Dynamics of structures

Size: px
Start display at page:

Download "Dynamics of structures"

Transcription

1 Dynamics of structures 1.2 Viscous damping Luc St-Pierre October 30, / 22

2 Summary so far We analysed the spring-mass system and found that its motion is governed by: mẍ(t) + kx(t) = 0 k y m x x With solution: A x(t) = A sin(ω n t + φ) t -A T (And x(t) = ae λt is an alternative solution.) 2 / 22

3 Viscous dampers Viscous dampers are often used in mechanical systems; here is an example of a car damper. In this course, we assume that dampers/dashpots have a linear behaviour in the form: f c (t) = cẋ(t) where the constant c has units of Ns/m. 3 / 22

4 Damped system Free-body diagram k x( t) f k = k x x( t) c m Friction-free surface fc = c x m The equation of motion for the damped system shown here is given by: f k f c = mẍ kx cẋ = mẍ mẍ + cẋ + kx = 0 4 / 22

5 Characteristic equation Let s assume the following solution: x(t) = ae λt ẋ(t) = aλe λt ẍ(t) = aλ 2 e λt with initial values x(0) = x 0 and ẋ(t) = v 0. Substituting in the equation motion gives: mẍ(t) + cẋ(t) + kx(t) = 0 maλ 2 e λt + caλe λt + kae λt = 0 (mλ 2 + cλ + k)e λt = 0 mλ 2 + cλ + k = 0 This is the characteristic equation and its roots are: λ 1,2 = c ± c 2 4mk 2m 5 / 22

6 Regimes of behaviour The roots of the characteristic equation are: λ 1,2 = c ± c 2 4mk 2m which gives three types of motion: Overdamped: c 2 4mk > 0 λ 1 and λ 2 are real. Critically damped: c 2 4mk = 0 λ 1 = λ 2 is real. Underdamped: c 2 4mk < 0 λ 1 and λ 2 are complex. This is clear, but it can be made more elegant by defining new variables. 6 / 22

7 Critical damping coefficient and damping ratio By definition, critically damped motion implies that: c 2 4mk = 0 c cr 2 km = 2mω n where c cr is the critical damping coefficient and ω n = k/m is the natural angular frequency. Let s use c cr to define the damping ratio: ζ c c cr = c 2mω n = c 2 km λ 1,2 = c ± c 2 4mk 2m = c ω n ± 2 ( ) km c 2 2mω n 2m 2 1 km λ 1,2 = ζω n ± ω n ζ / 22

8 Characteristic root equation revisited The characteristic root equation can be re-written as: λ 1,2 = c ± c 2 4mk 2m = ζω n ± ω n ζ 2 1 and again, we have three types of motion: Overdamped: ζ > 1 Critically damped: ζ = 1 Underdamped: 0 < ζ < 1 λ 1 and λ 2 are real. λ 1 = λ 2 is real. λ 1 and λ 2 are complex. Remember that we are interested in λ 1 and λ 2 because they are part of our solution: x(t) = a 1 e λ 1t + a 2 e λ 2t 8 / 22

9 Underdamped motion 0 < ζ < 1 The underdamped complex solutions are: λ 1,2 = ζω n ± ω n ζ 2 1 = ζω n ± ω n j 1 ζ 2 = ζω n ± ω d j where ω d = ω n 1 ζ 2 is the damped natural angular frequency. Our solution can be written: x(t) = a 1 e λ 1t + a 2 e λ 2t = e ζωnt ( a 1 e jω dt + a 2 e jω dt ) Using Euler relations e θj = cos θ + j sin θ and e θj = cos θ j sin θ, x(t) becomes: x(t) = e ζωnt [(a 1 + a 2 ) cos ω d t + j(a 1 a 2 ) sin ω d t] At the moment, x(t) is complex. How can we ensure that we have a real solution? 9 / 22

