Pre-Lab. Introduction

Size: px
Start display at page:

Download "Pre-Lab. Introduction"

Transcription

1 Pre-Lab Read through this entire lab. Perform all of your calculations (calculated values) prior to making the required circuit measurements. You may need to measure circuit component values to obtain your calculated values. All calculations should be written on a separate piece of paper (or in your lab notebook). They should be legible and written so that someone else can clearly understand your thought process. This is to demonstrate your understanding of the material, as well as aid in the troubleshooting process. Introduction Real Power: Recall that power is the flow of energy. You should be familiar with real or average power, which is measured in watts (or joules per second). Real power is the only type of power than can do useful work. Of the resistor, capacitor, and inductor, the resistor is the only circuit element that can dissipate real power. A resistor in a circuit could represent any load that takes power from the circuit, such as a light bulb, a heating element, or a motor. For a purely resistive load, the current through and voltage across it will always be in phase. This means the product of voltage across and current through the load, known as instantaneous power p(t), will always be positive. p(t) Average power T 1 T 2 t (s) Figure 1: Instantaneous Power for a Resistor Reactive Power: Inductors and capacitors are circuit elements that store energy temporarily, then give all of their stored energy back to the circuit. The net result of this energy transfer is always zero joules, so inductors and capacitors dissipate zero real power. However, since power is continuously flowing in and out of these circuit elements in an AC circuit, there is still movement of charge (current) that occurs. When a circuit is built, it must be able to handle all possible current loads, and so ignoring the effects of inductors and capacitors on a wire s current load could be a costly mistake. The power that flows to and from capacitors and inductors must be accounted for. This type of power is called reactive power and is measured in volt-amps reactive (AR). In an AC circuit, all voltages and currents fluctuate at the same frequency as the circuit s source. While all of the capacitors in a circuit are absorbing power from the circuit, all of the inductors are putting power back into the circuit. Likewise, while all of the capacitors are putting power 2014 Dan Kruger 1

2 into the circuit, the inductors are absorbing power from the circuit. For this reason, opposite signs are given to the reactive power of each of these elements. Inductors dissipate positive reactive power, and caps dissipate negative reactive power. Q 2 2 L L = ILXL = X L Eqn 1 p(t) i L (t) v L (t) t (s) Figure 2: Instantaneous Power for an Inductor Q 2 2 C C = ICXC = X C Eqn 2 i C (t) v C (t) p(t) Figure 3: Instantaneous Power for a Capacitor t (s) Apparent Power, Power Factor, and the Power Triangle: Most actual electrical loads have a combination of resistances, capacitances, and inductances. Both real and reactive loads must be considered when determining how much current flow a circuit s conductors must be able to handle. Ironically, complex numbers can be used to simplify AC power analysis. We will use the complex plane (real and imaginary axes) to represent these quantities Dan Kruger 2

3 ince real power (P) is the only type of power that can do useful work, it is given the real axis. Reactive power (Q) does not do useful work, so it is given the imaginary axis. The hypotenuse connecting these two orthogonal vectors is known as apparent power () and is measured in voltamps (A) Q P P Q Figure 4: Power Triangle for a Resistive & Inductive Load Figure 5: Power Triangle for a Resistive & Capacitive Load P: real power, in watts (W) Q: reactive power, in volt-amps reactive (AR) : apparent power, in volt-amps (A) : angle between apparent and real power vectors, in degrees ( ) Apparent power is often used because it is what can indicate how much current will actually be drawn by a load. Loads are often specified in how much reactive power they dissipate. For example, if you are supplying a machine with 240 rms at 60Hz, and it is rated to dissipate 7.2kA, you could figure out how much current this requires as follows I = = = 30A 240 Remember that even though reactive power does no useful work, its presence requires a higher current load. A large amount of reactive power requires more current, and thus more losses in power transmission lines (wires) as the current flows back and forth between the power source and the reactive elements. ince real power is what does useful work, it is ideal to have a load dissipate 100% real power, and 0% reactive power. The power factor (F P, no units) is a measure of how much real power a load s apparent power consists of. The power factor is the ratio of real power to apparent power. F p P = Eqn 3 When a load has 0 AR of reactive power, then its real and apparent powers will be equal, and a power factor of unity (one) is achieved. This is ideal from an efficiency standpoint. When a load is dissipating 100% reactive power, the power factor will be zero. As you can see from Figures 4 and 5, the power triangle is a right triangle. This lets us use many trigonometric functions to relate all the quantities shown Dan Kruger 3

