Thermodynamic equilibrium

Size: px
Start display at page:

Download "Thermodynamic equilibrium"

Transcription

1 Statistical Mechanics Phys504 Fall 2006 Lecture #3 Anthony J. Leggett Department of Physics, UIUC Thermodynamic equilibrium Let s consider a situation where the Universe, i.e. system plus its environment E, possesses a total energy 1 E 0 and has come to complete thermodynamic equilibrium. 2 What now will be the energy ε of the system? Consider a small range ε surrounding ε. The weight of the range ε, ε + ε in the total density of states available to the universe will be proportional to the numbers of states of in this range the number of states of E. The former is by definition W s (ε) ε, and because of energy conservation the latter is W Env (E o ε) (E o ε) W env (E 0 ε) ε. Thus the total number of states available to +E with the energy of in the specified range is N(ε) = W s (ε)w env (E o ε)( ε) 2 This function is very sharply peaked as a f(ε) around its maximum, so we can say that the equilibrium (or overwhelmingly probable) value of ε is very close to the maximum, i.e. ε is determined (since ε is fixed) by W s (ε)w env (E o ε) = max. Let us take the logarithm and differentiate with respect to ε; d dε ln W s(ε) = d dε ln W env(e o ε) + d ln W (ε env ) dε env (ε env E o ε). But apart from the constant k B, ln W (ε) is just S(ε), so the condition for equilibrium is ds dε = ds env dε env But in thermodynamics, the condition for two bodies which are in thermal contact (i.e. can exchange energy freely) to be in thermal equilibrium is that their temperatures are equal, thus we define T (ds/dε) 1 (not T = ds/dε, cf. below) 1 Or an energy in a small range [E o, E o + E]; this does not affect the outcome. See problem. 2 For the moment we suppose and E can exchange energy but not particles or volume. 1

2 This immediately explains the so-called zeroth low of thermodynamics : two bodies which are each in thermal equilibrium with a third are automatically, if placed in contact, in thermal eqm. with one another. Also, let s consider the case that initially and E are not in equilibrium, so that the quantity N(ε) is not a maximum. According to the considerations of l.2, it will tend to a maximum, which is equivalent to the statement that the total entropy, k B (ln W s (ε) + ln W env (E o ε)) will increase: d dt (S(ε) + S env(ε env )) > 0 Writing ds/dt = ds/dε dε/dt and dε env /dt = dε/dt and using the above definition of temperature, this gives ( dε 1 dt T 1 ) > 0 i.e. heat flows into (out of) the system if it is colder (hotter) than the environment. (Note that had we defined T = ds/dε rather than (ds/dε) 1, we would have got the opposite result). Suppose the system is just slightly out of equilibrium with the environment: (T = + δt, δt 0). This means we are close to the maximum of total entropy; the deviation of T / ε from its eqm. value env / ε is (by definition!) prop. to δt, so the deviation of the entropy of the Universe from its maximum value is of order (δt ) 2. Thus to order δt S = S env i.e. the process is reversible by changing the sign of δt. Under these conditions we have E = T S dq ( dqis by definition energy input at constant N, V ) which is a special case of the first law of thermodynamics (see below). What can we say about the case of finite disequilibrium? It is convenient to redefine ε as the difference between the value of the system energy and its value in thermal equilibrium with the environment at temperature 3. Consider first the entropy of the Universe, 3 Note that because the environment is by construction very large, its temperature is negligibly changed when energy is transferred to or from the system (cf. below). 2

3 which is a sum of the entropies of the system and the environment, and expand it in ε: ( ) ( ) S univ = S eqm univ + env ε ε + S (2) + S env (2) ε eqm ε env = S eqm univ + S(2) + S (2) env where S (2) denotes all the higher-order terms in the expansion. Now, since the environment is very large, S (2) env is vanishingly small (e.g. the second-order term is 2 S env / ε 2 env ( / ε env ) (1/ ) = 1/T 2 envc env, and c env ). Thus, S univ = S eqn univ + S(2) and since we know that S univ is a maximum at equilibrium, it follows that S (2) < 0. Now expand S itself in ε: S(ε) = S eqn + ( ) ε eqm + S (2) (ε) S eqm + ε ε T + S 2(ε) Suppose the system goes from a nonzero value of ε to equilibrium (ε = 0). The change in energy E is then ε, and we know that S 2 (ε) < 0, so S S eqm S(ε) = E S 2 (ε) E dq i.e. the increase in entropy is always the heat input/. From the above argument it also follows that S univ is of second order in the deviation from eqm., δt. The Helmholtz free energy In general, when a system is in thermal isolation from any environment, it will tend to maximize its entropy at constant energy. On the other hand, if it is in thermal contact with an environment (at constant V and N) then as we have seen it is the total entropy of the Universe, ( +E), which is maximized, and this leads to the equality of temperature: T (/ ε) 1 =. In fact, we already saw that for such a system S E/ the equality being reached when T =. Consequently, the quantity F ( ) E S (*) 3

