Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force

Size: px
Start display at page:

Download "Magnetism. Magnets Source of magnetism. Magnetic field. Magnetic force"

Transcription

1 Magnetism Magnets Source of magnetism Magnetic field Magnetic force

2 Magnets and magnetic force Historical First magnets were pieces of iron-bearing rock called loadstone (magnetite, Fe 3 O 4 ) found originally in Asia (magnesia) Iron is one of a few materials (also ickel, Cobalt) that can be permanently magnetised. These are called ferromagnetic materials avigational compass developed in 12 th century

3 Magnets and Magnetic Force All magnets have two poles, orth and South. named with reference to alignment in Earth s magnetic field. S Magnetic pole that points to Earth s geographic north pole is called the north pole of the magnet S S S S

4 Magnets and magnetic force A magnetic field surrounds the magnet. Lines indicate direction and magnitude of magnetic field When two magnets are near to each other or in contact, they exert a force on one another, in a manner similar to electrical charges. This force is the magnetic force. F S S F S F S F Like poles repel, unlike poles attract.

5 Earth s Magnetic Field South magnetic pole Rotation Axis 11 orth Geographic Pole Earth s magnetic field pattern similar to that of a bar magnet. orth Geographic Pole is approximately 2,000km from the south magnetic pole

6 Earth s Magnetic Field South magnetic pole Rotation Axis 11 orth Geographic Pole Earth s Magnetic Field Caused by circulating currents of molten iron etc in the Earth s core Magnetic poles change position with time Complete reversal of direction 850,000 yrs ago Evidence: ancient magnetic fields left in rocks Supports continental drift theory Paleomagnetism: residual magnetism in ancient rocks past movement of tectonic plates

7 Compass needle Essentially small bar magnet free to rotate in horizontal plane If suspended on bearing such that it can rotate also in vertical plane: As needle is moved northward from the equator it will rotate in the vertical plane increasingly towards the surface of the Earth Angle between the horizontal and the direction of the magnetic field is called the angle of dip

8 avigation Humans: Compass needles provide directional information umber of animals also use magnetism for navigation Built in directional sensor Some bacteria evolved the facility to produce minute magnetic crystals of Fe 3 O 4 --used for guidance Fe 3 O 4 crystals of length 50nm Pigeons,Dolphins, bees etc navigate using internal magnetic needles (magneto-tactic bacteria) and the Earth s magnetic field (small)

9 avigation Magneto-tactic bacteria Magnetic crystal chain in bacteria found in orthern Hemisphere have opposite polarity to those found in Southern Hemisphere orthern Hemisphere: Earth s field has downward component Bacteria migrate along the direction of the Earth s field Southern Hemisphere: Earth s field has upward component pond pond Bacteria migrate opposite to magnetic field Why: Deep water: more food, less toxic Oxygen. S S

10 Source of magnetism Permanent magnets are not the only items with magnetic properties Example: When a current passes through a simple wire, a magnetic field is created around the wire, this is due to the flow of the electrons. I Magnetic field lines Direction of field given by right hand rule motion of electrical charges (current) is the only source of magnetism. What about permanent magnets?

11 Source of magnetism The microscopic origin of the magnetism in magnets; Simple view Atom Electrons are moving around the nucleus: electrons orbiting constitute circular current loop electrons generates a tiny magnetic field

12 Source of magnetism Spinning electrons? Electrons also act as though they are spinning about an axis through their centres. Spinning electron also act like a current loop so creates a tiny magnetic field Both these electron motions in atoms, orbital and spins create magnetic fields.

13 Source of magnetism In most atoms the magnetic effect of the electrons cancel each other out In ferromagnetic materials the magnetic effects of the electrons do not fully cancel each other out, atoms then are like tiny magnets. Ferromagnetic materials consists of small regions (called domains) in which all the magnetic effects of atoms are aligned. domains Disorder: non-magnetic magnetised Externally applied magnetic field can align the domains so that the material becomes magnetised. S

14 Magnetisation (Ferromagnetic) metals (iron most often), can be magnetised under an external magnetic field Applications Electromagnet

15 Dia/Para-magnetism In the presence of an external magnetic field three types of materials exist: Ferromagnetic Under an external field, material produces magnetic field in the same direction as external field. Material retains field after external field is switched off Paramagnetic Under an external field, material produces magnetic field in the same direction as external field. Much weaker than ferromagnetism. Field is not retained. Diamagnetic Under an external field, material produces magnetic field in the opposite direction of external field. Field is not retained. e.g. levitating frog