4 cos sin ( ) ( ) P FP = = Q = = P + Q 2 2 Eqn 4 Eqn 5 Eqn 6 Complex Power and the Complex Conjugate: The vector is a complex number power and is measured in volt-amps (A), just like its magnitude. Eqn 7 = P + jq = Another way to find the complex power dissipated by a load is to multiply the voltage across the load times the complex conjugate of the current through the load. * = I The asterisk is the symbol for complex conjugate. It operates on a complex number and flips the sign on its angle, if expressed polar form. If the number is in rectangular form, the complex conjugate flips the sign on the imaginary term. ee the example below. H = 4+ j3= * H ( j ) j ( ) * 36.9 * 36.9 = 4+ 3 = 4 3= 5 = 5 o here is another way of looking at complex power. = I = I I * I I = I = I = I = so, = I Eqn Dan Kruger 4

5 Required Equipment: LCR Meter Oscilloscope Function Generator R = 1kΩ C = 47nF Procedure 1) In the circuit in Figure 6, use the nominal values to solve for the circuit current s magnitude and phase for a source frequency of 1kHz. 0 = 5 RM C 47nF R I 1kΩ R Figure 6: eries RC Circuit 2) Knowing that the current is the same everywhere in this series circuit, use Equation 8 to calculate the complex power dissipated by this circuit. Use your results with Equation 7 to obtain the circuit s real and reactive powers. These will be your theoretical results for real, reactive, and apparent power. 3) Create an Excel table like the one in Figure 7, and populate the Theoretical column with your results. f = 1kHz % or Absolute Theoretical Measured Error I (ma) I ( ) Figure 7 (ma) 7.08 ( ) P (mw) 2.00 Q (mar) ) Assemble the circuit in Figure 6 using the proper magnitude and frequency for your voltage source Dan Kruger 5

6 5) Devise a way to measure the circuit current s magnitude (RM) and phase angle and record these values into your table. 6) Use your measured current s magnitude and phase along with Equations 7 and 8 to obtain your measured values for real, reactive, and apparent power. Fill these values into your Measured column. Compare magnitudes using percent error and phase angles using absolute error. 7) Repeat steps 1 through 6 for a circuit frequency of Hz. 8) Repeat steps 1 through 6 for a circuit frequency of 20kHz. 9) As frequency increases, is the circuit getting more or less capacitive? How do you know this? Is the circuit current leading or lagging the source voltage? 2014 Dan Kruger 6

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current.

Consider a simple RC circuit. We might like to know how much power is being supplied by the source. We probably need to find the current. AC power Consider a simple RC circuit We might like to know how much power is being supplied by the source We probably need to find the current R 10! R 10! is VS Vmcosωt Vm 10 V f 60 Hz V m 10 V C 150

More information

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection

EXP. NO. 3 Power on (resistive inductive & capacitive) load Series connection OBJECT: To examine the power distribution on (R, L, C) series circuit. APPARATUS 1-signal function generator 2- Oscilloscope, A.V.O meter 3- Resisters & inductor &capacitor THEORY the following form for

More information

Exercise 2: Power Factor

Exercise 2: Power Factor Power in AC Circuits AC 2 Fundamentals Exercise 2: Power Factor EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the power factor of ac circuits by using standard

More information

12. Introduction and Chapter Objectives

12. Introduction and Chapter Objectives Real Analog - Circuits 1 Chapter 1: Steady-State Sinusoidal Power 1. Introduction and Chapter Objectives In this chapter we will address the issue of power transmission via sinusoidal or AC) signals. This

More information

Power Factor Improvement

Power Factor Improvement Salman bin AbdulazizUniversity College of Engineering Electrical Engineering Department EE 2050Electrical Circuit Laboratory Power Factor Improvement Experiment # 4 Objectives: 1. To introduce the concept

More information

LO 1: Three Phase Circuits

LO 1: Three Phase Circuits Course: EEL 2043 Principles of Electric Machines Class Instructor: Dr. Haris M. Khalid Email: hkhalid@hct.ac.ae Webpage: www.harismkhalid.com LO 1: Three Phase Circuits Three Phase AC System Three phase

More information

Exercise 1: RC Time Constants

Exercise 1: RC Time Constants Exercise 1: RC EXERCISE OBJECTIVE When you have completed this exercise, you will be able to determine the time constant of an RC circuit by using calculated and measured values. You will verify your results