4 will decrease until it reaches its minimum value in the equilibrium state. Thus, for a system in thermal equilibrium, at constant V and N, with an environment at temperature T, we have the general principle F (T ) E T S = min. Evidently for a system whose environment is at zero temperature, this leads to E = min. as we expect. We will see below that (*) is a special case of a class of minimum principles. Adiabatic processes So far, we have supposed that all the parameters which control he Hamiltonian of the system (volume, particle number, etc.) are fixed. (so that the only interactions of with E is by energy exchange at the microlevel). Let us now for the moment thermally isolate the system, and suppose that the Hamiltonian depends on some parameter λ which we allow to vary slowly in time. (An example might be a slow change in one of the dimensions of the system). The energy of the system will then evidently also be a function of time. What about the entropy? It is actually easiest to consider this question in a QM picture. Suppose that we have a system subject to a Hamiltonian which for t < 0 is constant and for > 0 is a function of some continuously varying control parameter λ(t): Ĥ = Ĥo + Ĥ[λ(t)] Ĥ = 0, t < 0 Suppose that at time 0 the system is known to be in a particular eigenstate ψ n of Ĥ o with eigenvalue E n. For t > 0 both the eigenfunctions and the eigenvalues of Ĥ will be time-dependent. However, provided that λ(t) is indeed continuously varying, we can keep track of each of the eigenvalues and eigenfunctions E m (t), ψ m (t). The quantum adiabatic theorem then states that provided λ(t) is sufficiently slowly varying, the system will, with probability approaching 1, stay in its original state n, i.e. in the state ψ n (t) with energy E n (t). The criterion for λ to be sufficiently slowly varying is, crudely speaking, that for all states m n ( ) ( t Ĥ(λ(t)) E m (t) mn ) 2 E n (t) ( ) At first sight this criterion looks very difficult to fulfill in a many-body system since as we have seen the energy levels of such a system are densely spaced. However, it often turns 4

5 out that for such pairs of levels the LHS of ( ) is also very small, so that the condition is nevertheless fulfilled. A process taking place under the condition ( ) is called adiabatic (in the quantum context). Suppose now we start with our thermodynamic system in a (pseudo-) microcanonical ensemble, so that formally the DM is ˆρ = ˆ1/D Θ (E o, E, E o + E) i.e. the system is with equal probability in any of the energy eigenstates lying in E. The entropy is just k B lnd. It is clear that an evolution which is adiabatic in the quantum sense cannot change those probabilities, and since the system is thermally isolated there are no other effects. Consequently, if we define adiabatic process (SM) adiabatic (QM) and thermally isolated then in an adiabatic (SM) process the entropy of the system cannot change. Thus, the dependence of any thermodynamic quantity on λ in an adiabatic process must be just the derivative at constant S, and in particular ( ) ( ) E E = λ λ ad Note that according to the above definition every adiabatic process must be reversible (since the entropy of the system and hence of the Universe is unchanged) but not every reversible process is adiabatic (e.g. isothermal heat transfer is not). C.f. LL 11 (p. 37 in 1958 edn.). Also note that in an adiabatic process the temperature of the system in general changes. Let s consider the quantity ( E/ λ) s. We know that ds = 0 in an adiabatic process, so ( ) ( ) ( ) dλ + de dλ + T 1 de = 0 λ E E λ λ E so ( E/ λ) s = T ( ) λ E. S We can define X λ ( E/ λ) s as the generalized force exerted on the body by the source of λ. Consider a system in contact with an environment, and suppose that the total λ is conserved: λ P + λ E = const. (Example: λ = volume, particle number, magnetization 5

6 (under appropriate circumstances)). Suppose that λ can be freely exchanged between the system and its environment, whereas energy may or may not be exchangeable. What is the condition for equilibrium? Suppose we first assume that the system is thermally isolated, so that no heat can be transferred between and E. Then by an argument exactly similar to the one at the beginning of this lecture, we must adjust the λ s so as to maximize the total entropy of the Universe, and this leads to in other words ( ) = λ X λ T ( env λ env = X(env) λ In general, therefore, the generalized forces are not equal. However, if in addition we now allow transfer of energy between the two systems, then we have in eqm. (independently of λ) T =, and so X λ = X (env) λ ) as above The best-known cases of λ are the volume and the particle number. Recalling that X λ is ( E/ λ) S, we see that in the first case the generalized force is ( E/ V ) S,N P, the pressure, and in the second it is ( ( E/ N) S,V ) µ, the negative of the chemical potential. If then we exclude for the moment other λ s (corresponding to magnetization) we can write for any infinitesimal reversible change ( ) ( ) E E de = ds + V V,N S,N dv + T ds P dv + µ dn ( ) E dn N S,V which is just the first law of thermodynamics. ( thermodynamic identity ) Thermodynamic potentials Let us consider a system which possibly starts out of equilibrium with its environment, but eventually comes into equilibrium with it under various possible conditions (isothermal/adiabatic, isochoric/isobaric, etc.). For any given conditions of contact between and E, we can ask (a) what thermodynamic property of the system has to be minimized in 6

