Energy creation in a moving solenoid? Abstract

Size: px
Start display at page:

Download "Energy creation in a moving solenoid? Abstract"

Transcription

1 Energy cretion in moving solenoid? Nelson R. F. Brg nd Rnieri V. Nery Instituto de Físic, Universidde Federl do Rio de Jneiro, Cix Postl 68528, RJ Brzil Abstrct The electromgnetic energy U em stored in the mgnetic field of n idel solenoid t rest ppers for moving observer s U em, sum of mgnetic nd electric energies stisfying: U em > γu em. We explin this seemingly prdoxicl result clculting the stresses in the solenoid structure nd showing tht the totl energy of the solenoid trnsforms by the expected reltivistic fctor γ. Electronic ddress: brg@if.ufrj.br Electronic ddress: rnieri@ufrj.br 1

2 I. INTRODUCTION We consider n infinitely long idel solenoid with xis z nd rdius, s shown in fig. (1), t rest in n inertil frme S 0. There re n turns of wire per unit length, crrying n electric current i. As is well known (e.g. [1]), the mgnetic field B vnishes outside the solenoid nd hs constnt mgnitude B = µ 0 ni inside the solenoid in the xil direction. We tke the orienttion of the current such tht the field is in the positive z direction. Although this solenoid is infinite, there re neither externl forces nor externl energy fluxes cting on it. So it is n isolted system, for which we expect tht the totl energy should trnsform by fctor of γ = 1/ 1 v 2 /c 2, when going to frme where it is in motion with speed v. Let us consider frme S, where the solenoid moves with constnt velocity v in the negtive direction of the x xis. Considering the reltivistic trnsformtions of the Electromgnetic fields, one finds tht inside the solenoid there is mgnetic field B = γb, in the xil direction, nd n electric field E = vγb, in the negtive y direction. Outside the solenoid the fields remin null. The internl volume of ny finite portion of the solenoid is reduced by fctor of 1/γ becuse of Lorentz contrction in the x direction. In the rest frme S 0, the energy stored in the mgnetic field in volume V = π 2 z of the solenoid is U em = B2 V. (1) In S the sum of the energies of the electric nd mgnetic fields is U em = ( B 2 + ε 0E 2 ) V 2 γ ( ) = γ B2 1 + v2 c 2 V = ( 1 + v2 c 2 ) γ U em. (2) 1 z + FIG. 1: Infinite solenoid 2

3 So, we find for the electromgnetic energy: U em > γ U em. In order to understnd why the electromgnetic energy does not trnsform with the fctor γ, we must complete the nlysis of the trnsformtion of the energy, considering the fct tht the solenoid is continuous system. The energy density for continuous distributions of mtter trnsforms s component of four-tensor tht lso includes the stresses[2], unlike the energy of point prticles tht trnsforms s component of four-vector. The energy density in the frme S includes contribution due to the stresses in the rest frme S 0. This stress show up in the solenoid becuse the wire loops crry n electric current nd re subject to mgnetic field. We know the mgnetic field inside nd outside the wire loops (tht mens, respectively t r < nd r > ). In order to determine the mgnetic force, nd the corresponding stress, on the wire, we must find the field t r = in the frme S 0. With this purpose, we cn remodel the solenoid, tking the wires to hve finite width, mening tht the rdius of the wire loops rnges from r = to r = +. The mgnetic field in point inside the wire t rdius r corresponds to the field produced by the current situted t lrger rdii: r > r. Incresing the rdius by dr we decrese this externl current. Clling the decrese s di, the vrition db of the mgnetic field is db = µ 0 ndi. (3) The force cting on n element of wire with infinitesiml re dr dl is d 2 F = dibdl = BdBdl µ 0 n, (4) nd points in the rdil direction. Considering dl = rdθ nd integrting by prts we hve df = 1 ( ) B(+ ) BrdB dθ = 1 ( ) B 2 (+ ) r µ 0 n B() µ 0 n B 2 () 2 db2 dθ = 1 ( 1 + B 2 ) µ 0 n 2 rb2 (r) r=+ r= 2 dr dθ. (5) Tking now the limit of n idel solenoid with very thin wire: 0, the term + B 2 2 dr becomes negligible. Using the boundry conditions B() = µ 0ni nd B( + ) = 0 the force over the infinitesiml element of the wire tkes the form ( ) µ0 ni df = i dθ. (6) 2 3