More information

Sinusoidal Response of RLC Circuits

Sinusoidal Response of RLC Circuits Sinusoidal Response of RLC Circuits Series RL circuit Series RC circuit Series RLC circuit Parallel RL circuit Parallel RC circuit R-L Series Circuit R-L Series Circuit R-L Series Circuit Instantaneous

More information

AC Power Analysis. Chapter Objectives:

AC Power Analysis. Chapter Objectives: AC Power Analysis Chapter Objectives: Know the difference between instantaneous power and average power Learn the AC version of maximum power transfer theorem Learn about the concepts of effective or value

More information

Lecture 11 - AC Power

Lecture 11 - AC Power - AC Power 11/17/2015 Reading: Chapter 11 1 Outline Instantaneous power Complex power Average (real) power Reactive power Apparent power Maximum power transfer Power factor correction 2 Power in AC Circuits

More information

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale.

ECE 420. Review of Three Phase Circuits. Copyright by Chanan Singh, Panida Jirutitijaroen, and Hangtian Lei, For educational use only-not for sale. ECE 40 Review of Three Phase Circuits Outline Phasor Complex power Power factor Balanced 3Ф circuit Read Appendix A Phasors and in steady state are sinusoidal functions with constant frequency 5 0 15 10

More information

True Power vs. Apparent Power: Understanding the Difference Nicholas Piotrowski, Associated Power Technologies

True Power vs. Apparent Power: Understanding the Difference Nicholas Piotrowski, Associated Power Technologies True Power vs. Apparent Power: Understanding the Difference Nicholas Piotrowski, Associated Power Technologies Introduction AC power sources are essential pieces of equipment for providing flexible and

More information

Power Systems - Basic Concepts and Applications - Part I

Power Systems - Basic Concepts and Applications - Part I PDHonline Course E104A (1 PDH) Power Systems - Basic Concepts and Applications - Part I Instructor: Shih-Min Hsu, Ph.D., P.E. 01 PDH Online PDH Center 57 Meadow Estates Drive Fairfax, VA 030-6658 Phone

More information

PHYS 241 EXAM #2 November 9, 2006

PHYS 241 EXAM #2 November 9, 2006 1. ( 5 points) A resistance R and a 3.9 H inductance are in series across a 60 Hz AC voltage. The voltage across the resistor is 23 V and the voltage across the inductor is 35 V. Assume that all voltages

More information

11. AC Circuit Power Analysis

11. AC Circuit Power Analysis . AC Circuit Power Analysis Often an integral part of circuit analysis is the determination of either power delivered or power absorbed (or both). In this chapter First, we begin by considering instantaneous

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations Op-Amp Integrator and Op-Amp Differentiator 1 CAPACITANCE AND INDUCTANCE Introduces

More information

Single Phase Parallel AC Circuits

Single Phase Parallel AC Circuits Single Phase Parallel AC Circuits 1 Single Phase Parallel A.C. Circuits (Much of this material has come from Electrical & Electronic Principles & Technology by John Bird) n parallel a.c. circuits similar

More information

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18

Circuit Analysis-II. Circuit Analysis-II Lecture # 5 Monday 23 rd April, 18 Circuit Analysis-II Capacitors in AC Circuits Introduction ü The instantaneous capacitor current is equal to the capacitance times the instantaneous rate of change of the voltage across the capacitor.

More information

Direct Current (DC) Circuits

Direct Current (DC) Circuits Direct Current (DC) Circuits NOTE: There are short answer analysis questions in the Participation section the informal lab report. emember to include these answers in your lab notebook as they will be

More information

10.1 COMPLEX POWER IN CIRCUITS WITH AC SIGNALS

10.1 COMPLEX POWER IN CIRCUITS WITH AC SIGNALS HAPER 10 Power in A ircuits HAPER OUINE 10.1 omplex Power in ircuits with A ignals 10. How to alculate omplex Power 10.3 omplex Power alculations in eries Parallel ircuits 10.4 Power Factor and pf orrection

More information

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter

Charge The most basic quantity in an electric circuit is the electric charge. Charge is an electrical property of the atomic particles of which matter Basic Concepts of DC Circuits Introduction An electric circuit is an interconnection of electrical elements. Systems of Units 1 Charge The most basic quantity in an electric circuit is the electric charge.