7 equilibrium? (b) if we start from a nonequilibrium state, how much work can we get out of the system during the transition to equilibrium? The answer to both questions is given by the relevant (free) energy. At first sight one would think that there should be 8 different free energies, corresponding to the 8 different conditions of equilibrium between and E, but we shall see that in effect there are only 4. In the following T o and P o represent the temperature and pressure of the environment, which can be regarded as constant during any process occurring in the system. Consider the energy balance of the system, for the moment treating N as constant. We have for any process, reversible or irreversible, the relation E = Q P o V env + W = T o S env P o V env W. where Q is the heat input from the environment and W is the (non-p dv ) work done, on a third system distinct from the environment, e.g. by magnetization, or... (we do not need to be explicit). Now evidently V = V env, and from the fact that the entropy of the Universe can only increase, S S env. Hence W ( E T o S + P o V ) W max W max is the maximum work obtainable from the system as it comes into equilibrium with the environment. Note that this maximum is obtained when the inequality S S env is an equality, i.e. when the process is reversible. Since W cannot be negative (equilibration is a spontaneous process!) it follows that the quantity E T o S + P o V is 0, i.e. if we define a quantity K such that K E T o S + P o V then (a) in the process of attaining equilibrium, dk/dt 0, and (b) K is the maximum work obtainable. Let s consider some special cases Case I. S = V = 0 (adiabatic isochoric process). Clearly in this case K = E E(S, V ) i.e. the relevant energy is just the total internal energy of the body. This is natural since no heat is absorbed and no external P dv work is done. 7

8 Case II. S = 0 but V 0: rather, P = P o (adiabatic, isobaric process). Now K = E + P V, or since P is constant, (E + P V ). Hence in this case K = E + P V H(S, P ) the so-called enthalpy or heat function. Case III. V = 0 but S 0, rather T = T o (isothermal isochoric process). Now V = E T S, or since T is constant, (E T S). Thus, K = E T S F (T, V ) the Helmholtz free energy. Finally, Case IV. Neither S or V are zero, but T = T o and P = P o (isothermal isobaric process): Now V = E T S + P V, so K = E T S + P V G(T, P ) the Gibbs free energy. The reason for expressing the four free energies as functions of four different pairs of the variables (S, V : T, P ) (since only 2 are independent, we could of course in principle write G as a f(t, V )!) is that their differentials then come out in simple form: e.g. dg = de T ds SdT + P dv + V dp but using the 1st law, de T ds + P dv = 0, so dg = SdT + V dp (etc.) From these differentials we can obtain a large number of Maxwell relations, e.g. from the above and ( ) ( ) ( ) ( ) 2 G 2 G V = P T P T T P T P Finally, we need to return to the role of total particle number. When we include this, the thermodynamic identity is generalized to (above) de = T ds P dv + µdn 8

9 where µ is the chemical potential. So in analogy to the way we have treated the entropy and volume, for the case of osmotic contact with the environment, let us say also isothermal and isobonic, it would be natural to introduce a quantity Φ E T S + P V µn G µn, µ ( E/ N) S,V ( G/ N) P,T which means µ ( G/ N) P,T = f(p T ) G/N. Thus, Φ = 0 identically! It further follows that, for example, the quantity which we would want to introduce for a process at constant T, V and µ, i.e. F µn, is just P V and does not contain any explicit reference to E. This quantity, and the other two (corresponding to S, V, µ and S, P, µ) are occasionally introduced but do not seem to have standard names. (cf. KIUH 1.14). 9

Thermodynamics of phase transitions

Thermodynamics of phase transitions Thermodynamics of phase transitions Katarzyna Sznajd-Weron Department of Theoretical of Physics Wroc law University of Science and Technology, Poland March 12, 2017 Katarzyna Sznajd-Weron (WUST) Thermodynamics

More information

8 Lecture 8: Thermodynamics: Principles

8 Lecture 8: Thermodynamics: Principles 8. LECTURE 8: THERMODYNMICS: PRINCIPLES 69 8 Lecture 8: Thermodynamics: Principles Summary Phenomenological approach is a respectable way of understanding the world, especially when we cannot expect microscopic

More information

Grand Canonical Formalism

Grand Canonical Formalism Grand Canonical Formalism Grand Canonical Ensebmle For the gases of ideal Bosons and Fermions each single-particle mode behaves almost like an independent subsystem, with the only reservation that the

More information

3.20 Exam 1 Fall 2003 SOLUTIONS

3.20 Exam 1 Fall 2003 SOLUTIONS 3.0 Exam 1 Fall 003 SOLUIONS Question 1 You need to decide whether to work at constant volume or constant pressure. Since F is given, a natural choice is constant volume. Option 1: At constant and V :

More information

Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics.

Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics. Chapter 3. Entropy, temperature, and the microcanonical partition function: how to calculate results with statistical mechanics. The goal of equilibrium statistical mechanics is to calculate the density

More information

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV

...Thermodynamics. Entropy: The state function for the Second Law. Entropy ds = d Q. Central Equation du = TdS PdV ...Thermodynamics Entropy: The state function for the Second Law Entropy ds = d Q T Central Equation du = TdS PdV Ideal gas entropy s = c v ln T /T 0 + R ln v/v 0 Boltzmann entropy S = klogw Statistical

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic Potentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

Quantum statistics: properties of the Fermi-Dirac distribution.

Quantum statistics: properties of the Fermi-Dirac distribution. Statistical Mechanics Phys54 Fall 26 Lecture #11 Anthony J. Leggett Department of Physics, UIUC Quantum statistics: properties of the Fermi-Dirac distribution. In the last lecture we discussed the properties

More information

Lecture 5: Temperature, Adiabatic Processes

Lecture 5: Temperature, Adiabatic Processes Lecture 5: Temperature, Adiabatic Processes Chapter II. Thermodynamic Quantities A.G. Petukhov, PHYS 743 September 20, 2017 Chapter II. Thermodynamic Quantities Lecture 5: Temperature, Adiabatic Processes

More information

summary of statistical physics

summary of statistical physics summary of statistical physics Matthias Pospiech University of Hannover, Germany Contents 1 Probability moments definitions 3 2 bases of thermodynamics 4 2.1 I. law of thermodynamics..........................