10 Underdamped motion 0 < ζ < 1 Our complex underdamped solution is: x(t) = e ζωnt [(a 1 + a 2 ) cos ω d t + j(a 1 a 2 ) sin ω d t] where a 1 and a 2 are complex numbers. We can make x(t) real by forcing a 1 and a 2 to be conjugate pairs, meaning that: A consequence is that: a 1 = b + dj and a 2 = b dj A 2 a 1 + a 2 = 2b and A 1 j(a 1 a 2 ) = 2d where A 1 and A 2 are both real. Substituting in x(t) gives: x(t) = e ζωnt [A 1 sin ω d t + A 2 cos ω d t] = Ae ζωnt sin(ω d t + φ) where A = A A2 2 and φ = arctan(a 2/A 1 ). 10 / 22

11 Underdamped motion 0 < ζ < 1 Our (real) underdamped solution now is: x(t) = Ae ζωnt sin(ω d t + φ) and next we have to find A and φ. With initial conditions x(0) = x 0 and ẋ(0) = v 0, we obtain: x(0) = x 0 = A sin φ and ẋ(0) = v 0 = A [ ζω n sin φ + ω d cos φ] Solving this system of two equations and two unknowns returns: (v 0 + x 0 ζω n ) A = 2 + (x 0 ω d ) 2 ( ) x0 ω d and φ = arctan v 0 + x 0 ζω n ω 2 d 11 / 22

12 Underdamped motion 0 < ζ < 1 Underdamped solution is: x(t) = Ae ζωnt sin(ω d t+φ) Most mechanical systems vibrate with an underdamped response. Displacement D. J. Inman Time (sec) 12 / 22

13 Overdamped motion ζ > 1 The overderdamped solution is given by: x(t) = a 3 e ( ζωn+ω d)t + a 4 e ( ζωn ω d)t Here, a 3 and a 4 are real. I have changed the subscripts to differentiate with the underdamped case. Initial conditions prescribe: x(0) = x 0 = a 3 + a 4 and ẋ(0) = v 0 = ζω n (a 3 + a 4 ) + ω d (a 3 a 4 ) and solving this system of two equations and two unknowns returns: a 3 = v 0 + (ζω n + ω d )x 0 2ω d and a 4 = (ω d ζω n )x 0 v 0 2ω d 13 / 22

14 Overdamped motion ζ > 1 Underdamped solution: x(t) = a 3 e ( ζωn+ω d)t + a 4 e ( ζωn ω d)t The overdamped response does not oscillate: x(t) returns to rest exponentially. Displacement (mm) k=225n/m m=100kg and ζ=2 0.6 x 0 =0.4mm v 0 =1mm/s 0.5 x 0 =0.4mm v 0 =0mm/s x =0.4mm v 0 =-1mm/s D. J. Inman Time (sec) 14 / 22

15 Critically damped motion ζ = 1 Since λ 1,2 = ζω n = ω n, the critically damped solution becomes: x(t) = a 5 e ωnt + a 6 te ωnt Again, a 5 and a 6 are real. The initial conditions prescribe: x(0) = x 0 = a 5 a 5 = x 0 ẋ(0) = v 0 = a 5 ω n + a 6 a 6 = v 0 + ω n x 0 With these, our solution becomes: x(t) = [x 0 + (v 0 + ω n x 0 )t] e ωnt 15 / 22

16 Critically damped motion ζ = 1 Critically damped solution: x(t) = [x 0 + (v 0 + ω n x 0 )t] e ωnt Displacement (mm) k=225n/m m=100kg and ζ=1 x 0 =0.4mm v 0 =1mm/s x 0 =0.4mm v 0 =0mm/s x 0 =0.4mm v 0 =-1mm/s 0 D. J. Inman Time (sec) The critically damped response represents the smallest value of ζ that produces a nonoscillatory motion. It provides the fastest return to zero without oscillations. 16 / 22

17 Example: damped system Consider a damped system with mass m = kg, spring k = N/m and dashpot c = 0.11 Ns/m. Evaluate: the natural angular frequency ω n, the frequency f n and the period T of the oscillations, and the damping ratio ζ. Is the system under/over/critically damped? 17 / 22

18 Solution: damped system The natural angular frequency is given by: k ω n = m = 132 rad/s The period and frequency are: T = 2π = 2π ω n s and f n = 1 T = ω n 2π = Hz, 2π respectively. Finally, the damping ratio is: ζ = c c cr = c 2 km = The system is underdamped because ζ < / 22