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (batteries) and energy-takers (resistors, light bulbs, radios, etc.) that form a closed path (or complete path) through which electrical current

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire

a. Clockwise. b. Counterclockwise. c. Out of the board. d. Into the board. e. There will be no current induced in the wire Physics 1B Winter 2012: Final Exam For Practice Version A 1 Closed book. No work needs to be shown for multiple-choice questions. The first 10 questions are the makeup Quiz. The remaining questions are

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement EIE 240 Electrical and Electronic Measurement April 24, 2015 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

2. The following diagram illustrates that voltage represents what physical dimension?

2. The following diagram illustrates that voltage represents what physical dimension? BioE 1310 - Exam 1 2/20/2018 Answer Sheet - Correct answer is A for all questions 1. A particular voltage divider with 10 V across it consists of two resistors in series. One resistor is 7 KΩ and the other

More information

BASIC PRINCIPLES. Power In Single-Phase AC Circuit

BASIC PRINCIPLES. Power In Single-Phase AC Circuit BASIC PRINCIPLES Power In Single-Phase AC Circuit Let instantaneous voltage be v(t)=v m cos(ωt+θ v ) Let instantaneous current be i(t)=i m cos(ωt+θ i ) The instantaneous p(t) delivered to the load is p(t)=v(t)i(t)=v

More information

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain.

EE313 Fall 2013 Exam #1 (100 pts) Thursday, September 26, 2013 Name. 1) [6 pts] Convert the following time-domain circuit to the RMS Phasor Domain. Name If you have any questions ask them. Remember to include all units on your answers (V, A, etc). Clearly indicate your answers. All angles must be in the range 0 to +180 or 0 to 180 degrees. 1) [6 pts]

More information

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current?

ELECTRICITY. Electric Circuit. What do you already know about it? Do Smarty Demo 5/30/2010. Electric Current. Voltage? Resistance? Current? ELECTRICITY What do you already know about it? Voltage? Resistance? Current? Do Smarty Demo 1 Electric Circuit A path over which electrons travel, out through the negative terminal, through the conductor,

More information

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS

ELECTRIC POWER CIRCUITS BASIC CONCEPTS AND ANALYSIS Contents ELEC46 Power ystem Analysis Lecture ELECTRC POWER CRCUT BAC CONCEPT AND ANALY. Circuit analysis. Phasors. Power in single phase circuits 4. Three phase () circuits 5. Power in circuits 6. ingle

More information

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits

ECE 241L Fundamentals of Electrical Engineering. Experiment 6 AC Circuits ECE 241L Fundamentals of Electrical Engineering Experiment 6 AC Circuits A. Objectives: Objectives: I. Calculate amplitude and phase angles of a-c voltages and impedances II. Calculate the reactance and

More information

Learnabout Electronics - AC Theory

Learnabout Electronics - AC Theory Learnabout Electronics - AC Theory Facts & Formulae for AC Theory www.learnabout-electronics.org Contents AC Wave Values... 2 Capacitance... 2 Charge on a Capacitor... 2 Total Capacitance... 2 Inductance...

More information

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA

EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA EXPERIMENT 07 TO STUDY DC RC CIRCUIT AND TRANSIENT PHENOMENA DISCUSSION The capacitor is a element which stores electric energy by charging the charge on it. Bear in mind that the charge on a capacitor

More information

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit

PHYSICS 171 UNIVERSITY PHYSICS LAB II. Experiment 6. Transient Response of An RC Circuit PHYSICS 171 UNIVERSITY PHYSICS LAB II Experiment 6 Transient Response of An RC Circuit Equipment: Supplies: Function Generator, Dual Trace Oscilloscope.002 Microfarad, 0.1 Microfarad capacitors; 1 Kilohm,

More information

CHAPTER 22 ELECTROMAGNETIC INDUCTION

CHAPTER 22 ELECTROMAGNETIC INDUCTION CHAPTER 22 ELECTROMAGNETIC INDUCTION PROBLEMS 47. REASONING AND Using Equation 22.7, we find emf 2 M I or M ( emf 2 ) t ( 0.2 V) ( 0.4 s) t I (.6 A) ( 3.4 A) 9.3 0 3 H 49. SSM REASONING AND From the results

More information

Work, Energy and Power

Work, Energy and Power 1 Work, Energy and Power Work is an activity of force and movement in the direction of force (Joules) Energy is the capacity for doing work (Joules) Power is the rate of using energy (Watt) P = W / t,

More information

Alternating Current Circuits

Alternating Current Circuits Alternating Current Circuits AC Circuit An AC circuit consists of a combination of circuit elements and an AC generator or source. The output of an AC generator is sinusoidal and varies with time according

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

Sinusoidal Steady State Analysis (AC Analysis) Part II

Sinusoidal Steady State Analysis (AC Analysis) Part II Sinusoidal Steady State Analysis (AC Analysis) Part II Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