16 Magnetic force Charged particle moving through a magnetic field with velocity (v) experiences a magnetic force (F) B acting on it q + q + q + v θ v F=qvBsinθ F = 0 v F = maximum =qvb o movement no force. Minimum value of force: (zero) direction of charged particle is parallel to magnetic field lines Maximum value of force: direction of charged particle is perpendicular to magnetic field lines F = qvb Sinθ B: magnetic field strength B F qv sin θ = Units of B = Tesla ( T ) 1 Cms

17 Magnetic force Direction of force on the charged particle: always perpendicular to direction of both v and B F V + θ B Right hand rule may be used to determine the direction of the force on a moving charge in a magnetic field positive charge moving with velocity v in magnet field B Thumb points in the direction of current. Index finger points in direction of magnetic field Middle finger points in direction of force Important: Direction of current opposite to motion of negative charges (e.g. electrons)

18 Magnetic force Find the direction and magnitude of the magnetic force on a proton travelling at a speed of 7.5x10 6 ms -1 in a direction at 50 to the direction of the magnetic field B of magnitude 2 Tesla. Calculate the initial acceleration of the proton. Mass of proton 1.67x10-27 kg z F Direction of force given by right hand rule v x + 50 B F = qvb sinθ F = ( C)( ms )(2.0 T ) sin y F = Initial acceleration F = ma a 13 F = = = m kg ms 14 2

19 Magnetic force Vector notation: How to indicate the third dimension in 2D sketches. Vector pointing out of the plane (tip of the arrow) Vector pointing into the plane (tail of the arrow) e.g. positron (positively charged) moving through an uniform magnetic field e + B v F

20 Motion of charged particle in a magnetic field Charged particle moves in a plane perpendicular to a uniform magnetic field Positively charged particle Magnetic field at 1 moving with velocity v x x x x x x x x x x v Magnetic force F at x x x right angles to v x x x x F x 2 x x x x x x Magnetic force F x always perpendicular to v x x x can t change magnitude of v x x x x magnitude v constant x x + x 1 v Change direction of v only x x x B x Particle moves under the influence of force of constant magnitude that is always perpendicular to the velocity Path of particle is a circle + Centripetal acceleration v 2 /R 2 v F = qvb = m R R = R radius of circle mv qb

21 Example: Mass Spectrometer Two ionised isotopes, hydrogen and deuterium, with an initial speed of 1.3x10 6 ms -1 pass into a magnetic field of strength 0.15 T as shown. Calculate the distance between them when they strike the image plate. x x x x x x x mv x x x x R = B x x x x x x x qb x x x x Image plate Mass (hydrogen nucleus) proton =1.67x10-27 kg x x x slit Mass (deuterium nucleus) proton + neutron =3.34x10-27 kg R H m v H ( kg)(1.3x10 ms ) = = = 19 qb ( C)(0.15 T ) 0.09m R D mv D ( kg)(1.3x10 ms ) = = = 19 qb ( C)(0.15 T ) 0.18m Distance =2R -2R = 0.18m D H

CHAPTER 20 Magnetism

CHAPTER 20 Magnetism CHAPTER 20 Magnetism Units Magnets and Magnetic Fields Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on Electric Charge Moving in a Magnetic

More information

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction

Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction Chapter 27, 28 & 29: Magnetism & Electromagnetic Induction The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Chapter 21. Magnetism

Chapter 21. Magnetism Chapter 21 Magnetism Magnets Poles of a magnet are the ends where objects are most strongly attracted Two poles, called north and south Like poles repel each other and unlike poles attract each other Similar

More information

Kirchhoff s rules, example

Kirchhoff s rules, example Kirchhoff s rules, example Magnets and Magnetism Poles of a magnet are the ends where objects are most strongly attracted. Two poles, called north and south Like poles repel each other and unlike poles

More information

Magnetic Fields and Forces

Magnetic Fields and Forces Nicholas J. Giordano www.cengage.com/physics/giordano Chapter 20 Magnetic Fields and Forces Marilyn Akins, PhD Broome Community College Magnetism Magnetic fields are produced by moving electric charges

More information

Magnetic Forces and Magnetic Fields

Magnetic Forces and Magnetic Fields Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The behavior of magnetic poles is similar to that of like and unlike electric charges. 21.1 Magnetic Fields The needle of a compass is permanent

More information

Chapter 21. Magnetic Forces and Magnetic Fields

Chapter 21. Magnetic Forces and Magnetic Fields Chapter 21 Magnetic Forces and Magnetic Fields 21.1 Magnetic Fields The needle of a compass is permanent magnet that has a north magnetic pole (N) at one end and a south magnetic pole (S) at the other.