19 Example: human knee In knee-lock position, the human leg has a natural frequency f n = 20 Hz and a damping ratio ζ = Jumping from a height of 18 mm corresponds to applying an initial velocity v 0 = 0.6 m and zero initial displacement. For these conditions: Calculate and plot the response of the system x(t). Evaluate the maximum acceleration experienced by the leg if damping is neglected. 19 / 22

20 Solution: human knee The natural angular frequency is: ω n = 2πf n = 2π rad/s while the damped natural angular frequency is: ω d = ω n 1 ζ 2 = rad/s Since ζ < 1, the system is underdamped and its solution is given by: x(t) = Ae ζωnt sin(ω d t + φ) where (v 0 + x 0 ζω n ) A = 2 + (x 0 ω d ) ωd 2 = m and ( ) ( ) x0 ω d 0 φ = arctan = arctan = 0 rad v 0 + x 0 ζω n / 22

21 Solution: human knee Therefore, the solution for the system is: x(t) = Ae ζωnt sin(ω d t + φ) = e 28.15t sin(122.47t) and this expression is plotted below. x (mm) Ae ζωnt x t = Ae ζωnt sin ω d t + φ 1 0 Time (s) / 22

22 Solution: human knee Otherwise, if damping is neglected then the solution is given by: x(t) = 1 ω ω nx v2 0 sin(ω nt + φ) n and differentiating gives the corresponding acceleration: ẍ(t) = ω n ω 2 nx v2 0 sin(ω nt + φ) Therefore, the maximum acceleration is obtained when sin(ω n t + φ) = ±1 giving: max(ẍ(t)) = ω n ω 2 nx v2 0 = m/s g 22 / 22

Vibrations: Second Order Systems with One Degree of Freedom, Free Response

Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single Degree of Freedom System 1.003J/1.053J Dynamics and Control I, Spring 007 Professor Thomas Peacock 5//007 Lecture 0 Vibrations: Second Order Systems with One Degree of Freedom, Free Response Single

More information

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil

Introduction to Vibration. Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Introduction to Vibration Mike Brennan UNESP, Ilha Solteira São Paulo Brazil Vibration Most vibrations are undesirable, but there are many instances where vibrations are useful Ultrasonic (very high

More information

Exercises Lecture 15

Exercises Lecture 15 AM1 Mathematical Analysis 1 Oct. 011 Feb. 01 Date: January 7 Exercises Lecture 15 Harmonic Oscillators In classical mechanics, a harmonic oscillator is a system that, when displaced from its equilibrium

More information

MAT187H1F Lec0101 Burbulla

MAT187H1F Lec0101 Burbulla Spring 2017 Second Order Linear Homogeneous Differential Equation DE: A(x) d 2 y dx 2 + B(x)dy dx + C(x)y = 0 This equation is called second order because it includes the second derivative of y; it is

More information

Introduction to Vibration. Professor Mike Brennan

Introduction to Vibration. Professor Mike Brennan Introduction to Vibration Professor Mie Brennan Introduction to Vibration Nature of vibration of mechanical systems Free and forced vibrations Frequency response functions Fundamentals For free vibration

More information

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System

Section 4.9; Section 5.6. June 30, Free Mechanical Vibrations/Couple Mass-Spring System Section 4.9; Section 5.6 Free Mechanical Vibrations/Couple Mass-Spring System June 30, 2009 Today s Session Today s Session A Summary of This Session: Today s Session A Summary of This Session: (1) Free

More information

Mechanical System. Seoul National Univ. School of Mechanical and Aerospace Engineering. Spring 2008

Mechanical System. Seoul National Univ. School of Mechanical and Aerospace Engineering. Spring 2008 Mechanical Syste Newton s Laws 1)First law : conservation of oentu no external force no oentu change linear oentu : v Jω angular oentu : dv ) Second law : F = a= dt d T T = J α = J ω dt Three Basic Eleents

More information

Second Order Systems

Second Order Systems Second Order Systems independent energy storage elements => Resonance: inertance & capacitance trade energy, kinetic to potential Example: Automobile Suspension x z vertical motions suspension spring shock

