2 +... + Ak/k! +... dx/dt = Ax matrices

More information

Chapter 15 Active Reading Guide Regulation of Gene Expression

Chapter 15 Active Reading Guide Regulation of Gene Expression Name: AP Biology Mr. Croft Chapter 15 Active Reading Guide Regulation of Gene Expression The overview for Chapter 15 introduces the idea that while all cells of an organism have all genes in the genome,

More information

On the Interpretation of Delays in Delay Stochastic Simulation of Biological Systems

On the Interpretation of Delays in Delay Stochastic Simulation of Biological Systems On the Interpretation of Delays in Delay Stochastic Simulation of Biological Systems Roberto Barbuti Giulio Caravagna Andrea Maggiolo-Schettini Paolo Milazzo Dipartimento di Informatica, Università di

More information

Stochastic Gene Expression: Modeling, Analysis, and Identification

Stochastic Gene Expression: Modeling, Analysis, and Identification Munsky; q-bio Stochastic Gene Expression: Modeling, Analysis, and Identification Mustafa Khammash University of California, Santa Barbara Center for Control, Dynamical Systems and Computation CC DC Outline

More information

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004

Simplicity is Complexity in Masquerade. Michael A. Savageau The University of California, Davis July 2004 Simplicity is Complexity in Masquerade Michael A. Savageau The University of California, Davis July 2004 Complexity is Not Simplicity in Masquerade -- E. Yates Simplicity is Complexity in Masquerade One

More information

MAE 545: Lecture 2 (9/22) E. coli chemotaxis

MAE 545: Lecture 2 (9/22) E. coli chemotaxis MAE 545: Lecture 2 (9/22) E. coli chemotaxis Recap from Lecture 1 Fokker-Planck equation 5` 4` 3` 2` ` 0 ` 2` 3` 4` 5` x In general the probability distribution of jump lengths s can depend on the particle

More information

12-5 Gene Regulation

12-5 Gene Regulation 12-5 Gene Regulation Fruit fly chromosome 12-5 Gene Regulation Mouse chromosomes Fruit fly embryo Mouse embryo Adult fruit fly Adult mouse 1 of 26 12-5 Gene Regulation Gene Regulation: An Example Gene

More information

Stochastically driven genetic circuits

Stochastically driven genetic circuits Stochastically driven genetic circuits CHAOS 16, 026103 2006 L. S. Tsimring Institute for Nonlinear Science, University of California, San Diego, La Jolla, California 92093-0402 D. Volfson Institute for

More information

A Discontinuous Galerkin FEM Approach for Simulation of a Model Describing Transcription in Ribosomal RNA

A Discontinuous Galerkin FEM Approach for Simulation of a Model Describing Transcription in Ribosomal RNA A Discontinuous Galerkin FEM Approach for Simulation of a Model Describing Transcription in Ribosomal RNA Davis, Gedeon, Gedeon & Thorenson Department of Mathematical Sciences Montana State University

More information

SMA 208: Ordinary differential equations I

SMA 208: Ordinary differential equations I SMA 208: Ordinary differential equations I First Order differential equations Lecturer: Dr. Philip Ngare (Contacts: pngare@uonbi.ac.ke, Tue 12-2 PM) School of Mathematics, University of Nairobi Feb 26,

More information

European Conference on Mathematical and Theoretical Biology Gothenburg

European Conference on Mathematical and Theoretical Biology Gothenburg European Conference on Mathematical and Theoretical Biology 2014 - Gothenburg Minisymposium: Numerical methods for high-dimensional problems in biology Date: Monday, 16 th of June Time: 16:00-19:00 Organizers:

More information

Predator-Prey Population Dynamics

Predator-Prey Population Dynamics Predator-Prey Population Dynamics Gonzalo Mateos Dept. of ECE and Goergen Institute for Data Science University of Rochester gmateosb@ece.rochester.edu http://www.ece.rochester.edu/~gmateosb/ October 2,

More information

A Synthetic Oscillatory Network of Transcriptional Regulators

A Synthetic Oscillatory Network of Transcriptional Regulators A Synthetic Oscillatory Network of Transcriptional Regulators Michael Elowitz & Stanislas Leibler Nature, 2000 Presented by Khaled A. Rahman Background Genetic Networks Gene X Operator Operator Gene Y

More information

UNIT 5. Protein Synthesis 11/22/16

UNIT 5. Protein Synthesis 11/22/16 UNIT 5 Protein Synthesis IV. Transcription (8.4) A. RNA carries DNA s instruction 1. Francis Crick defined the central dogma of molecular biology a. Replication copies DNA b. Transcription converts DNA

More information

AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics

AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics AP3162D: Lecture 2 - Gene-regulatory circuits: Deterministic dynamics Hyun Youk Delft University of Technology (Dated: February 22, 2018) In this lecture, we will discuss how to model standard gene-regulatory