More information

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES.

PHYSICS - CLUTCH CH 26: MAGNETIC FIELDS AND FORCES. !! www.clutchprep.com CONCEPT: HOW MAGNETS WORK Forever ago we found metals that would attract each other. First found in island of Magnesia named. - Most common are iron (Fe), cobalt (Co), nickel (Ni),

More information

Gravity Electromagnetism Weak Strong

Gravity Electromagnetism Weak Strong 19. Magnetism 19.1. Magnets 19.1.1. Considering the typical bar magnet we can investigate the notion of poles and how they apply to magnets. 19.1.1.1. Every magnet has two distinct poles. 19.1.1.1.1. N

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I

Physics 12. Unit 8 Magnetic Field and Electromagnetism Part I Physics 12 Unit 8 Magnetic Field and Electromagnetism Part I 1. Basics about magnets Magnets have been known by ancient people since long time ago, referring to the iron-rich rocks, called magnetite or

More information

Magnetic Fields & Forces

Magnetic Fields & Forces Magnetic Fields & Forces Oersted discovered that an electric current will produce a magnetic field around conductor only a moving charge creates a magnetic field the magnetic field is circular around the

More information

PHY 1214 General Physics II

PHY 1214 General Physics II PHY 1214 General Physics II Lecture 15 Magnetic Fields and Forces June 28, 2005 Weldon J. Wilson Professor of Physics & Engineering Howell 221H wwilson@ucok.edu Lecture Schedule (Weeks 4-6) We are here.

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields Outline 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a Charged Particle in a Uniform Magnetic Field 29.5 Applications

More information

General Physics II. Magnetism

General Physics II. Magnetism General Physics II Magnetism Bar magnet... two poles: N and S Like poles repel; Unlike poles attract. Bar Magnet Magnetic Field lines [B]: (defined in a similar way as electric field lines, direction and

More information

Torque on a Current Loop

Torque on a Current Loop Today Chapter 19 Magnetism Torque on a current loop, electrical motor Magnetic field around a current carrying wire. Ampere s law Solenoid Material magnetism Clicker 1 Which of the following is wrong?

More information

So far. Chapter 19. Today ( ) Magnets. Types of Magnetic Materials. More About Magnetism 10/2/2011

So far. Chapter 19. Today ( ) Magnets. Types of Magnetic Materials. More About Magnetism 10/2/2011 So far Chapter 19 Magnetism Electrostatics, properties of stationary charges Coulomb s law Electric field, electric potential Capacitors Ohm s law and resistance Today (19.1-19.4) Magnets Magnetism Earth

More information

Magnetism. Magnets. Section 1

Magnetism. Magnets. Section 1 Magnets More than 2,000 years ago Greeks discovered deposits of a mineral that was a natural magnet. The mineral is now called magnetite. In the twelfth century Chinese sailors used magnetite to make compasses

More information

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields

Magnetism. Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Magnetism Permanent magnets Earth s magnetic field Magnetic force Motion of charged particles in magnetic fields Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

More information

Chapter 22, Magnetism. Magnets

Chapter 22, Magnetism. Magnets Chapter 22, Magnetism Magnets Poles of a magnet (north and south ) are the ends where objects are most strongly attracted. Like poles repel each other and unlike poles attract each other Magnetic poles

More information

Chapter 22 Magnetism

Chapter 22 Magnetism Chapter 22 Magnetism 1 Overview of Chapter 22 The Magnetic Field The Magnetic Force on Moving Charges The Motion of Charged Particles in a Magnetic Field The Magnetic Force Exerted on a Current-Carrying

More information

Conceptual Physics. Chapter 24: MAGNETISM

Conceptual Physics. Chapter 24: MAGNETISM Conceptual Physics Chapter 24: MAGNETISM Magnetism The term magnetism comes from the name Magnesia, a coastal district of ancient Thessaly, Greece. Unusual stones, called lodestones, were found by the

More information

Some History of Magnetism

Some History of Magnetism Magnetism Some History of Magnetism The ancient Greeks were the first to observe magnetism. They studied the mineral magnetite. The poles of a magnet were observed to be south or north seeking. These properties

More information

Ch 29 - Magnetic Fields & Sources

Ch 29 - Magnetic Fields & Sources Ch 29 - Magnetic Fields & Sources Magnets......are made of ferromagnetic elements: iron, cobalt, nickel, gadolinium... Magnets have a north pole and a south pole. Magnetic Fields 1. The magnetic field