More information

Dynamics of Structures: Theory and Analysis

Dynamics of Structures: Theory and Analysis 1. Free vibrations 2. Forced vibrations 3. Transient response 4. Damping mechanisms Dynamics of Structures: Theory and Analysis Steen Krenk Technical University of Denmark 5. Modal analysis I: Basic idea

More information

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is

Oscillations. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring of constant k is Dr. Alain Brizard College Physics I (PY 10) Oscillations Textbook Reference: Chapter 14 sections 1-8. Simple Harmonic Motion of a Mass on a Spring The equation of motion for a mass m is attached to a spring

More information

Laboratory handouts, ME 340

Laboratory handouts, ME 340 Laboratory handouts, ME 340 This document contains summary theory, solved exercises, prelab assignments, lab instructions, and report assignments for Lab 4. 2014-2016 Harry Dankowicz, unless otherwise

More information

Modeling and Experimentation: Mass-Spring-Damper System Dynamics

Modeling and Experimentation: Mass-Spring-Damper System Dynamics Modeling and Experimentation: Mass-Spring-Damper System Dynamics Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin July 20, 2014 Overview 1 This lab is meant to

More information

F = ma, F R + F S = mx.

F = ma, F R + F S = mx. Mechanical Vibrations As we mentioned in Section 3.1, linear equations with constant coefficients come up in many applications; in this section, we will specifically study spring and shock absorber systems

More information

Problem Set # 9 Math Methods Winter 2018 Due Date: Apr , 8.30am

Problem Set # 9 Math Methods Winter 2018 Due Date: Apr , 8.30am Problem Set # 9 Math Methods Winter 2018 Due Date: Apr 04 2018, 8.30am The theme of this homework is solving ODEs. Remember, a good guess for a solution to an ODE is always Ae rt. Then figure out what

More information

Engi Mechanical Vibrations 1. Consists of a mass, spring and possibly a damper.

Engi Mechanical Vibrations 1. Consists of a mass, spring and possibly a damper. Engi6933 - Mechanical Vibrations 1 1 Introduction 1.1 Definitions Vibration A motion that repeats itself after a time interval or oscillation (e.g. pendulum, plucked guitar string). Vibrating system Consists

More information

2. Determine whether the following pair of functions are linearly dependent, or linearly independent:

2. Determine whether the following pair of functions are linearly dependent, or linearly independent: Topics to be covered on the exam include: Recognizing, and verifying solutions to homogeneous second-order linear differential equations, and their corresponding Initial Value Problems Recognizing and

More information

Vibrations of Single Degree of Freedom Systems

Vibrations of Single Degree of Freedom Systems Vibrations of Single Degree of Freedom Systems CEE 541. Structural Dynamics Department of Civil and Environmental Engineering Duke University Henri P. Gavin Fall, 16 This document describes free and forced

More information

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom.

The student will experimentally determine the parameters to represent the behavior of a damped oscillatory system of one degree of freedom. Practice 3 NAME STUDENT ID LAB GROUP PROFESSOR INSTRUCTOR Vibrations of systems of one degree of freedom with damping QUIZ 10% PARTICIPATION & PRESENTATION 5% INVESTIGATION 10% DESIGN PROBLEM 15% CALCULATIONS

More information

Dynamics of Structures

Dynamics of Structures Dynamics of Structures Elements of structural dynamics Roberto Tomasi 11.05.2017 Roberto Tomasi Dynamics of Structures 11.05.2017 1 / 22 Overview 1 SDOF system SDOF system Equation of motion Response spectrum

More information

4.9 Free Mechanical Vibrations

4.9 Free Mechanical Vibrations 4.9 Free Mechanical Vibrations Spring-Mass Oscillator When the spring is not stretched and the mass m is at rest, the system is at equilibrium. Forces Acting in the System When the mass m is displaced

More information

General Response of Second Order System

General Response of Second Order System General Response of Second Order System Slide 1 Learning Objectives Learn to analyze a general second order system and to obtain the general solution Identify the over-damped, under-damped, and critically

More information

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech

Chapter 5 Design. D. J. Inman 1/51 Mechanical Engineering at Virginia Tech Chapter 5 Design Acceptable vibration levels (ISO) Vibration isolation Vibration absorbers Effects of damping in absorbers Optimization Viscoelastic damping treatments Critical Speeds Design for vibration