04-Electric Power. ECEGR 452 Renewable Energy Systems

04-Electric Power. ECEGR 452 Renewable Energy Systems 04-Electric Power ECEGR 452 Renewable Energy Systems Overview Review of Electric Circuits Phasor Representation Electrical Power Power Factor Dr. Louie 2 Introduction Majority of the electrical energy

More information

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University

Chapter 32A AC Circuits. A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University Chapter 32A AC Circuits A PowerPoint Presentation by Paul E. Tippens, Professor of Physics Southern Polytechnic State University 2007 Objectives: After completing this module, you should be able to: Describe

More information

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1

Lecture 21. Resonance and power in AC circuits. Physics 212 Lecture 21, Slide 1 Physics 1 ecture 1 esonance and power in A circuits Physics 1 ecture 1, Slide 1 I max X X = w I max X w e max I max X X = 1/w I max I max I max X e max = I max Z I max I max (X -X ) f X -X Physics 1 ecture

More information

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas

Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas Refresher course on Electrical fundamentals (Basics of A.C. Circuits) by B.M.Vyas A specifically designed programme for Da Afghanistan Breshna Sherkat (DABS) Afghanistan 1 Areas Covered Under this Module

More information

Toolbox: Electrical Systems Dynamics

Toolbox: Electrical Systems Dynamics Toolbox: Electrical Systems Dynamics Dr. John C. Wright MIT - PSFC 05 OCT 2010 Introduction Outline Outline AC and DC power transmission Basic electric circuits Electricity and the grid Image removed due

More information

Power and Energy Measurement

Power and Energy Measurement Power and Energy Measurement ENE 240 Electrical and Electronic Measurement Class 11, February 4, 2009 werapon.chi@kmutt.ac.th 1 Work, Energy and Power Work is an activity of force and movement in the direction

More information

Notes on Electricity (Circuits)

Notes on Electricity (Circuits) A circuit is defined to be a collection of energy-givers (active elements) and energy-takers (passive elements) that form a closed path (or complete path) through which electrical current can flow. The

More information

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations

Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations Lecture (5) Power Factor,threephase circuits, and Per Unit Calculations 5-1 Repeating the Example on Power Factor Correction (Given last Class) P? Q? S? Light Motor From source 1000 volts @ 60 Htz 10kW

More information

Chapter 10 Objectives

Chapter 10 Objectives Chapter 10 Engr8 Circuit Analysis Dr Curtis Nelson Chapter 10 Objectives Understand the following AC power concepts: Instantaneous power; Average power; Root Mean Squared (RMS) value; Reactive power; Coplex

More information

Chapter 21 Electric Current and Direct- Current Circuits

Chapter 21 Electric Current and Direct- Current Circuits Chapter 21 Electric Current and Direct- Current Circuits 1 Overview of Chapter 21 Electric Current and Resistance Energy and Power in Electric Circuits Resistors in Series and Parallel Kirchhoff s Rules

More information

RC, RL, and LCR Circuits

RC, RL, and LCR Circuits RC, RL, and LCR Circuits EK307 Lab Note: This is a two week lab. Most students complete part A in week one and part B in week two. Introduction: Inductors and capacitors are energy storage devices. They

More information

Lecture 05 Power in AC circuit

Lecture 05 Power in AC circuit CA2627 Building Science Lecture 05 Power in AC circuit Instructor: Jiayu Chen Ph.D. Announcement 1. Makeup Midterm 2. Midterm grade Grade 25 20 15 10 5 0 10 15 20 25 30 35 40 Grade Jiayu Chen, Ph.D. 2

More information

Exam 1--PHYS 202--Spring 2013

Exam 1--PHYS 202--Spring 2013 Name: Class: Date: Exam 1--PHYS 202--Spring 2013 Multiple Choice Identify the choice that best completes the statement or answers the question 1 A metallic object holds a charge of 38 10 6 C What total

More information

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3.