More information

Magnetic Force http://www-spof.gsfc.nasa.gov/education/imagnet.html The ancient Greeks, originally those near the city of Magnesia, and also the early Chinese knew about strange and rare stones (possibly

More information

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13

Electromagnetism. Chapter I. Figure 1.1: A schematic diagram of Earth s magnetic field. Sections 20-1, 20-13 Chapter I Electromagnetism Day 1 Magnetism Sections 20-1, 20-13 An investigation of permanent magnets shows that they only attract certain metals specifically those containing iron, or a few other materials,

More information

Magnetic Field Lines for a Loop

Magnetic Field Lines for a Loop Magnetic Field Lines for a Loop Figure (a) shows the magnetic field lines surrounding a current loop Figure (b) shows the field lines in the iron filings Figure (c) compares the field lines to that of

More information

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5)

PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) 1 PHYS:1200 LECTURE 27 ELECTRICITY AND MAGNETISM (5) Everyone has played with magnets and knows that they stick to some materials and not to others. This lecture explores the physical principles behind

More information

MAGNETIC FIELDS CHAPTER 21

MAGNETIC FIELDS CHAPTER 21 MAGNETIC FIELDS CHAPTER 21 1. A magnetic field may exist at a point as a result of moving charged particle 2. When a tiny bar magnet is suspended horizontally from its center, it lines up along the north

More information

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes

B for a Long, Straight Conductor, Special Case. If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes B for a Long, Straight Conductor, Special Case If the conductor is an infinitely long, straight wire, θ 1 = 0 and θ 2 = π The field becomes μ I B = o 2πa B for a Curved Wire Segment Find the field at point

More information

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields

Physics Week 5(Sem. 2) Name. Magnetism. Chapter Summary. Magnetic Fields Physics Week 5(Sem. 2) Name Chapter Summary Magnetism Magnetic Fields Permanent magnets have long been used in navigational compasses. The needle in a compass is supported to allow it to freely rotate

More information

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH.

May 08, Magnetism.notebook. Unit 9 Magnetism. This end points to the North; call it NORTH. This end points to the South; call it SOUTH. Unit 9 Magnetism This end points to the North; call it "NORTH." This end points to the South; call it "SOUTH." 1 The behavior of magnetic poles is similar to that of like and unlike electric charges. Law

More information

Chapter 8 Review, pages Knowledge

Chapter 8 Review, pages Knowledge Chapter 8 Review, pages 416 421 Knowledge 1. a) 2. b) 3. d) 4. c) 5. a) 6. d) 7. d) 8. True 9. True 10. True 11. True 12. False. Field theory does not include the study of the principles of spectral fields.

More information

Magnetism. February 24, 2014 Physics for Scientists & Engineers 2, Chapter 27 1

Magnetism. February 24, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism February 24, 2014 Physics for Scientists & Engineers 2, Chapter 27 1 Magnetism! The Sun has massive magnetic fields as do other stars! The Earth also has a magnetic field! In the region of Magnesia,

More information

Chapter 22: Magnetism

Chapter 22: Magnetism Chapter 22: Magnetism Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles repel, opposites attract. Brent Royuk

More information

Magnets. Magnetic vs. Electric

Magnets. Magnetic vs. Electric Magnets A force is applied to the iron filings causing them to align themselves to the direction of the magnetic field. A compass needle will tell you the direction of the field. Show Fields of little

More information

Physics 202, Lecture 11

Physics 202, Lecture 11 Physics 202, Lecture 11 Today s Topics Magnetic Fields and Forces (Ch. 27) Magnetic materials Magnetic forces on moving point charges Magnetic forces on currents, current loops Motion of charge in uniform

More information

Magnetic Forces and Fields (Chapters 29-30)

Magnetic Forces and Fields (Chapters 29-30) Magnetic Forces and Fields (Chapters 29-30) Magnetism Magnetic Materials and Sources Magnetic Field, Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University

Chapter 22: Magnetism. Brent Royuk Phys-112 Concordia University Chapter 22: Magnetism Brent Royuk Phys-112 Concordia University Magnets Magnets are caused by moving charges. Permanent Magnets vs. Electromagnets Magnets always have two poles, north and south. Like poles

More information

Magnetic Fields Permanent Magnets

Magnetic Fields Permanent Magnets 1 Magnetic Fields Permanent Magnets Magnetic fields are continuous loops leaving a North pole and entering a South pole they point in direction that an isolated North would move Highest strength near poles