More information

Math Assignment 5

Math Assignment 5 Math 2280 - Assignment 5 Dylan Zwick Fall 2013 Section 3.4-1, 5, 18, 21 Section 3.5-1, 11, 23, 28, 35, 47, 56 Section 3.6-1, 2, 9, 17, 24 1 Section 3.4 - Mechanical Vibrations 3.4.1 - Determine the period

More information

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS

APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS APPLICATIONS OF SECOND-ORDER DIFFERENTIAL EQUATIONS Second-order linear differential equations have a variety of applications in science and engineering. In this section we explore two of them: the vibration

More information

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION

EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION 1 EQUIVALENT SINGLE-DEGREE-OF-FREEDOM SYSTEM AND FREE VIBRATION The course on Mechanical Vibration is an important part of the Mechanical Engineering undergraduate curriculum. It is necessary for the development

More information

The Phasor Analysis Method For Harmonically Forced Linear Systems

The Phasor Analysis Method For Harmonically Forced Linear Systems The Phasor Analysis Method For Harmonically Forced Linear Systems Daniel S. Stutts, Ph.D. April 4, 1999 Revised: 10-15-010, 9-1-011 1 Introduction One of the most common tasks in vibration analysis is

More information

Vibrations and Waves MP205, Assignment 4 Solutions

Vibrations and Waves MP205, Assignment 4 Solutions Vibrations and Waves MP205, Assignment Solutions 1. Verify that x = Ae αt cos ωt is a possible solution of the equation and find α and ω in terms of γ and ω 0. [20] dt 2 + γ dx dt + ω2 0x = 0, Given x

More information

Forced Response - Particular Solution x p (t)

Forced Response - Particular Solution x p (t) Governing Equation 1.003J/1.053J Dynamics and Control I, Spring 007 Proessor Peacoc 5/7/007 Lecture 1 Vibrations: Second Order Systems - Forced Response Governing Equation Figure 1: Cart attached to spring

More information

Transduction Based on Changes in the Energy Stored in an Electrical Field

Transduction Based on Changes in the Energy Stored in an Electrical Field Lecture 6- Transduction Based on Changes in the Energy Stored in an Electrical Field Actuator Examples Microgrippers Normal force driving In-plane force driving» Comb-drive device F = εav d 1 ε oε F rwv

More information

Faculty of Computers and Information. Basic Science Department

Faculty of Computers and Information. Basic Science Department 18--018 FCI 1 Faculty of Computers and Information Basic Science Department 017-018 Prof. Nabila.M.Hassan 18--018 FCI Aims of Course: The graduates have to know the nature of vibration wave motions with

More information

Chapter 7: Time Domain Analysis

Chapter 7: Time Domain Analysis Chapter 7: Time Domain Analysis Samantha Ramirez Preview Questions How do the system parameters affect the response? How are the parameters linked to the system poles or eigenvalues? How can Laplace transforms

More information

Damped Harmonic Oscillator

Damped Harmonic Oscillator Damped Harmonic Oscillator Note: We use Newton s 2 nd Law instead of Conservation of Energy since we will have energy transferred into heat. F spring = -kx; F resistance = -bv. Note also: We use F ar =

More information

Some Aspects of Structural Dynamics

Some Aspects of Structural Dynamics Appendix B Some Aspects of Structural Dynamics This Appendix deals with some aspects of the dynamic behavior of SDOF and MDOF. It starts with the formulation of the equation of motion of SDOF systems.

More information

Chapter 2 SDOF Vibration Control 2.1 Transfer Function

Chapter 2 SDOF Vibration Control 2.1 Transfer Function Chapter SDOF Vibration Control.1 Transfer Function mx ɺɺ( t) + cxɺ ( t) + kx( t) = F( t) Defines the transfer function as output over input X ( s) 1 = G( s) = (1.39) F( s) ms + cs + k s is a complex number:

More information

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations

Topic 5 Notes Jeremy Orloff. 5 Homogeneous, linear, constant coefficient differential equations Topic 5 Notes Jeremy Orloff 5 Homogeneous, linear, constant coefficient differential equations 5.1 Goals 1. Be able to solve homogeneous constant coefficient linear differential equations using the method