Electromagnetic Oscillations and Alternating Current. 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. Electromagnetic Oscillations and Alternating Current 1. Electromagnetic oscillations and LC circuit 2. Alternating Current 3. RLC circuit in AC 1 RL and RC circuits RL RC Charging Discharging I = emf R

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

Exercise 1: Capacitors

Exercise 1: Capacitors Capacitance AC 1 Fundamentals Exercise 1: Capacitors EXERCISE OBJECTIVE When you have completed this exercise, you will be able to describe the effect a capacitor has on dc and ac circuits by using measured

More information

Some Important Electrical Units

Some Important Electrical Units Some Important Electrical Units Quantity Unit Symbol Current Charge Voltage Resistance Power Ampere Coulomb Volt Ohm Watt A C V W W These derived units are based on fundamental units from the meterkilogram-second

More information

Exam 1--PHYS 202--S12

Exam 1--PHYS 202--S12 ame: Exam 1--PHYS 202--S12 Multiple Choice Identify the choice that best completes the statement or answers the question 1 Which of these statements is true about charging by induction? a it can only occur

More information

Practical 1 RC Circuits

Practical 1 RC Circuits Objectives Practical 1 Circuits 1) Observe and qualitatively describe the charging and discharging (decay) of the voltage on a capacitor. 2) Graphically determine the time constant for the decay, τ =.

More information

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges

INTC 1307 Instrumentation Test Equipment Teaching Unit 6 AC Bridges IHLAN OLLEGE chool of Engineering & Technology ev. 0 W. lonecker ev. (8/6/0) J. Bradbury INT 307 Instrumentation Test Equipment Teaching Unit 6 A Bridges Unit 6: A Bridges OBJETIVE:. To explain the operation

More information

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance

ECE2262 Electric Circuits. Chapter 6: Capacitance and Inductance ECE2262 Electric Circuits Chapter 6: Capacitance and Inductance Capacitors Inductors Capacitor and Inductor Combinations 1 CAPACITANCE AND INDUCTANCE Introduces two passive, energy storing devices: Capacitors

More information

Parallel Circuits. Chapter

Parallel Circuits. Chapter Chapter 5 Parallel Circuits Topics Covered in Chapter 5 5-1: The Applied Voltage V A Is the Same Across Parallel Branches 5-2: Each Branch I Equals V A / R 5-3: Kirchhoff s Current Law (KCL) 5-4: Resistance

More information

Notes on Electric Circuits (Dr. Ramakant Srivastava)

Notes on Electric Circuits (Dr. Ramakant Srivastava) Notes on Electric ircuits (Dr. Ramakant Srivastava) Passive Sign onvention (PS) Passive sign convention deals with the designation of the polarity of the voltage and the direction of the current arrow

More information

REACTANCE. By: Enzo Paterno Date: 03/2013

REACTANCE. By: Enzo Paterno Date: 03/2013 REACTANCE REACTANCE By: Enzo Paterno Date: 03/2013 5/2007 Enzo Paterno 1 RESISTANCE - R i R (t R A resistor for all practical purposes is unaffected by the frequency of the applied sinusoidal voltage or

More information

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel

mywbut.com Lesson 16 Solution of Current in AC Parallel and Seriesparallel esson 6 Solution of urrent in Parallel and Seriesparallel ircuits n the last lesson, the following points were described:. How to compute the total impedance/admittance in series/parallel circuits?. How

More information

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526)

Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) NCEA Level 3 Physics (91526) 2015 page 1 of 6 Assessment Schedule 2015 Physics: Demonstrate understanding of electrical systems (91526) Evidence Q Evidence Achievement Achievement with Merit Achievement

More information

Handout 11: AC circuit. AC generator

Handout 11: AC circuit. AC generator Handout : AC circuit AC generator Figure compares the voltage across the directcurrent (DC) generator and that across the alternatingcurrent (AC) generator For DC generator, the voltage is constant For

More information

Sinusoidal Steady-State Analysis

Sinusoidal Steady-State Analysis Chapter 4 Sinusoidal Steady-State Analysis In this unit, we consider circuits in which the sources are sinusoidal in nature. The review section of this unit covers most of section 9.1 9.9 of the text.

More information

EE301 Three Phase Power

EE301 Three Phase Power Learning Objectives a. Compute the real, reactive and apparent power in three phase systems b. Calculate currents and voltages in more challenging three phase circuit arrangements c. Apply the principles

More information

Electrical Circuits Lab Series RC Circuit Phasor Diagram

Electrical Circuits Lab Series RC Circuit Phasor Diagram Electrical Circuits Lab. 0903219 Series RC Circuit Phasor Diagram - Simple steps to draw phasor diagram of a series RC circuit without memorizing: * Start with the quantity (voltage or current) that is

More information

Figure 5.2 Instantaneous Power, Voltage & Current in a Resistor

Figure 5.2 Instantaneous Power, Voltage & Current in a Resistor ower in the Sinusoidal Steady-State ower is the rate at which work is done by an electrical component. It tells us how much heat will be produced by an electric furnace, or how much light will be generated