More information

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables!

Introduction. Statistical physics: microscopic foundation of thermodynamics degrees of freedom 2 3 state variables! Introduction Thermodynamics: phenomenological description of equilibrium bulk properties of matter in terms of only a few state variables and thermodynamical laws. Statistical physics: microscopic foundation

More information

I.G Approach to Equilibrium and Thermodynamic Potentials

I.G Approach to Equilibrium and Thermodynamic Potentials I.G Approach to Equilibrium and Thermodynamic otentials Evolution of non-equilibrium systems towards equilibrium is governed by the second law of thermodynamics. For eample, in the previous section we

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. he second law deals with direction of thermodynamic processes

More information

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H

(i) T, p, N Gibbs free energy G (ii) T, p, µ no thermodynamic potential, since T, p, µ are not independent of each other (iii) S, p, N Enthalpy H Solutions exam 2 roblem 1 a Which of those quantities defines a thermodynamic potential Why? 2 points i T, p, N Gibbs free energy G ii T, p, µ no thermodynamic potential, since T, p, µ are not independent

More information

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics)

10, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) Subect Chemistry Paper No and Title Module No and Title Module Tag 0, Physical Chemistry- III (Classical Thermodynamics, Non-Equilibrium Thermodynamics, Surface chemistry, Fast kinetics) 0, Free energy

More information

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle

ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle ESCI 341 Atmospheric Thermodynamics Lesson 12 The Energy Minimum Principle References: Thermodynamics and an Introduction to Thermostatistics, Callen Physical Chemistry, Levine THE ENTROPY MAXIMUM PRINCIPLE

More information

Physics 408 Final Exam

Physics 408 Final Exam Physics 408 Final Exam Name You are graded on your work (with partial credit where it is deserved) so please do not just write down answers with no explanation (or skip important steps)! Please give clear,

More information

1 Garrod #5.2: Entropy of Substance - Equation of State. 2

1 Garrod #5.2: Entropy of Substance - Equation of State. 2 Dylan J. emples: Chapter 5 Northwestern University, Statistical Mechanics Classical Mechanics and hermodynamics - Garrod uesday, March 29, 206 Contents Garrod #5.2: Entropy of Substance - Equation of State.

More information

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University

Classical Thermodynamics. Dr. Massimo Mella School of Chemistry Cardiff University Classical Thermodynamics Dr. Massimo Mella School of Chemistry Cardiff University E-mail:MellaM@cardiff.ac.uk The background The field of Thermodynamics emerged as a consequence of the necessity to understand

More information

Introduction Statistical Thermodynamics. Monday, January 6, 14

Introduction Statistical Thermodynamics. Monday, January 6, 14 Introduction Statistical Thermodynamics 1 Molecular Simulations Molecular dynamics: solve equations of motion Monte Carlo: importance sampling r 1 r 2 r n MD MC r 1 r 2 2 r n 2 3 3 4 4 Questions How can

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #10 MASSACHUSES INSIUE OF ECHNOLOGY Physics Department 8.044 Statistical Physics I Spring erm 203 Problem : wo Identical Particles Solutions to Problem Set #0 a) Fermions:,, 0 > ɛ 2 0 state, 0, > ɛ 3 0,, >

More information

Chapter 2 Gibbs and Helmholtz Energies

Chapter 2 Gibbs and Helmholtz Energies Chapter 2 Gibbs and Helmholtz Energies Abstract Some properties of the Gibbs and Helmholtz energies, two thermodynamic functions of utmost importance in chemistry especially for the study of the notion

More information

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble

(# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble Recall from before: Internal energy (or Entropy): &, *, - (# = %(& )(* +,(- Closed system, well-defined energy (or e.g. E± E/2): Microcanonical ensemble & = /01Ω maximized Ω: fundamental statistical quantity

More information

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017

Lecture 4: Entropy. Chapter I. Basic Principles of Stat Mechanics. A.G. Petukhov, PHYS 743. September 7, 2017 Lecture 4: Entropy Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, PHYS 743 September 7, 2017 Chapter I. Basic Principles of Stat Mechanics A.G. Petukhov, Lecture PHYS4: 743 Entropy September

More information

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon

Thus, the volume element remains the same as required. With this transformation, the amiltonian becomes = p i m i + U(r 1 ; :::; r N ) = and the canon G5.651: Statistical Mechanics Notes for Lecture 5 From the classical virial theorem I. TEMPERATURE AND PRESSURE ESTIMATORS hx i x j i = kt ij we arrived at the equipartition theorem: * + p i = m i NkT

More information

Problem 4 (a) This process is irreversible because it does not occur though a set of equilibrium states. (b) The heat released by the meteor is Q = mc T. To calculate the entropy of an irreversible process

More information

IV. Classical Statistical Mechanics

IV. Classical Statistical Mechanics IV. Classical Statistical Mechanics IV.A General Definitions Statistical Mechanics is a probabilistic approach to equilibrium macroscopic properties of large numbers of degrees of freedom. As discussed

More information

Chap. 3. The Second Law. Law of Spontaneity, world gets more random

Chap. 3. The Second Law. Law of Spontaneity, world gets more random Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin - No process can transform heat completely into work Chap. 3. The Second Law Law of Spontaneity, world gets more random Kelvin

More information

1 Foundations of statistical physics

1 Foundations of statistical physics 1 Foundations of statistical physics 1.1 Density operators In quantum mechanics we assume that the state of a system is described by some vector Ψ belonging to a Hilbert space H. If we know the initial

More information

What is thermodynamics? and what can it do for us?