4 This is equivlent to the force produced by mgnetic field µ 0 ni/2. So tht we cn tke the mgnitude of the field t r = s one hlf of the mgnitude t r < (interior of the solenoid). II. CALCULATING THE STRESS The mgnetic force pushes ll pieces of the solenoid in the positive rdil direction. Considering tht the solenoid is t equilibrium, this force must be blnced by the internl tensions in the wire. In order to simplify the clcultions, we consider tht our idel wire hs no width but it is surrounded by cylindricl shell of width λ mde of mteril tht holds the stbility of the system s shown in (fig. 2). We clculte the stresses in this shell by considering volume element inside it nd using cylindricl coordintes. The symmetry of the solenoid implies tht only the digonl terms of the stress tensor re non vnishing. The equilibrium of forces leds to the following reltion between the relevnt components: r t rr (r)dzdθ [r + dr] t rr (r + dr)dzdθ + t θθ drdzdθ = 0. (7) This implies: d(t rr r) dr = t θθ. (8) y d F x i 1 λ FIG. 2: Representtion of the shell nd the forces cting on the solenoid 4

5 The energy density for the mtter content of the solenoid in S is given by γ 2 (ρc 2 + t xx (v 2 /c 2 )), with ρ being the mss density nd t xx the stress long x nd on fce orthogonl to this direction, both clculted in S 0. Since the volume of ny prt of the solenoid is reduced by n fctor of 1/γ, the first (mss) term trnsforms s expected, leving the nlysis only to the term involving the stress. The reltion between crtesin nd cylindricl components is: t xx = t rr cos 2 θ+t θθ sin 2 θ. The extr contribution to the energy due to the stress is obtined integrting γ 2 t xx (v 2 /c 2 ) long the cylindricl shell in the S frme. Considering prt of the shell with height z, tht involves the volume V, we cn integrte in S using the cylindric coordintes (r, θ) of S 0. Tking into ccount the contrction in the x direction, the integrl tkes the form U +λ 2π = γ 2v2 c z 2 0 = γ v2 +λ c π z 2 r +λ t xx dθdr = γv2 γ c π z rt 2 rr + rt θθ dr d(r 2 t rr ) dr = γ v2 dr c 2 π2 zt rr () (9) Where we used the fct tht t the outside rdius of the shell there re no externl forces, so t rr ( + λ) = 0. In order to clculte t rr in the inside rdius of the shell we use eq. (6) nd tke surfce element dθ z, contining n z spires to find t rr () = n z df dθ z = nib 2 = B2, (10) so tht U = γ v2 c 2 B 2 V. (11) This is exctly the opposite of the exceeding term tht ppered in the electromgnetic energy in S. So U em + U = γu em (12) Showing tht the whole solenoid indeed behves s n isolted system. Similr problems were discussed for plne nd sphericl cpcitors, respectively in [3] nd [4]. Acknowledgments: The uthors re prtilly supported by CNPq nd FAPERJ. [1] Griffiths, D. J. Introduction to Electrodynmics (Prentice Hll, 1999). 5

6 [2] Rindler, W. Introduction to Specil Reltivity (Clrendon Press, Oxford, 1982). [3] Rindler, W nd Denur, J A simple reltivistic prdox bout electrosttic energy Am. J. Phys , 1988 [4] Brg, N R F nd Sophi, G Reltivistic energy of moving sphericl cpcitor Eur. J. Phys ,

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

Set up Invariable Axiom of Force Equilibrium and Solve Problems about Transformation of Force and Gravitational Mass