More information

2 Dilution of Proteins Due to Cell Growth

2 Dilution of Proteins Due to Cell Growth Problem Set 1 1 Transcription and Translation Consider the following set of reactions describing the process of maing a protein out of a gene: G β g G + M M α m M β m M + X X + S 1+ 1 X S 2+ X S X S 2

More information

BioControl - Week 6, Lecture 1

BioControl - Week 6, Lecture 1 BioControl - Week 6, Lecture 1 Goals of this lecture Large metabolic networks organization Design principles for small genetic modules - Rules based on gene demand - Rules based on error minimization Suggested

More information

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2

Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos. Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 How Random Bayesian Inference and the Symbolic Dynamics of Deterministic Chaos Christopher C. Strelioff 1,2 Dr. James P. Crutchfield 2 1 Center for Complex Systems Research and Department of Physics University

More information

Are DNA Transcription Factor Proteins Maxwellian Demons?

Are DNA Transcription Factor Proteins Maxwellian Demons? Are DNA Transcription Factor Proteins Maxwellian Demons? * physics as a design constraint on molecular evolution. Alexander Grosberg, Longhua Hu, U. Minnesota, NYU U. Minnesota Biophysical Journal 2008

More information

Stochastic Simulation of Biochemical Reactions

Stochastic Simulation of Biochemical Reactions 1 / 75 Stochastic Simulation of Biochemical Reactions Jorge Júlvez University of Zaragoza 2 / 75 Outline 1 Biochemical Kinetics 2 Reaction Rate Equation 3 Chemical Master Equation 4 Stochastic Simulation

More information

Notes for Math 450 Stochastic Petri nets and reactions

Notes for Math 450 Stochastic Petri nets and reactions Notes for Math 450 Stochastic Petri nets and reactions Renato Feres Petri nets Petri nets are a special class of networks, introduced in 96 by Carl Adam Petri, that provide a convenient language and graphical

More information

GCD3033:Cell Biology. Transcription

GCD3033:Cell Biology. Transcription Transcription Transcription: DNA to RNA A) production of complementary strand of DNA B) RNA types C) transcription start/stop signals D) Initiation of eukaryotic gene expression E) transcription factors

More information

Langevin Dynamics of a Single Particle

Langevin Dynamics of a Single Particle Overview Langevin Dynamics of a Single Particle We consider a spherical particle of radius r immersed in a viscous fluid and suppose that the dynamics of the particle depend on two forces: A drag force

More information

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013

BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 M. Elowitz and R. M. Murray Winter 2013 CALIFORNIA INSTITUTE OF TECHNOLOGY Biology and Biological Engineering (BBE) BE 150 Problem Set #2 Issued: 16 Jan 2013 Due: 23 Jan 2013 1. (Shaping pulses; based

More information

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization.

3.B.1 Gene Regulation. Gene regulation results in differential gene expression, leading to cell specialization. 3.B.1 Gene Regulation Gene regulation results in differential gene expression, leading to cell specialization. We will focus on gene regulation in prokaryotes first. Gene regulation accounts for some of

More information

STOCHASTIC CHEMICAL KINETICS

STOCHASTIC CHEMICAL KINETICS STOCHASTIC CHEICAL KINETICS Dan Gillespie GillespieDT@mailaps.org Current Support: Caltech (NIGS) Caltech (NIH) University of California at Santa Barbara (NIH) Past Support: Caltech (DARPA/AFOSR, Beckman/BNC))

More information

Villa et al. (2005) Structural dynamics of the lac repressor-dna complex revealed by a multiscale simulation. PNAS 102:

Villa et al. (2005) Structural dynamics of the lac repressor-dna complex revealed by a multiscale simulation. PNAS 102: Villa et al. (2005) Structural dynamics of the lac repressor-dna complex revealed by a multiscale simulation. PNAS 102: 6783-6788. Background: The lac operon is a cluster of genes in the E. coli genome

More information

arxiv: v2 [q-bio.mn] 20 Nov 2017

arxiv: v2 [q-bio.mn] 20 Nov 2017 Models of protein production with cell cycle Renaud Dessalles, Vincent Fromion, Philippe Robert arxiv:7.6378v [q-bio.mn] Nov 7 Abstract Classical stochastic models of protein production usually do not

More information

Supporting Information: A quantitative comparison of srna-based and protein-based gene regulation

Supporting Information: A quantitative comparison of srna-based and protein-based gene regulation Supporting Information: A quantitative comparison of srna-based and protein-based gene regulation Pankaj Mehta a,b, Sidhartha Goyal b, and Ned S. Wingreen a a Department of Molecular Biology, Princeton