More information

Phys102 Lecture 16/17 Magnetic fields

Phys102 Lecture 16/17 Magnetic fields Phys102 Lecture 16/17 Magnetic fields Key Points Electric Currents Produce Magnetic Fields Force on an Electric Current in a Magnetic Field; Definition of B Force on an Electric Charge Moving in a Magnetic

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 8 Electricity and Magnetism 1. Magnetism Application of magnetic forces Ampere s law 2. Induced voltages and induction Magnetic flux http://www.physics.wayne.edu/~alan/2140website/main.htm

More information

Announcements. l LON-CAPA #7 due Wed March 12 and Mastering Physics Chapter 24 due Tuesday March 11 l Enjoy your spring break next week

Announcements. l LON-CAPA #7 due Wed March 12 and Mastering Physics Chapter 24 due Tuesday March 11 l Enjoy your spring break next week Announcements l LON-CAPA #7 due Wed March 12 and Mastering Physics Chapter 24 due Tuesday March 11 l Enjoy your spring break next week hopefully someplace warm Connection with electric currents l The connection

More information

Magnetic Forces and Fields

Magnetic Forces and Fields Magnetic Forces and Fields Physics 102 Lecture 3 21 February 2002 IF NOT REGISTERED FOR PHYSICS 102, SEE REGISTRAR ASAP, AND REGISTER 21 Feb 2002 Physics 102 Lecture 3 1 RC Puzzler 21 Feb 2002 Physics

More information

Magnetism Chapter Questions

Magnetism Chapter Questions Magnetism Chapter Questions 1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces? 2. A Magnet has a north and a south

More information

Transmission line demo to illustrate why voltage along transmission lines is high

Transmission line demo to illustrate why voltage along transmission lines is high Transmission line demo to illustrate why voltage along transmission lines is high Connect to step down transformer 120V to 12V to lightbulb 12 V 6.5 A Lights up brightly Connect it to long fat wires Lights

More information

Lecture #4.4 Magnetic Field

Lecture #4.4 Magnetic Field Lecture #4.4 Magnetic Field During last several lectures we have been discussing electromagnetic phenomena. However, we only considered examples of electric forces and fields. We first talked about electrostatics

More information

Section 1 Vocab. Magnet Magnetic poles Magnetic forces Magnetic field Magnetic field lines

Section 1 Vocab. Magnet Magnetic poles Magnetic forces Magnetic field Magnetic field lines Magnetism Ch. 19 Section 1 Vocab Magnet Magnetic poles Magnetic forces Magnetic field Magnetic field lines Properties of magnets In an ancient Greek city (Magnesia) 2,000 years ago people discovered a

More information

Physics 25 Chapter 21 Dr. Alward

Physics 25 Chapter 21 Dr. Alward Physics 25 Chapter 21 Dr. Alward Magnetism and Magnetic Forces Magnetic Field of a Bar Magnet Magnetic field lines flow away from the north pole and sink on the south pole. Like Poles Repel Unlike Poles

More information

Magnets & Electromagnets. Pg

Magnets & Electromagnets. Pg Magnets & Electromagnets Pg. 378-385 Permanent Magnets 1. Where is the magnetic field the strongest? At the poles! **the magnetic field lines of a bar magnet are similar to the electric field lines of

More information

Lecture 8 Magnetic Fields Chp. 29

Lecture 8 Magnetic Fields Chp. 29 Lecture 8 Magnetic Fields Chp. 29 Cartoon Magnesia, Bar Magnet with N/S Poles, Right Hand Rule Topics Magnetism is likable, Compass and diclinometer, Permanent magnets Magnetic field lines, Force on a

More information

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16

PHYS ND semester Dr. Nadyah Alanazi. Lecture 16 1 PHYS 104 2 ND semester 1439-1440 Dr. Nadyah Alanazi Lecture 16 2 Chapter 29 Magnetic Field 29.1 Magnetic Fields and Forces 29.2 Magnetic Force Acting on a Current-Carrying Conductor 29.4 Motion of a

More information

Chapter 29. Magnetic Fields

Chapter 29. Magnetic Fields Chapter 29 Magnetic Fields A Brief History of Magnetism 13 th century BC Chinese used a compass Uses a magnetic needle Probably an invention of Arabic or Indian origin 800 BC Greeks Discovered magnetite

More information

MAGNETIC FIELDS. - magnets have been used by our species for thousands of years. - for many of these years we had no clue how they worked:

MAGNETIC FIELDS. - magnets have been used by our species for thousands of years. - for many of these years we had no clue how they worked: MAGNETIC FIELDS A SHORT HISTORY OF MAGNETS: - magnets have been used by our species for thousands of years - for many of these years we had no clue how they worked: 200 BC an ancient civilization in Asia

More information

A little history. Electricity and Magnetism are related!