Set up Invariable Axiom of Force Equilibrium and Solve Problems about Transformation of Force and Gravitational Mass Applied Physics Reserch; Vol. 5, No. 1; 013 ISSN 1916-9639 E-ISSN 1916-9647 Published by Cndin Center of Science nd Eduction Set up Invrible Axiom of orce Equilibrium nd Solve Problems bout Trnsformtion

More information

Physics 202, Lecture 13. Today s Topics

Physics 202, Lecture 13. Today s Topics Physics 202, Lecture 13 Tody s Topics Sources of the Mgnetic Field (Ch. 30) Clculting the B field due to currents Biot-Svrt Lw Emples: ring, stright wire Force between prllel wires Ampere s Lw: infinite

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

Problems for HW X. C. Gwinn. November 30, 2009

Problems for HW X. C. Gwinn. November 30, 2009 Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Tody s Topics Sources of the Mgnetic Field (Ch. 28) Biot-Svrt Lw Ampere s Lw Mgnetism in Mtter Mxwell s Equtions Homework #7: due Tues 3/11 t 11 PM (4th problem optionl) Mgnetic

More information

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015 Prof. Anchordoui Problems set # 4 Physics 169 Mrch 3, 15 1. (i) Eight eul chrges re locted t corners of cube of side s, s shown in Fig. 1. Find electric potentil t one corner, tking zero potentil to be

More information

Casimir-Polder interaction in the presence of parallel walls

Casimir-Polder interaction in the presence of parallel walls Csimir-Polder interction in the presence of prllel wlls rxiv:qunt-ph/2v 6 Nov 2 F C Sntos, J. J. Pssos Sobrinho nd A. C. Tort Instituto de Físic Universidde Federl do Rio de Jneiro Cidde Universitári -

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

IMPORTANT. Read these directions carefully:

IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Finl Exm, Secs. 506 510. 7 My. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner

More information

Physics 24 Exam 1 February 18, 2014

Physics 24 Exam 1 February 18, 2014 Exm Totl / 200 Physics 24 Exm 1 Februry 18, 2014 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. The totl electric flux pssing

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Midterm Examination Wed Oct Please initial the statement below to show that you have read it

Midterm Examination Wed Oct Please initial the statement below to show that you have read it EN10: Continuum Mechnics Midterm Exmintion Wed Oct 6 016 School of Engineering Brown University NAME: Generl Instructions No collbortion of ny kind is permitted on this exmintion. You my bring double sided

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018

Final Exam Solutions, MAC 3474 Calculus 3 Honors, Fall 2018 Finl xm olutions, MA 3474 lculus 3 Honors, Fll 28. Find the re of the prt of the sddle surfce z xy/ tht lies inside the cylinder x 2 + y 2 2 in the first positive) octnt; is positive constnt. olution:

More information

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc

Forces from Strings Under Tension A string under tension medites force: the mgnitude of the force from section of string is the tension T nd the direc Physics 170 Summry of Results from Lecture Kinemticl Vribles The position vector ~r(t) cn be resolved into its Crtesin components: ~r(t) =x(t)^i + y(t)^j + z(t)^k. Rtes of Chnge Velocity ~v(t) = d~r(t)=

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Conservation Laws and Poynting

Conservation Laws and Poynting Chpter 11 Conservtion Lws n Poynting Vector In electrosttics n mgnetosttics one ssocites n energy ensity to the presence of the fiels U = 1 2 E2 + 1 2 B2 = (electric n mgnetic energy)/volume (11.1) In

More information

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles Method of Loclistion nd Controlled Ejection of Swrms of Likely Chrged Prticles I. N. Tukev July 3, 17 Astrct This work considers Coulom forces cting on chrged point prticle locted etween the two coxil,

More information

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011

Classical Mechanics. From Molecular to Con/nuum Physics I WS 11/12 Emiliano Ippoli/ October, 2011 Clssicl Mechnics From Moleculr to Con/nuum Physics I WS 11/12 Emilino Ippoli/ October, 2011 Wednesdy, October 12, 2011 Review Mthemtics... Physics Bsic thermodynmics Temperture, idel gs, kinetic gs theory,