More information

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY

REVISED HIGHER PHYSICS REVISION BOOKLET ELECTRONS AND ENERGY REVSED HGHER PHYSCS REVSON BOOKLET ELECTRONS AND ENERGY Kinross High School Monitoring and measuring a.c. Alternating current: Mains supply a.c.; batteries/cells supply d.c. Electrons moving back and forth,

More information

ELECTRO MAGNETIC INDUCTION

ELECTRO MAGNETIC INDUCTION ELECTRO MAGNETIC INDUCTION 1) A Circular coil is placed near a current carrying conductor. The induced current is anti clock wise when the coil is, 1. Stationary 2. Moved away from the conductor 3. Moved

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

Introduction to AC Circuits (Capacitors and Inductors)

Introduction to AC Circuits (Capacitors and Inductors) Introduction to AC Circuits (Capacitors and Inductors) Amin Electronics and Electrical Communications Engineering Department (EECE) Cairo University elc.n102.eng@gmail.com http://scholar.cu.edu.eg/refky/

More information

Chapter 10 ACSS Power

Chapter 10 ACSS Power Objectives: Power concepts: instantaneous power, average power, reactive power, coplex power, power factor Relationships aong power concepts the power triangle Balancing power in AC circuits Condition

More information

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2.

cancel each other out. Thus, we only need to consider magnetic field produced by wire carrying current 2. PC1143 2011/2012 Exam Solutions Question 1 a) Assumption: shells are conductors. Notes: the system given is a capacitor. Make use of spherical symmetry. Energy density, =. in this case means electric field

More information

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance:

RLC Series Circuit. We can define effective resistances for capacitors and inductors: 1 = Capacitive reactance: RLC Series Circuit In this exercise you will investigate the effects of changing inductance, capacitance, resistance, and frequency on an RLC series AC circuit. We can define effective resistances for

More information

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction

LCR Series Circuits. AC Theory. Introduction to LCR Series Circuits. Module. What you'll learn in Module 9. Module 9 Introduction Module 9 AC Theory LCR Series Circuits Introduction to LCR Series Circuits What you'll learn in Module 9. Module 9 Introduction Introduction to LCR Series Circuits. Section 9.1 LCR Series Circuits. Amazing

More information

Electrostatics and Charge. Creating Electric Fields

Electrostatics and Charge. Creating Electric Fields Electrostatics and Charge Creating Electric Fields Electric Charges Recall that all matter is made of atoms. Neutral atoms can acquire a charge in several different ways, all of which require movement

More information

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur

Module 4. Single-phase AC circuits. Version 2 EE IIT, Kharagpur Module 4 Single-phase circuits ersion EE T, Kharagpur esson 6 Solution of urrent in Parallel and Seriesparallel ircuits ersion EE T, Kharagpur n the last lesson, the following points were described:. How

More information

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA

EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, pm, Room TBA EE 3120 Electric Energy Systems Study Guide for Prerequisite Test Wednesday, Jan 18, 2006 6-7 pm, Room TBA First retrieve your EE2110 final and other course papers and notes! The test will be closed book

More information

2B30 Formal Report Simon Hearn Dr Doel

2B30 Formal Report Simon Hearn Dr Doel DEPARTMENT OF PHYSICS & ASTRONOMY SECOND YEAR LAB REPORT DECEMBER 2001 EXPERIMENT E7: STUDY OF AN OSCILLATING SYSTEM DRIVEN INTO RESONANCE PERFORMED BY SIMON HEARN, LAB PARTNER CAROLINE BRIDGES Abstract

More information

8. Electric Currents

8. Electric Currents 8. Electric Currents S. G. Rajeev January 30, 2011 An electric current is produced by the movement of electric charges. In most cases these are electrons. A conductor is a material through which an electric

More information

Chapter 15 Power And Harmonics in Nonsinusoidal Systems

Chapter 15 Power And Harmonics in Nonsinusoidal Systems Chapter 15 Power And Harmonics in Nonsinusoidal Systems 15.1. Average power in terms of Fourier series 15.2. RMS value of a waveform 15.3. Power factor THD Distortion and Displacement factors 15.4. Power

More information

f = 1 T 6 a.c. (Alternating Current) Circuits Most signals of interest in electronics are periodic : they repeat regularly as a function of time.

f = 1 T 6 a.c. (Alternating Current) Circuits Most signals of interest in electronics are periodic : they repeat regularly as a function of time. Analogue Electronics (Aero).66 66 Analogue Electronics (Aero) 6.66 6 a.c. (Alternating Current) Circuits Most signals of interest in electronics are periodic : they repeat regularly as a function of time.