A little history. Electricity and Magnetism are related! Intro to Magnetism A little history Until the early 19 th century, scientists thought electricity and magnetism were unrelated In 1820, Danish science professor Hans Christian Oersted was demonstrating

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Section 1 What is Magnetism? Section 1 Vocabulary Magnet Magnetic pole Magnetic force Magnetic field Magnetic field lines Properties of Magnets A magnet is any material that attracts

More information

Magnetic Forces and Fields (Chapters 32)

Magnetic Forces and Fields (Chapters 32) Magnetic Forces and Fields (Chapters 32) Magnetism Magnetic Materials and Sources Magnetic Field, B Magnetic Force Force on Moving Electric Charges Lorentz Force Force on Current Carrying Wires Applications

More information

Magnetic field and magnetic poles

Magnetic field and magnetic poles Magnetic field and magnetic poles Magnetic Field B is analogically similar to Electric Field E Electric charges (+ and -)are in analogy to magnetic poles(north:n and South:S). Paramagnetism, Diamagnetism,

More information

Vocabulary. Magnet. a material that can create magnetic effects by itself. Electromagnet

Vocabulary. Magnet. a material that can create magnetic effects by itself. Electromagnet Vocabulary Term Magnet Definition a material that can create magnetic effects by itself Electromagnet Magnets created by electric current flowing in wires. A simple electromagnet is a coil of wire wrapped

More information

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other.

> What happens when the poles of two magnets are brought close together? > Two like poles repel each other. Two unlike poles attract each other. CHAPTER OUTLINE Section 1 Magnets and Magnetic Fields Key Idea questions > What happens when the poles of two magnets are brought close together? > What causes a magnet to attract or repel another magnet?

More information

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying

11/13/2018. The Hall Effect. The Hall Effect. The Hall Effect. Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

Consider a magnetic field perpendicular to a flat, currentcarrying

Consider a magnetic field perpendicular to a flat, currentcarrying The Hall Effect Consider a magnetic field perpendicular to a flat, currentcarrying conductor. As the charge carriers move at the drift speed v d, they will experience a magnetic force F B = ev d B perpendicular

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter Magnetism

More information

Note on Posted Slides. Magnetism. Magnetism. The Magnetic Force. The Electric Force. PHY205H1S Physics of Everyday Life Class 18: Magnetism

Note on Posted Slides. Magnetism. Magnetism. The Magnetic Force. The Electric Force. PHY205H1S Physics of Everyday Life Class 18: Magnetism ote on Posted lides These are the slides that I intended to show in class on Wed. Mar. 20, 2013. They contain important ideas and questions from your reading. Due to time constraints, I was probably not

More information

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli

Lecture PowerPoints. Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli Lecture PowerPoints Chapter 20 Physics: Principles with Applications, 6 th edition Giancoli 2005 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for

More information

Types of Magnetism and Magnetic Domains

Types of Magnetism and Magnetic Domains Types of Magnetism and Magnetic Domains Magnets or objects with a Magnetic Moment A magnet is an object or material that attracts certain metals, such as iron, nickel and cobalt. It can also attract or

More information

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT

PHYSICS. Chapter 29 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 29 Lecture RANDALL D. KNIGHT Chapter 29 The Magnetic Field IN THIS CHAPTER, you will learn about magnetism and the magnetic field.

More information

Chapter 17: Magnetism

Chapter 17: Magnetism Chapter 17: Magnetism Section 17.1: The Magnetic Interaction Things You Already Know Magnets can attract or repel Magnets stick to some things, but not all things Magnets are dipoles: north and south Labels

More information

PHYS 1444 Lecture #10

PHYS 1444 Lecture #10 PHYS 1444 Lecture #10 Tuesday July 10, 2012 Ian Howley Chapter 27 Magnetism Magnetic Force 1 Magnetism So are magnet poles analogous to electric charge? No. Why not? While the electric charges (positive

More information

Physics 212 Question Bank III 2006

Physics 212 Question Bank III 2006 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all. The magnetic force on a moving charge is (A)

More information

Final Revision G 7 Physics ( ) Multiple Choice Identify the choice that best completes the statement or answers the question.