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

2. VECTORS AND MATRICES IN 3 DIMENSIONS

2. VECTORS AND MATRICES IN 3 DIMENSIONS 2 VECTORS AND MATRICES IN 3 DIMENSIONS 21 Extending the Theory of 2-dimensionl Vectors x A point in 3-dimensionl spce cn e represented y column vector of the form y z z-xis y-xis z x y x-xis Most of the

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

P812 Midterm Examination February Solutions

P812 Midterm Examination February Solutions P8 Midterm Exmintion Februry s. A one dimensionl chin of chrges consist of e nd e lterntively plced with neighbouring distnce. Show tht the potentil energy of ech chrge is given by U = ln. 4πε Explin qulittively

More information

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics Mgnetic forces on moving chrge o fr we ve studied electric forces between chrges t rest, nd the currents tht cn result in conducting medium 1. Mgnetic forces on chrge 2. Lws of mgnetosttics 3. Mgnetic

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University Chpter 7 Stedy Mgnetic Field september 2016 Microwve Lbortory Sogng University Teching point Wht is the mgnetic field? Biot-Svrt s lw: Coulomb s lw of Mgnetic field Stedy current: current flow is independent

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

Surface Integrals of Vector Fields

Surface Integrals of Vector Fields Mth 32B iscussion ession Week 7 Notes Februry 21 nd 23, 2017 In lst week s notes we introduced surfce integrls, integrting sclr-vlued functions over prmetrized surfces. As with our previous integrls, we

More information

Electricity and Magnetism

Electricity and Magnetism PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Pressure Wave Analysis of a Cylindrical Drum

Pressure Wave Analysis of a Cylindrical Drum Pressure Wve Anlysis of Cylindricl Drum Chris Clrk, Brin Anderson, Brin Thoms, nd Josh Symonds Deprtment of Mthemtics The University of Rochester, Rochester, NY 4627 (Dted: December, 24 In this pper, hypotheticl

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2

Physics 319 Classical Mechanics. G. A. Krafft Old Dominion University Jefferson Lab Lecture 2 Physics 319 Clssicl Mechnics G. A. Krfft Old Dominion University Jefferson Lb Lecture Undergrdute Clssicl Mechnics Spring 017 Sclr Vector or Dot Product Tkes two vectors s inputs nd yields number (sclr)

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5. PHY1 Electricity Topic 5 (Lectures 7 & 8) pcitors nd Dielectrics In this topic, we will cover: 1) pcitors nd pcitnce ) omintions of pcitors Series nd Prllel 3) The energy stored in cpcitor 4) Dielectrics

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016 Physics 7 Electricity nd Mgnetism Solutions to Finl Em, Spring 6 Plese note tht some possibly helpful formuls pper on the second pge The number of points on ech problem nd prt is mrked in squre brckets

More information

Physics Graduate Prelim exam

Physics Graduate Prelim exam Physics Grdute Prelim exm Fll 2008 Instructions: This exm hs 3 sections: Mechnics, EM nd Quntum. There re 3 problems in ech section You re required to solve 2 from ech section. Show ll work. This exm is

More information

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields

Probability Distributions for Gradient Directions in Uncertain 3D Scalar Fields Technicl Report 7.8. Technische Universität München Probbility Distributions for Grdient Directions in Uncertin 3D Sclr Fields Tobis Pfffelmoser, Mihel Mihi, nd Rüdiger Westermnn Computer Grphics nd Visuliztion

More information

Simulation of Eclipsing Binary Star Systems. Abstract

Simulation of Eclipsing Binary Star Systems. Abstract Simultion of Eclipsing Binry Str Systems Boris Yim 1, Kenny Chn 1, Rphel Hui 1 Wh Yn College Kowloon Diocesn Boys School Abstrct This report briefly introduces the informtion on eclipsing binry str systems.