What is thermodynamics? and what can it do for us? What is thermodynamics? and what can it do for us? The overall goal of thermodynamics is to describe what happens to a system (anything of interest) when we change the variables that characterized the

More information

A.1 Homogeneity of the fundamental relation

A.1 Homogeneity of the fundamental relation Appendix A The Gibbs-Duhem Relation A.1 Homogeneity of the fundamental relation The Gibbs Duhem relation follows from the fact that entropy is an extensive quantity and that it is a function of the other

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality Entropy distinguishes between irreversible and reversible processes. irrev S > 0 rev In a spontaneous process, there should be a net increase in the entropy of the system

More information

CHEMICAL THERMODYNAMICS

CHEMICAL THERMODYNAMICS DEPARTMENT OF APPLIED CHEMISTRY LECTURE NOTES 6151- ENGINEERING CHEMISTRY-II UNIT II CHEMICAL THERMODYNAMICS Unit syllabus: Terminology of thermodynamics - Second law: Entropy - entropy change for an ideal

More information

Lecture 3 Clausius Inequality

Lecture 3 Clausius Inequality Lecture 3 Clausius Inequality Rudolf Julius Emanuel Clausius 2 January 1822 24 August 1888 Defined Entropy Greek, en+tropein content transformative or transformation content The energy of the universe

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Notes on the Microcanonical Ensemble The object of this endeavor is to impose a simple probability

More information

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy

4.1 Constant (T, V, n) Experiments: The Helmholtz Free Energy Chapter 4 Free Energies The second law allows us to determine the spontaneous direction of of a process with constant (E, V, n). Of course, there are many processes for which we cannot control (E, V, n)

More information

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.)

(prev) (top) (next) (Throughout, we will assume the processes involve an ideal gas with constant n.) 1 of 9 8/22/12 9:51 PM (prev) (top) (next) Thermodynamics 1 Thermodynamic processes can be: 2 isothermal processes, ΔT = 0 (so P ~ 1 / V); isobaric processes, ΔP = 0 (so T ~ V); isovolumetric or isochoric

More information

Chemistry. Lecture 10 Maxwell Relations. NC State University

Chemistry. Lecture 10 Maxwell Relations. NC State University Chemistry Lecture 10 Maxwell Relations NC State University Thermodynamic state functions expressed in differential form We have seen that the internal energy is conserved and depends on mechanical (dw)

More information

1. Second Law of Thermodynamics

1. Second Law of Thermodynamics 1. Second Law of hermodynamics he first law describes how the state of a system changes in response to work it performs and heat absorbed. However, the first law cannot explain certain facts about thermal

More information

Gibb s free energy change with temperature in a single component system

Gibb s free energy change with temperature in a single component system Gibb s free energy change with temperature in a single component system An isolated system always tries to maximize the entropy. That means the system is stable when it has maximum possible entropy. Instead

More information

Phys Midterm. March 17

Phys Midterm. March 17 Phys 7230 Midterm March 17 Consider a spin 1/2 particle fixed in space in the presence of magnetic field H he energy E of such a system can take one of the two values given by E s = µhs, where µ is the

More information

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B

[S R (U 0 ɛ 1 ) S R (U 0 ɛ 2 ]. (0.1) k B Canonical ensemble (Two derivations) Determine the probability that a system S in contact with a reservoir 1 R to be in one particular microstate s with energy ɛ s. (If there is degeneracy we are picking

More information

Lecture 4 Clausius Inequality

Lecture 4 Clausius Inequality Lecture 4 Clausius Inequality We know: Heat flows from higher temperature to lower temperature. T A V A U A + U B = constant V A, V B constant S = S A + S B T B V B Diathermic The wall insulating, impermeable

More information

Removing the mystery of entropy and thermodynamics. Part 3

Removing the mystery of entropy and thermodynamics. Part 3 Removing the mystery of entropy and thermodynamics. Part 3 arvey S. Leff a,b Physics Department Reed College, Portland, Oregon USA August 3, 20 Introduction In Part 3 of this five-part article, [, 2] simple

More information

We already came across a form of indistinguishably in the canonical partition function: V N Q =

We already came across a form of indistinguishably in the canonical partition function: V N Q = Bosons en fermions Indistinguishability We already came across a form of indistinguishably in the canonical partition function: for distinguishable particles Q = Λ 3N βe p r, r 2,..., r N ))dτ dτ 2...