Final Revision G 7 Physics ( ) Multiple Choice Identify the choice that best completes the statement or answers the question. Final Revision G 7 Physics ( 2017-2018 ) Multiple Choice Identify the choice that best completes the statement or answers the question. 1 What happens if you break a magnet in half? A One half will have

More information

Chapter 20 Lecture Notes

Chapter 20 Lecture Notes Chapter 20 Lecture Notes Physics 2424 - Strauss Formulas: B = µ 0 I/2πr B = Nµ 0 I/(2R) B = µ 0 ni Σ B l = µ 0 I F = Bqv sinθ r = mv/bq m = (er 2 /2V) B 2 F = ILB sinθ τ = NIAB sinϕ F/L = I 2 I 1 µ 0 /2πd

More information

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time

Displacement Current. Ampere s law in the original form is valid only if any electric fields present are constant in time Displacement Current Ampere s law in the original form is valid only if any electric fields present are constant in time Maxwell modified the law to include timesaving electric fields Maxwell added an

More information

Electromagnetism Notes 1 Magnetic Fields

Electromagnetism Notes 1 Magnetic Fields Electromagnetism Notes 1 Magnetic Fields Magnets can or other magnets. They are able to exert forces on each other without touching because they are surrounded by. Magnetic Flux refers to Areas with many

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism Magnetic Fields When moving through a magnetic field, a charged particle experiences a magnetic force This force has a maximum value when the charge moves perpendicularly to the magnetic

More information

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker

Lecture Outlines Chapter 22. Physics, 3 rd Edition James S. Walker Lecture Outlines Chapter 22 Physics, 3 rd Edition James S. Walker 2007 Pearson Prentice Hall This work is protected by United States copyright laws and is provided solely for the use of instructors in

More information

PHYS 1444 Section 003 Lecture #17

PHYS 1444 Section 003 Lecture #17 PHYS 1444 Section 003 Lecture #17 Tuesday, Nov. 1, 2011 Electric Current and Magnetism Magnetic Forces on Electric Current About Magnetic Field Magnetic Forces on a Moving Charge Charged Particle Path

More information

Magnets and Electromagnetism

Magnets and Electromagnetism Review 9 Magnets and Electromagnetism 1. A 1.2 cm wire carrying a current of 0.8 A is perpendicular to a 2.4 T magnetic field. What is the magnitude of the force on the wire? 2. A 24 cm length of wire

More information

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE

MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 4.2 MAGNETISM ELECTRIC CURRENTS AND MAGNETISIM When electric charges are in motion they exert forces on each other that can t be explained by Coulomb s law. If two parallel

More information

General Physics (PHYS )

General Physics (PHYS ) General Physics (PHYS ) Chapter 22 Magnetism Magnetic Force Exerted on a current Magnetic Torque Electric Currents, magnetic Fields, and Ampere s Law Current Loops and Solenoids Magnetism in Matter GOT

More information

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek.

Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. Chapter 7 Magnetism 7.1 Introduction Magnetism has been known thousands of years dating back to the discovery recorded by the ancient Greek. 1900 Maxwell combine the theory of electric and magnetic to

More information

Chapter 19. Magnetism

Chapter 19. Magnetism Chapter 19 Magnetism The figure shows the path of a negatively charged particle in a region of a uniform magnetic field. Answer the following questions about this situation (in each case, we revert back

More information

Chapter 27 Magnetic Fields and Magnetic Forces

Chapter 27 Magnetic Fields and Magnetic Forces Chapter 27 Magnetic Fields and Magnetic Forces In this chapter we investigate forces exerted by magnetic fields. In the next chapter we will study the sources of magnetic fields. The force produced by

More information

Physics 212 Question Bank III 2010

Physics 212 Question Bank III 2010 A negative charge moves south through a magnetic field directed north. The particle will be deflected (A) North. () Up. (C) Down. (D) East. (E) not at all.. A positive charge moves West through a magnetic

More information

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE

MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE MODULE 6 ELECTROMAGNETISM MAGNETIC FIELDS MAGNETIC FLUX Magnetic field (-field ): a region of influence where magnetic materials and electric currents are subjected to a magnetic

More information

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6.

Chapter 19. Magnetism. 1. Magnets. 2. Earth s Magnetic Field. 3. Magnetic Force. 4. Magnetic Torque. 5. Motion of Charged Particles. 6. Chapter 19 Magnetism 1. Magnets 2. Earth s Magnetic Field 3. Magnetic Force 4. Magnetic Torque 5. Motion of Charged Particles 6. Amperes Law 7. Parallel Conductors 8. Loops and Solenoids 9. Magnetic Domains

More information

What do we expect at t=32s?