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik Chpter 6 Electrosttic Boundry lue Problems Dr. Tll Skik 1 1 Introduction In previous chpters, E ws determined by coulombs lw or Guss lw when chrge distribution is known, or potentil is known throughout

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Version 001 HW#6 - Electromagnetism arts (00224) 1

Version 001 HW#6 - Electromagnetism arts (00224) 1 Version 001 HW#6 - Electromgnetism rts (00224) 1 This print-out should hve 11 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. rightest Light ul

More information

Waveguide Guide: A and V. Ross L. Spencer

Waveguide Guide: A and V. Ross L. Spencer Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

More information

Plates on elastic foundation

Plates on elastic foundation Pltes on elstic foundtion Circulr elstic plte, xil-symmetric lod, Winkler soil (fter Timoshenko & Woinowsky-Krieger (1959) - Chpter 8) Prepred by Enzo Mrtinelli Drft version ( April 016) Introduction Winkler

More information

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION

EMF Notes 9; Electromagnetic Induction ELECTROMAGNETIC INDUCTION EMF Notes 9; Electromgnetic nduction EECTOMAGNETC NDUCTON (Y&F Chpters 3, 3; Ohnin Chpter 3) These notes cover: Motionl emf nd the electric genertor Electromgnetic nduction nd Frdy s w enz s w nduced electric

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007

A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H. Thomas Shores Department of Mathematics University of Nebraska Spring 2007 A REVIEW OF CALCULUS CONCEPTS FOR JDEP 384H Thoms Shores Deprtment of Mthemtics University of Nebrsk Spring 2007 Contents Rtes of Chnge nd Derivtives 1 Dierentils 4 Are nd Integrls 5 Multivrite Clculus

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 4 UNIT (ADDITIONAL) Time allowed Three hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 999 MATHEMATICS UNIT (ADDITIONAL) Time llowed Three hours (Plus 5 minutes reding time) DIRECTIONS TO CANDIDATES Attempt ALL questions ALL questions re of equl vlue

More information

The Dirac distribution

The Dirac distribution A DIRAC DISTRIBUTION A The Dirc distribution A Definition of the Dirc distribution The Dirc distribution δx cn be introduced by three equivlent wys Dirc [] defined it by reltions δx dx, δx if x The distribution

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION DOI:.38/NMAT343 Hybrid Elstic olids Yun Li, Ying Wu, Ping heng, Zho-Qing Zhng* Deprtment of Physics, Hong Kong University of cience nd Technology Cler Wter By, Kowloon, Hong Kong, Chin E-mil: phzzhng@ust.hk

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: olumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

7.2 The Definite Integral

7.2 The Definite Integral 7.2 The Definite Integrl the definite integrl In the previous section, it ws found tht if function f is continuous nd nonnegtive, then the re under the grph of f on [, b] is given by F (b) F (), where

More information

Module 1. Energy Methods in Structural Analysis

Module 1. Energy Methods in Structural Analysis Module 1 Energy Methods in Structurl Anlysis Lesson 4 Theorem of Lest Work Instructionl Objectives After reding this lesson, the reder will be ble to: 1. Stte nd prove theorem of Lest Work.. Anlyse stticlly

More information

(6.5) Length and area in polar coordinates

(6.5) Length and area in polar coordinates 86 Chpter 6 SLICING TECHNIQUES FURTHER APPLICATIONS Totl mss 6 x ρ(x)dx + x 6 x dx + 9 kg dx + 6 x dx oment bout origin 6 xρ(x)dx x x dx + x + x + ln x ( ) + ln 6 kg m x dx + 6 6 x x dx Centre of mss +

More information

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is

Lecture XVII. Vector functions, vector and scalar fields Definition 1 A vector-valued function is a map associating vectors to real numbers, that is Lecture XVII Abstrct We introduce the concepts of vector functions, sclr nd vector fields nd stress their relevnce in pplied sciences. We study curves in three-dimensionl Eucliden spce nd introduce the