More information

PHYSICS 715 COURSE NOTES WEEK 1

PHYSICS 715 COURSE NOTES WEEK 1 PHYSICS 715 COURSE NOTES WEEK 1 1 Thermodynamics 1.1 Introduction When we start to study physics, we learn about particle motion. First one particle, then two. It is dismaying to learn that the motion

More information

The Second Law of Thermodynamics (Chapter 4)

The Second Law of Thermodynamics (Chapter 4) The Second Law of Thermodynamics (Chapter 4) First Law: Energy of universe is constant: ΔE system = - ΔE surroundings Second Law: New variable, S, entropy. Changes in S, ΔS, tell us which processes made

More information

Lecture 2 Entropy and Second Law

Lecture 2 Entropy and Second Law Lecture 2 Entropy and Second Law Etymology: Entropy, entropie in German. En from energy and trope turning toward Turning to energy Motivation for a Second Law!! First law allows us to calculate the energy

More information

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen

CHEMICAL ENGINEERING THERMODYNAMICS. Andrew S. Rosen CHEMICAL ENGINEERING THERMODYNAMICS Andrew S. Rosen SYMBOL DICTIONARY 1 TABLE OF CONTENTS Symbol Dictionary... 3 1. Measured Thermodynamic Properties and Other Basic Concepts... 5 1.1 Preliminary Concepts

More information

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap )

NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap ) NENG 301 Week 8 Unary Heterogeneous Systems (DeHoff, Chap. 7, Chap. 5.3-5.4) Learning objectives for Chapter 7 At the end of this chapter you will be able to: Understand the general features of a unary

More information

Thermodynamics! for Environmentology!

Thermodynamics! for Environmentology! 1 Thermodynamics! for Environmentology! Thermodynamics and kinetics of natural systems Susumu Fukatsu! Applied Quantum Physics Group! The University of Tokyo, Komaba Graduate School of Arts and Sciences

More information

Minimum Bias Events at ATLAS

Minimum Bias Events at ATLAS Camille Bélanger-Champagne McGill University Lehman College City University of New York Thermodynamics Charged Particle and Statistical Correlations Mechanics in Minimum Bias Events at ATLAS Thermodynamics

More information

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential

Chapter 2 Ensemble Theory in Statistical Physics: Free Energy Potential Chapter Ensemble Theory in Statistical Physics: Free Energy Potential Abstract In this chapter, we discuss the basic formalism of statistical physics Also, we consider in detail the concept of the free

More information

4.1 LAWS OF MECHANICS - Review

4.1 LAWS OF MECHANICS - Review 4.1 LAWS OF MECHANICS - Review Ch4 9 SYSTEM System: Moving Fluid Definitions: System is defined as an arbitrary quantity of mass of fixed identity. Surrounding is everything external to this system. Boundary

More information

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas:

CHAPTER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: CHATER 3 LECTURE NOTES 3.1. The Carnot Cycle Consider the following reversible cyclic process involving one mole of an ideal gas: Fig. 3. (a) Isothermal expansion from ( 1, 1,T h ) to (,,T h ), (b) Adiabatic

More information

Part 1: (18 points) Define or explain three out of the 6 terms or phrases, below. Limit definitions to 200 words or less.

Part 1: (18 points) Define or explain three out of the 6 terms or phrases, below. Limit definitions to 200 words or less. Chemistry 452/456 23 July 24 Midterm Examination Key rofessor G. Drobny Boltzmann s constant=k B =1.38x1-23 J/K=R/N A, where N A is Avagadro s number and R is the Universal Gas Constant. Universal gas

More information

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat

Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Potential Descending Principle, Dynamic Law of Physical Motion and Statistical Theory of Heat Tian Ma and Shouhong Wang Supported in part by NSF, ONR and Chinese NSF http://www.indiana.edu/ fluid Outline

More information

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES

fiziks Institute for NET/JRF, GATE, IIT-JAM, JEST, TIFR and GRE in PHYSICAL SCIENCES Content-Thermodynamics & Statistical Mechanics 1. Kinetic theory of gases..(1-13) 1.1 Basic assumption of kinetic theory 1.1.1 Pressure exerted by a gas 1.2 Gas Law for Ideal gases: 1.2.1 Boyle s Law 1.2.2

More information

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions.

4) It is a state function because enthalpy(h), entropy(s) and temperature (T) are state functions. Chemical Thermodynamics S.Y.BSc. Concept of Gibb s free energy and Helmholtz free energy a) Gibb s free energy: 1) It was introduced by J.Willard Gibb s to account for the work of expansion due to volume

More information

Part II Statistical Physics

Part II Statistical Physics Part II Statistical Physics Theorems Based on lectures by H. S. Reall Notes taken by Dexter Chua Lent 2017 These notes are not endorsed by the lecturers, and I have modified them (often significantly)

More information

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into

G : Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into G25.2651: Statistical Mechanics Notes for Lecture 3 I. MICROCANONICAL ENSEMBLE: CONDITIONS FOR THERMAL EQUILIBRIUM Consider bringing two systems into thermal contact. By thermal contact, we mean that the

More information

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc.

Chapter 3. Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Chapter 3 Property Relations The essence of macroscopic thermodynamics Dependence of U, H, S, G, and F on T, P, V, etc. Concepts Energy functions F and G Chemical potential, µ Partial Molar properties

More information

Thermodynamics 1 Lecture Note 2

Thermodynamics 1 Lecture Note 2 Thermodynamics 1 Lecture Note 2 March 20, 2015 Kwang Kim Yonsei University kbkim@yonsei.ac.kr 39 8 7 34 53 Y O N Se I 88.91 16.00 14.01 78.96 126.9 Physical Chemistry Chemistry is the study of Matter and

More information

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes.