What do we expect at t=32s? Announcements l Help room hours (1248 BPS) Ian La Valley(TA) Mon 4-6 PM Tues 12-3 PM Wed 6-9 PM Fri 10 AM-noon l LON-CAPA #7 due Oct. 25 l Final Exam Tuesday Dec 11 7:45-9:45 AM What do we expect at t=32s?

More information

Charging a Capacitor in RC Circuits

Charging a Capacitor in RC Circuits Lecture 8-18 Charging a Capacitor in RC Circuits 1. Charging equation: From Kirchhoff's Law q ε t/ RC t/ τ ε ir = 0 i = e = I0e C R 2. Switch closed at t = 0. Initially C is uncharged. ΔV C across C is

More information

Physics 10. Lecture 24A. "When you feel bad about yourself you reverse your magnet and repel people." --S A Grafio

Physics 10. Lecture 24A. When you feel bad about yourself you reverse your magnet and repel people. --S A Grafio Physics 10 Lecture 24A "When you feel bad about yourself you reverse your magnet and repel people." --S A Grafio History of Magnets Magnets were discovered by early man. Asia Minor has region known as

More information

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields

Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields Physical Science Context Lecture 2 The Earth and Sun's Magnetic Fields The earth is a huge magnetic and close to its surface it can be approximated as a bar magnet (a magnetic dipole) that is positioned

More information

Physics 17 Part M Dr. Alward

Physics 17 Part M Dr. Alward Physics 17 Part M Dr. Alward Elementary Facts Concerning Magnets Magnets have north and south poles. Like Poles Repel Unlike Poles Attract Magnetic Dipoles Magnets have two poles, one north, the other

More information

Section 3: Mapping Magnetic Fields. In this lesson you will

Section 3: Mapping Magnetic Fields. In this lesson you will Section 3: Mapping Magnetic Fields In this lesson you will state the Law(s) of magnetic forces use iron filings to map the field around various configurations of bar magnets and around a horse shoe magnet

More information

PHYS 1444 Section 003 Lecture #15

PHYS 1444 Section 003 Lecture #15 PHYS 1444 Section 003 Lecture #15 Monday, Oct. 24, 2005 Magnetic field Earth s magnetic field Magnetic field by electric current Magnetic force on electric current Magnetic force on a moving charge Today

More information

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T.

Magnetic fields. The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Magnetic fields The symbol we use for a magnetic field is B. The unit is the tesla (T). The Earth s magnetic field is about 5 x 10-5 T. Which pole of a magnet attracts the north pole of a compass? Which

More information

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire?

Magnetic Force. A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? Magnetic Force A vertical wire carries a current and is in a vertical magnetic field. What is the direction of the force on the wire? (a) left (b) right (c) zero (d) into the page (e) out of the page B

More information

General Physics (PHY 2140)

General Physics (PHY 2140) General Physics (PHY 2140) Lecture 7 Electricity and Magnetism Magnetism Magnetic fields and force Application of magnetic forces http://www.physics.wayne.edu/~alan/2140website/main.htm Chapter 19 1 Lightning

More information

Unit 12: Magnetism. Background Reading

Unit 12: Magnetism. Background Reading Unit 12: Magnetism Background Reading What causes magnetism? Have you ever wondered why certain materials can be easily magnetized while others seem to be unaffected by magnets? The properties of certain

More information

Physics H. Instructor: Dr. Alaa Mahmoud

Physics H. Instructor: Dr. Alaa Mahmoud Physics 202 1436-1437 H Instructor: Dr. Alaa Mahmoud E-mail: alaa_y_emam@hotmail.com Chapter 28 magnetic Field Magnetic fingerprinting allows fingerprints to be seen on surfaces that otherwise would not

More information

PERMANENT MAGNETS 2/13/2017 HORSESHOE MAGNET BAR MAGNET. Magnetic interaction. Magnetic interaction. Another way of stating this is that

PERMANENT MAGNETS 2/13/2017 HORSESHOE MAGNET BAR MAGNET. Magnetic interaction. Magnetic interaction. Another way of stating this is that UNT 5 Magnetism and Electromagnetic nduction AP PHYSCS 2 Over 2,500 years ago, ancient Chinese civilization discovered that certain rocks - now called lodestones - will attract each other, as well as pick

More information

Current Loop as a Magnetic Dipole & Dipole Moment:

Current Loop as a Magnetic Dipole & Dipole Moment: MAGNETISM 1. Bar Magnet and its properties 2. Current Loop as a Magnetic Dipole and Dipole Moment 3. Current Solenoid equivalent to Bar Magnet 4. Bar Magnet and it Dipole Moment 5. Coulomb s Law in Magnetism

More information