More information

PHYSICS ASSIGNMENT-9

PHYSICS ASSIGNMENT-9 MPS/PHY-XII-11/A9 PHYSICS ASSIGNMENT-9 *********************************************************************************************************** 1. A wire kept long the north-south direction is llowed

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

INTRODUCTION. The three general approaches to the solution of kinetics problems are:

INTRODUCTION. The three general approaches to the solution of kinetics problems are: INTRODUCTION According to Newton s lw, prticle will ccelerte when it is subjected to unblnced forces. Kinetics is the study of the reltions between unblnced forces nd the resulting chnges in motion. The

More information

F is on a moving charged particle. F = 0, if B v. (sin " = 0)

F is on a moving charged particle. F = 0, if B v. (sin  = 0) F is on moving chrged prticle. Chpter 29 Mgnetic Fields Ech mgnet hs two poles, north pole nd south pole, regrdless the size nd shpe of the mgnet. Like poles repel ech other, unlike poles ttrct ech other.

More information

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes

Test , 8.2, 8.4 (density only), 8.5 (work only), 9.1, 9.2 and 9.3 related test 1 material and material from prior classes Test 2 8., 8.2, 8.4 (density only), 8.5 (work only), 9., 9.2 nd 9.3 relted test mteril nd mteril from prior clsses Locl to Globl Perspectives Anlyze smll pieces to understnd the big picture. Exmples: numericl

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Intro to Nuclear and Particle Physics (5110)

Intro to Nuclear and Particle Physics (5110) Intro to Nucler nd Prticle Physics (5110) Feb, 009 The Nucler Mss Spectrum The Liquid Drop Model //009 1 E(MeV) n n(n-1)/ E/[ n(n-1)/] (MeV/pir) 1 C 16 O 0 Ne 4 Mg 7.7 14.44 19.17 8.48 4 5 6 6 10 15.4.41

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

Mathematics for Physicists and Astronomers

Mathematics for Physicists and Astronomers PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

US01CMTH02 UNIT Curvature

US01CMTH02 UNIT Curvature Stu mteril of BSc(Semester - I) US1CMTH (Rdius of Curvture nd Rectifiction) Prepred by Nilesh Y Ptel Hed,Mthemtics Deprtment,VPnd RPTPScience College US1CMTH UNIT- 1 Curvture Let f : I R be sufficiently

More information

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45 Gbriel Brello - Clssicl Electrodynmics.. For this problem, we compute A L z, the ction per unit length. We use g = nd will use the function Ψx, y = Ax x y y s the form of our pproximte solution. First

More information

13.4 Work done by Constant Forces

13.4 Work done by Constant Forces 13.4 Work done by Constnt Forces We will begin our discussion of the concept of work by nlyzing the motion of n object in one dimension cted on by constnt forces. Let s consider the following exmple: push

More information

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence

(b) Let S 1 : f(x, y, z) = (x a) 2 + (y b) 2 + (z c) 2 = 1, this is a level set in 3D, hence Problem ( points) Find the vector eqution of the line tht joins points on the two lines L : r ( + t) i t j ( + t) k L : r t i + (t ) j ( + t) k nd is perpendiculr to both those lines. Find the set of ll

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018

Physics 201 Lab 3: Measurement of Earth s local gravitational field I Data Acquisition and Preliminary Analysis Dr. Timothy C. Black Summer I, 2018 Physics 201 Lb 3: Mesurement of Erth s locl grvittionl field I Dt Acquisition nd Preliminry Anlysis Dr. Timothy C. Blck Summer I, 2018 Theoreticl Discussion Grvity is one of the four known fundmentl forces.

More information

Lesson 8. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER)

Lesson 8. Thermomechanical Measurements for Energy Systems (MENR) Measurements for Mechanical Systems and Production (MMER) Lesson 8 Thermomechnicl Mesurements for Energy Systems (MEN) Mesurements for Mechnicl Systems nd Production (MME) A.Y. 205-6 Zccri (ino ) Del Prete Mesurement of Mechnicl STAIN Strin mesurements re perhps

More information