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations 14-1 Oscillations of a Spring If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The

More information

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017

1-DOF Vibration Characteristics. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 7 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 7 Fall 2017 Free Undamped Vibration Follow Palm, Sect. 3.2, 3.3 (pp 120-138), 3.5 (pp 144-151), 3.8 (pp. 167-169) The equation

More information

Frequency Response of Linear Time Invariant Systems

Frequency Response of Linear Time Invariant Systems ME 328, Spring 203, Prof. Rajamani, University of Minnesota Frequency Response of Linear Time Invariant Systems Complex Numbers: Recall that every complex number has a magnitude and a phase. Example: z

More information

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2

MCE 366 System Dynamics, Spring Problem Set 2. Solutions to Set 2 MCE 366 System Dynamics, Spring 2012 Problem Set 2 Reading: Chapter 2, Sections 2.3 and 2.4, Chapter 3, Sections 3.1 and 3.2 Problems: 2.22, 2.24, 2.26, 2.31, 3.4(a, b, d), 3.5 Solutions to Set 2 2.22

More information

Section 3.7: Mechanical and Electrical Vibrations

Section 3.7: Mechanical and Electrical Vibrations Section 3.7: Mechanical and Electrical Vibrations Second order linear equations with constant coefficients serve as mathematical models for mechanical and electrical oscillations. For example, the motion

More information

Chapter 14 Oscillations

Chapter 14 Oscillations Chapter 14 Oscillations If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is called periodic. The mass and spring system is a

More information

Forced Damped Vibrations

Forced Damped Vibrations Forced Damped Vibrations Forced Damped Motion Definitions Visualization Cafe door Pet door Damped Free Oscillation Model Tuning a Dampener Bicycle trailer Forced Damped Motion Real systems do not exhibit

More information

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM

KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY OSCILLATIONS AND WAVES PRACTICE EXAM KEELE UNIVERSITY PHYSICS/ASTROPHYSICS MODULE PHY-10012 OSCILLATIONS AND WAVES PRACTICE EXAM Candidates should attempt ALL of PARTS A and B, and TWO questions from PART C. PARTS A and B should be answered

More information

Chapter 14 Periodic Motion

Chapter 14 Periodic Motion Chapter 14 Periodic Motion 1 Describing Oscillation First, we want to describe the kinematical and dynamical quantities associated with Simple Harmonic Motion (SHM), for example, x, v x, a x, and F x.

More information

CEHMS Center for Energy Harvesting Materials and Systems

CEHMS Center for Energy Harvesting Materials and Systems CEHMS Center for Energy Harvesting Materials and Systems Shashank Priya, Director Email: spriya@vt.edu Phone: (540) 231 0745 Dennis Smith, Site Director Email: dwsmith@utdallas.edu Phone: (972) 883-2782

More information

18.12 FORCED-DAMPED VIBRATIONS

18.12 FORCED-DAMPED VIBRATIONS 8. ORCED-DAMPED VIBRATIONS Vibrations A mass m is attached to a helical spring and is suspended from a fixed support as before. Damping is also provided in the system ith a dashpot (ig. 8.). Before the

More information

Thursday, August 4, 2011

Thursday, August 4, 2011 Chapter 16 Thursday, August 4, 2011 16.1 Springs in Motion: Hooke s Law and the Second-Order ODE We have seen alrealdy that differential equations are powerful tools for understanding mechanics and electro-magnetism.

More information

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 1 April (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: Solutions Conference: Date: 1 April 2005 EXAM #1: D2005 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. (2) Show

More information

Oscillatory Motion SHM

Oscillatory Motion SHM Chapter 15 Oscillatory Motion SHM Dr. Armen Kocharian Periodic Motion Periodic motion is motion of an object that regularly repeats The object returns to a given position after a fixed time interval A

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as

In the presence of viscous damping, a more generalized form of the Lagrange s equation of motion can be written as 2 MODELING Once the control target is identified, which includes the state variable to be controlled (ex. speed, position, temperature, flow rate, etc), and once the system drives are identified (ex. force,

More information

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

Date: 31 March (1) The only reference material you may use is one 8½x11 crib sheet and a calculator. PH1140: Oscillations and Waves Name: SOLUTIONS AT END Conference: Date: 31 March 2005 EXAM #1: D2006 INSTRUCTIONS: (1) The only reference material you may use is one 8½x11 crib sheet and a calculator.