Lecture 2.7 Entropy and the Second law of Thermodynamics During last several lectures we have been talking about different thermodynamic processes. ecture 2.7 Entropy and the Second law of hermodynamics During last several lectures we have been talking about different thermodynamic processes. In particular, we have discussed heat transfer between

More information

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201)

Chapter 3. The Second Law Fall Semester Physical Chemistry 1 (CHM2201) Chapter 3. The Second Law 2011 Fall Semester Physical Chemistry 1 (CHM2201) Contents The direction of spontaneous change 3.1 The dispersal of energy 3.2 The entropy 3.3 Entropy changes accompanying specific

More information

Concentrating on the system

Concentrating on the system Concentrating on the system Entropy is the basic concept for discussing the direction of natural change, but to use it we have to analyze changes in both the system and its surroundings. We have seen that

More information

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014

Outline Review Example Problem 1. Thermodynamics. Review and Example Problems: Part-2. X Bai. SDSMT, Physics. Fall 2014 Review and Example Problems: Part- SDSMT, Physics Fall 014 1 Review Example Problem 1 Exponents of phase transformation : contents 1 Basic Concepts: Temperature, Work, Energy, Thermal systems, Ideal Gas,

More information

21 Lecture 21: Ideal quantum gases II

21 Lecture 21: Ideal quantum gases II 2. LECTURE 2: IDEAL QUANTUM GASES II 25 2 Lecture 2: Ideal quantum gases II Summary Elementary low temperature behaviors of non-interacting particle systems are discussed. We will guess low temperature

More information

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013

Outline Review Example Problem 1 Example Problem 2. Thermodynamics. Review and Example Problems. X Bai. SDSMT, Physics. Fall 2013 Review and Example Problems SDSMT, Physics Fall 013 1 Review Example Problem 1 Exponents of phase transformation 3 Example Problem Application of Thermodynamic Identity : contents 1 Basic Concepts: Temperature,

More information

PY2005: Thermodynamics

PY2005: Thermodynamics ome Multivariate Calculus Y2005: hermodynamics Notes by Chris Blair hese notes cover the enior Freshman course given by Dr. Graham Cross in Michaelmas erm 2007, except for lecture 12 on phase changes.

More information

HOMOGENEOUS CLOSED SYSTEM

HOMOGENEOUS CLOSED SYSTEM CHAE II A closed system is one that does not exchange matter with its surroundings, although it may exchange energy. W n in = 0 HOMOGENEOUS CLOSED SYSEM System n out = 0 Q dn i = 0 (2.1) i = 1, 2, 3,...

More information

CHAPTER 6 CHEMICAL EQUILIBRIUM

CHAPTER 6 CHEMICAL EQUILIBRIUM CHAPTER 6 CHEMICAL EQUILIBRIUM Spontaneous process involving a reactive mixture of gases Two new state functions A: criterion for determining if a reaction mixture will evolve towards the reactants or

More information

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2

8.044 Lecture Notes Chapter 5: Thermodynamcs, Part 2 8.044 Lecture Notes Chapter 5: hermodynamcs, Part 2 Lecturer: McGreevy 5.1 Entropy is a state function............................ 5-2 5.2 Efficiency of heat engines............................. 5-6 5.3

More information

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy

Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 1 Lecture Notes 2014March 13 on Thermodynamics A. First Law: based upon conservation of energy 1. Work 1 Dr. W. Pezzaglia Physics 8C, Spring 2014 Page 2 (c)

More information

Lecture 15. Available Work and Free Energy. Lecture 15, p 1

Lecture 15. Available Work and Free Energy. Lecture 15, p 1 Lecture 15 Available Work and Free Energy U F F U -TS Lecture 15, p 1 Helpful Hints in Dealing with Engines and Fridges Sketch the process (see figures below). Define and Q c and W by (or W on ) as positive

More information

Lectures on Thermodynamics and Statistical Mechanics

Lectures on Thermodynamics and Statistical Mechanics City University of New York (CUNY) CUNY Academic Works Open Educational Resources City College of New York 2015 Lectures on Thermodynamics and Statistical Mechanics V P. Nair CUNY City College of New York

More information

Chapter 2 Carnot Principle

Chapter 2 Carnot Principle Chapter 2 Carnot Principle 2.1 Temperature 2.1.1 Isothermal Process When two bodies are placed in thermal contact, the hotter body gives off heat to the colder body. As long as the temperatures are different,

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2

Physics 607 Exam 2. ( ) = 1, Γ( z +1) = zγ( z) x n e x2 dx = 1. e x2 Physics 607 Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all your

More information

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant

1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v. lnt + RlnV + cons tant 1 mol ideal gas, PV=RT, show the entropy can be written as! S = C v lnt + RlnV + cons tant (1) p, V, T change Reversible isothermal process (const. T) TdS=du-!W"!S = # "Q r = Q r T T Q r = $W = # pdv =

More information

I.D The Second Law Q C

I.D The Second Law Q C I.D he Second Law he historical development of thermodynamics follows the industrial revolution in the 19 th century, and the advent of heat engines. It is interesting to see how such practical considerations

More information

Section 3 Entropy and Classical Thermodynamics

Section 3 Entropy and Classical Thermodynamics Section 3 Entropy and Classical Thermodynamics 3.1 Entropy in thermodynamics and statistical mechanics 3.1.1 The Second Law of Thermodynamics There are various statements of the second law of thermodynamics.