More information

Series and Parallel ac Circuits

Series and Parallel ac Circuits Series and Parallel ac Circuits 15 Objectives Become familiar with the characteristics of series and parallel ac networks and be able to find current, voltage, and power levels for each element. Be able

More information

Coulomb s constant k = 9x10 9 N m 2 /C 2

Coulomb s constant k = 9x10 9 N m 2 /C 2 1 Part 2: Electric Potential 2.1: Potential (Voltage) & Potential Energy q 2 Potential Energy of Point Charges Symbol U mks units [Joules = J] q 1 r Two point charges share an electric potential energy

More information

Q-2 How many coulombs of charge leave the power supply during each second?

Q-2 How many coulombs of charge leave the power supply during each second? Part I - Circuit Elements in Series In Figure 1 at the right circuit elements #1, #2, #3 (in this case light bulbs) are said to be connected "IN SERIES". That is, they are connected in a series one right

More information

Introduction to Electrical and Computer Engineering. International System of Units (SI)

Introduction to Electrical and Computer Engineering. International System of Units (SI) Introduction to Electrical and Computer Engineering Basic Circuits and Simulation Basic Circuits and Simulation (1 of 22) International System of Units (SI) Length: meter (m) Mass: kilogram (kg) Time:

More information

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson

Chapter 2. Engr228 Circuit Analysis. Dr Curtis Nelson Chapter 2 Engr228 Circuit Analysis Dr Curtis Nelson Chapter 2 Objectives Understand symbols and behavior of the following circuit elements: Independent voltage and current sources; Dependent voltage and

More information

Objects usually are charged up through the transfer of electrons from one object to the other.

Objects usually are charged up through the transfer of electrons from one object to the other. 1 Part 1: Electric Force Review of Vectors Review your vectors! You should know how to convert from polar form to component form and vice versa add and subtract vectors multiply vectors by scalars Find

More information

Alternating Current Circuits. Home Work Solutions

Alternating Current Circuits. Home Work Solutions Chapter 21 Alternating Current Circuits. Home Work s 21.1 Problem 21.11 What is the time constant of the circuit in Figure (21.19). 10 Ω 10 Ω 5.0 Ω 2.0µF 2.0µF 2.0µF 3.0µF Figure 21.19: Given: The circuit

More information

Note 11: Alternating Current (AC) Circuits

Note 11: Alternating Current (AC) Circuits Note 11: Alternating Current (AC) Circuits V R No phase difference between the voltage difference and the current and max For alternating voltage Vmax sin t, the resistor current is ir sin t. the instantaneous

More information

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits KCL, KVL, Power & Energy Flow M. Horowitz, J. Plummer, R. Howe 1 Reading For Topics In These Slides Chapter 1 in the course reader OR A&L 1.6-1.7 -

More information

Physics Investigation 10 Teacher Manual

Physics Investigation 10 Teacher Manual Physics Investigation 10 Teacher Manual Observation When a light bulb is connected to a number of charged capacitors, it lights up for different periods of time. Problem What does the rate of discharging

More information

Solutions to these tests are available online in some places (but not all explanations are good)...

Solutions to these tests are available online in some places (but not all explanations are good)... The Physics GRE Sample test put out by ETS https://www.ets.org/s/gre/pdf/practice_book_physics.pdf OSU physics website has lots of tips, and 4 additional tests http://www.physics.ohiostate.edu/undergrad/ugs_gre.php

More information

15-884/484 Electric Power Systems 1: DC and AC Circuits

15-884/484 Electric Power Systems 1: DC and AC Circuits 15-884/484 Electric Power Systems 1: DC and AC Circuits J. Zico Kolter October 8, 2013 1 Hydro Estimated U.S. Energy Use in 2010: ~98.0 Quads Lawrence Livermore National Laboratory Solar 0.11 0.01 8.44

More information

AC Circuits Homework Set

AC Circuits Homework Set Problem 1. In an oscillating LC circuit in which C=4.0 μf, the maximum potential difference across the capacitor during the oscillations is 1.50 V and the maximum current through the inductor is 50.0 ma.

More information

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1

E40M Charge, Current, Voltage and Electrical Circuits. M. Horowitz, J. Plummer, R. Howe 1 E40M Charge, Current, Voltage and Electrical Circuits M. Horowitz, J. Plummer, R. Howe 1 Understanding the Solar Charger Lab Project #1 We need to understand how: 1. Current, voltage and power behave in

More information