More information

Simple Harmonic Motion

Simple Harmonic Motion Simple Harmonic Motion (FIZ 101E - Summer 2018) July 29, 2018 Contents 1 Introduction 2 2 The Spring-Mass System 2 3 The Energy in SHM 5 4 The Simple Pendulum 6 5 The Physical Pendulum 8 6 The Damped Oscillations

More information

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc.

Chapter 14 Oscillations. Copyright 2009 Pearson Education, Inc. Chapter 14 Oscillations Oscillations of a Spring Simple Harmonic Motion Energy in the Simple Harmonic Oscillator Simple Harmonic Motion Related to Uniform Circular Motion The Simple Pendulum The Physical

More information

Exam 3 Review Sheet Math 2070

Exam 3 Review Sheet Math 2070 The syllabus for Exam 3 is Sections 3.6, 5.1 to 5.3, 5.5, 5.6, and 6.1 to 6.4. You should review the assigned exercises in these sections. Following is a brief list (not necessarily complete) of terms,

More information

Simple Harmonic Motion Test Tuesday 11/7

Simple Harmonic Motion Test Tuesday 11/7 Simple Harmonic Motion Test Tuesday 11/7 Chapter 11 Vibrations and Waves 1 If an object vibrates or oscillates back and forth over the same path, each cycle taking the same amount of time, the motion is

More information

Final Exam December 13, 2016

Final Exam December 13, 2016 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-boo, closed-notes exam. You are allowed to use a calculator during the exam. Do NOT unstaple your exam. Do NOT write

More information

Differential Equations

Differential Equations Differential Equations A differential equation (DE) is an equation which involves an unknown function f (x) as well as some of its derivatives. To solve a differential equation means to find the unknown

More information

Electric Circuit Theory

Electric Circuit Theory Electric Circuit Theory Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 Chapter 8 Natural and Step Responses of RLC Circuits Nam Ki Min nkmin@korea.ac.kr 010-9419-2320 8.1 Introduction to the Natural Response

More information

Math 240: Spring-mass Systems

Math 240: Spring-mass Systems Math 240: Spring-mass Systems Ryan Blair University of Pennsylvania Tuesday March 1, 2011 Ryan Blair (U Penn) Math 240: Spring-mass Systems Tuesday March 1, 2011 1 / 15 Outline 1 Review 2 Today s Goals

More information

Damped harmonic oscillator

Damped harmonic oscillator Prof. O. B. Wright, Mechanics Notes Damped harmonic oscillator Differential equation Assume the mass on a spring is subject to a frictional drag force -'dx/dt. (This force always points in the opposite

More information

CHAPTER 12 OSCILLATORY MOTION

CHAPTER 12 OSCILLATORY MOTION CHAPTER 1 OSCILLATORY MOTION Before starting the discussion of the chapter s concepts it is worth to define some terms we will use frequently in this chapter: 1. The period of the motion, T, is the time

More information

Chapter 3 Mathematical Methods

Chapter 3 Mathematical Methods Chapter 3 Mathematical Methods Slides to accompany lectures in Vibro-Acoustic Design in Mechanical Systems 0 by D. W. Herrin Department of Mechanical Engineering Lexington, KY 40506-0503 Tel: 859-8-0609

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

The Harmonic Oscillator

The Harmonic Oscillator The Harmonic Oscillator Math 4: Ordinary Differential Equations Chris Meyer May 3, 008 Introduction The harmonic oscillator is a common model used in physics because of the wide range of problems it can

More information

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1.