More information

12 The Laws of Thermodynamics

12 The Laws of Thermodynamics June 14, 1998 12 The Laws of Thermodynamics Using Thermal Energy to do Work Understanding the laws of thermodynamics allows us to use thermal energy in a practical way. The first law of thermodynamics

More information

Chemistry 163B. q rev, Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6) Challenged Penmanship Notes

Chemistry 163B. q rev, Clausius Inequality and calculating ΔS for ideal gas P,V,T changes (HW#6) Challenged Penmanship Notes Chemistry 163B q rev, Clausius Inequality and calculating ΔS for ideal gas P,V, changes (HW#6) Challenged Penmanship Notes 1 statements of the Second Law of hermodynamics 1. Macroscopic properties of an

More information

Review of classical thermodynamics

Review of classical thermodynamics Review of classical thermodynamics Fundamental Laws, Properties and Processes (2) Entropy and the Second Law Concepts of equilibrium Reversible and irreversible processes he direction of spontaneous change

More information

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics

Physics 576 Stellar Astrophysics Prof. James Buckley. Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Physics 576 Stellar Astrophysics Prof. James Buckley Lecture 14 Relativistic Quantum Mechanics and Quantum Statistics Reading/Homework Assignment Read chapter 3 in Rose. Midterm Exam, April 5 (take home)

More information

Part1B(Advanced Physics) Statistical Physics

Part1B(Advanced Physics) Statistical Physics PartB(Advanced Physics) Statistical Physics Course Overview: 6 Lectures: uesday, hursday only 2 problem sheets, Lecture overheads + handouts. Lent erm (mainly): Brief review of Classical hermodynamics:

More information

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1

Classical Physics I. PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics. Lecture 36 1 Classical Physics I PHY131 Lecture 36 Entropy and the Second Law of Thermodynamics Lecture 36 1 Recap: (Ir)reversible( Processes Reversible processes are processes that occur under quasi-equilibrium conditions:

More information

Survey of Thermodynamic Processes and First and Second Laws

Survey of Thermodynamic Processes and First and Second Laws Survey of Thermodynamic Processes and First and Second Laws Please select only one of the five choices, (a)-(e) for each of the 33 questions. All temperatures T are absolute temperatures. All experiments

More information

Hence. The second law describes the direction of energy transfer in spontaneous processes

Hence. The second law describes the direction of energy transfer in spontaneous processes * Heat and Work The first law of thermodynamics states that: Although energy has many forms, the total quantity of energy is constant. When energy disappears in one form, it appears simultaneously in other

More information

1. Heterogeneous Systems and Chemical Equilibrium

1. Heterogeneous Systems and Chemical Equilibrium 1. Heterogeneous Systems and Chemical Equilibrium The preceding section involved only single phase systems. For it to be in thermodynamic equilibrium, a homogeneous system must be in thermal equilibrium

More information

Lecture 9 Overview (Ch. 1-3)

Lecture 9 Overview (Ch. 1-3) Lecture 9 Overview (Ch. -) Format of the first midterm: four problems with multiple questions. he Ideal Gas Law, calculation of δw, δq and ds for various ideal gas processes. Einstein solid and two-state

More information

8.044 Lecture Notes Chapter 8: Chemical Potential

8.044 Lecture Notes Chapter 8: Chemical Potential 8.044 Lecture Notes Chapter 8: Chemical Potential Lecturer: McGreevy Reading: Baierlein, Chapter 7. So far, the number of particles N has always been fixed. We suppose now that it can vary, and we want

More information

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings.

Thermodynamic system is classified into the following three systems. (ii) Closed System It exchanges only energy (not matter) with surroundings. 1 P a g e The branch of physics which deals with the study of transformation of heat energy into other forms of energy and vice-versa. A thermodynamical system is said to be in thermal equilibrium when

More information

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics

ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics ChE 210B: Advanced Topics in Equilibrium Statistical Mechanics Glenn Fredrickson Lecture 1 Reading: 3.1-3.5 Chandler, Chapters 1 and 2 McQuarrie This course builds on the elementary concepts of statistical

More information

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics

Lecture. Polymer Thermodynamics 0331 L First and Second Law of Thermodynamics 1 Prof. Dr. rer. nat. habil. S. Enders Faculty III for Process Science Institute of Chemical Engineering Department of hermodynamics Lecture Polymer hermodynamics 0331 L 337 2.1. First Law of hermodynamics

More information

Handout 12: Thermodynamics. Zeroth law of thermodynamics

Handout 12: Thermodynamics. Zeroth law of thermodynamics 1 Handout 12: Thermodynamics Zeroth law of thermodynamics When two objects with different temperature are brought into contact, heat flows from the hotter body to a cooler one Heat flows until the temperatures

More information

PHYS 352 Homework 2 Solutions

PHYS 352 Homework 2 Solutions PHYS 352 Homework 2 Solutions Aaron Mowitz (, 2, and 3) and Nachi Stern (4 and 5) Problem The purpose of doing a Legendre transform is to change a function of one or more variables into a function of variables

More information

Tel Aviv University, 2010 Large deviations, entropy and statistical physics 37

Tel Aviv University, 2010 Large deviations, entropy and statistical physics 37 Tel Aviv University, 2010 Large deviations, entropy and statistical physics 37 4 Temperature 4a Gas thermometer.................. 37 4b Differentials of energy and entropy........ 40 4c Negative temperature,

More information

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law

Atkins / Paula Physical Chemistry, 8th Edition. Chapter 3. The Second Law Atkins / Paula Physical Chemistry, 8th Edition Chapter 3. The Second Law The direction of spontaneous change 3.1 The dispersal of energy 3.2 Entropy 3.3 Entropy changes accompanying specific processes

More information