More information

Mathematical analysis of three species model and introduction of the canonical model. Isao Kawaguchi NIRS, Japan

Mathematical analysis of three species model and introduction of the canonical model. Isao Kawaguchi NIRS, Japan Mathematical analysis of three species model and introduction of the canonical model. Isao Kawaguchi NIRS, Japan Suggestions from Tatiana a) could you transform your experimental model into a generic model

More information

Statistical physics of a model binary genetic switch with linear feedback

Statistical physics of a model binary genetic switch with linear feedback PHYSICAL REVIEW E 79, 031923 2009 Statistical physics of a model binary genetic switch with linear feedback Paolo Visco, Rosalind J. Allen, and Martin R. Evans SUPA, School of Physics and Astronomy, The

More information

56:198:582 Biological Networks Lecture 9

56:198:582 Biological Networks Lecture 9 56:198:582 Biological Networks Lecture 9 The Feed-Forward Loop Network Motif Subgraphs in random networks We have discussed the simplest network motif, self-regulation, a pattern with one node We now consider

More information

Xin Fang Doctor of Philosophy, 2007

Xin Fang Doctor of Philosophy, 2007 ABSTRACT Title of dissertation: IMPACT OF STOCHASTICITY ON GENE REGULATION NETWORKS Xin Fang Doctor of Philosophy, 2007 Dissertation directed by: Professor Evanghelos Zafiriou Department of Chemical and

More information

Fast Probability Generating Function Method for Stochastic Chemical Reaction Networks

Fast Probability Generating Function Method for Stochastic Chemical Reaction Networks MATCH Communications in Mathematical and in Computer Chemistry MATCH Commun. Math. Comput. Chem. 71 (2014) 57-69 ISSN 0340-6253 Fast Probability Generating Function Method for Stochastic Chemical Reaction

More information

Problem Set 5. 1 Waiting times for chemical reactions (8 points)

Problem Set 5. 1 Waiting times for chemical reactions (8 points) Problem Set 5 1 Waiting times for chemical reactions (8 points) In the previous assignment, we saw that for a chemical reaction occurring at rate r, the distribution of waiting times τ between reaction

More information

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis

Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Chapters 12&13 Notes: DNA, RNA & Protein Synthesis Name Period Words to Know: nucleotides, DNA, complementary base pairing, replication, genes, proteins, mrna, rrna, trna, transcription, translation, codon,

More information

Statistical mechanics of biological processes

Statistical mechanics of biological processes Statistical mechanics of biological processes 1 Modeling biological processes Describing biological processes requires models. If reaction occurs on timescales much faster than that of connected processes

More information

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt

Motivation and Goals. Modelling with ODEs. Continuous Processes. Ordinary Differential Equations. dy = dt Motivation and Goals Modelling with ODEs 24.10.01 Motivation: Ordinary Differential Equations (ODEs) are very important in all branches of Science and Engineering ODEs form the basis for the simulation

More information

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016

Bi 8 Lecture 11. Quantitative aspects of transcription factor binding and gene regulatory circuit design. Ellen Rothenberg 9 February 2016 Bi 8 Lecture 11 Quantitative aspects of transcription factor binding and gene regulatory circuit design Ellen Rothenberg 9 February 2016 Major take-home messages from λ phage system that apply to many

More information

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon

REGULATION OF GENE EXPRESSION. Bacterial Genetics Lac and Trp Operon REGULATION OF GENE EXPRESSION Bacterial Genetics Lac and Trp Operon Levels of Metabolic Control The amount of cellular products can be controlled by regulating: Enzyme activity: alters protein function

More information

FYTN05/TEK267 Chemical Forces and Self Assembly

FYTN05/TEK267 Chemical Forces and Self Assembly FYTN05/TEK267 Chemical Forces and Self Assembly FYTN05/TEK267 Chemical Forces and Self Assembly 1 Michaelis-Menten (10.3,10.4) M-M formalism can be used in many contexts, e.g. gene regulation, protein

More information

A(γ A D A + γ R D R + γ C R + δ A )

A(γ A D A + γ R D R + γ C R + δ A ) Title: Mechanisms of noise-resistance in genetic oscillators Authors: José M. G. Vilar 1,2, Hao Yuan Kueh 1, Naama Barkai 3, and Stanislas Leibler 1,2 1 Howard Hughes Medical Institute, Departments of

More information

SUPPLEMENTARY MATERIAL

SUPPLEMENTARY MATERIAL Activity [RLU] Activity [RLU] RAB:TALA TALA:RAB TALB:RAB RAB:TALB RAB:TALB TALB:RAB TALA:RAB RAB:TALA Activity [nrlu] Activity [nrlu] SUPPLEMENTARY MATERIAL a b 100 100 50 50 0 0 5 25 50 5 25 50 0 50 50

More information