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1. Page 1 Name: ID: Section: This exam has 16 questions: 14 multiple choice questions worth 5 points each. hand graded questions worth 15 points each. Important: No graphing calculators! Any non-graphing

More information

11. Some applications of second order differential

11. Some applications of second order differential October 3, 2011 11-1 11. Some applications of second order differential equations The first application we consider is the motion of a mass on a spring. Consider an object of mass m on a spring suspended

More information

OSCILLATIONS ABOUT EQUILIBRIUM

OSCILLATIONS ABOUT EQUILIBRIUM OSCILLATIONS ABOUT EQUILIBRIUM Chapter 13 Units of Chapter 13 Periodic Motion Simple Harmonic Motion Connections between Uniform Circular Motion and Simple Harmonic Motion The Period of a Mass on a Spring

More information

Math 115 HW #10 Solutions

Math 115 HW #10 Solutions Math 11 HW #10 Solutions 1. Suppose y 1 (t and y 2 (t are both solutions of the differential equation P (ty + Q(ty + R(ty = 0. Show that, for any constants C 1 and C 2, the function C 1 y 1 (t + C 2 y

More information

APPPHYS 217 Tuesday 6 April 2010

APPPHYS 217 Tuesday 6 April 2010 APPPHYS 7 Tuesday 6 April Stability and input-output performance: second-order systems Here we present a detailed example to draw connections between today s topics and our prior review of linear algebra

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Outline of parts 1 and 2

Outline of parts 1 and 2 to Harmonic Loading http://intranet.dica.polimi.it/people/boffi-giacomo Dipartimento di Ingegneria Civile Ambientale e Territoriale Politecnico di Milano March, 6 Outline of parts and of an Oscillator

More information

2.4 Models of Oscillation

2.4 Models of Oscillation 2.4 Models of Oscillation In this section we give three examples of oscillating physical systems that can be modeled by the harmonic oscillator equation. Such models are ubiquitous in physics, but are

More information

Math Ordinary Differential Equations Sample Test 3 Solutions

Math Ordinary Differential Equations Sample Test 3 Solutions Solve the following Math - Ordinary Differential Equations Sample Test Solutions (i x 2 y xy + 8y y(2 2 y (2 (ii x 2 y + xy + 4y y( 2 y ( (iii x 2 y xy + y y( 2 y ( (i The characteristic equation is m(m

More information

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl

DRAFT. Memo. Contents. To whom it may concern SVN: Jan Mooiman +31 (0) nl Meo To To who it ay concern Date Reference Nuber of pages 219-1-16 SVN: 5744 22 Fro Direct line E-ail Jan Mooian +31 )88 335 8568 jan.ooian@deltares nl +31 6 4691 4571 Subject PID controller ass-spring-daper

More information

Oscillations and Waves

Oscillations and Waves Oscillations and Waves Somnath Bharadwaj and S. Pratik Khastgir Department of Physics and Meteorology IIT Kharagpur Module : Oscillations Lecture : Oscillations Oscillations are ubiquitous. It would be

More information

سایت آموزش مهندسی مکانیک

سایت آموزش مهندسی مکانیک http://www.drshokuhi.com سایت آموزش مهندسی مکانیک 1 Single-degree-of-freedom Systems 1.1 INTRODUCTION In this chapter the vibration of a single-degree-of-freedom system will be analyzed and reviewed. Analysis,

More information

Solutions for homework 5

Solutions for homework 5 1 Section 4.3 Solutions for homework 5 17. The following equation has repeated, real, characteristic roots. Find the general solution. y 4y + 4y = 0. The characteristic equation is λ 4λ + 4 = 0 which has

More information

Chapter 15 Oscillations

Chapter 15 Oscillations Chapter 15 Oscillations Summary Simple harmonic motion Hook s Law Energy F = kx Pendulums: Simple. Physical, Meter stick Simple Picture of an Oscillation x Frictionless surface F = -kx x SHM in vertical

More information

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website:

Physics 2101 S c e t c i cti n o 3 n 3 March 31st Announcements: Quiz today about Ch. 14 Class Website: Physics 2101 Section 3 March 31 st Announcements: Quiz today about Ch. 14 Class Website: http://www.phys.lsu.edu/classes/spring2010/phys2101 3/ http://www.phys.lsu.edu/~jzhang/teaching.html Simple Harmonic

More information

WEEKS 8-9 Dynamics of Machinery

WEEKS 8-9 Dynamics of Machinery WEEKS 8-9 Dynamics of Machinery References Theory of Machines and Mechanisms, J.J.Uicker, G.R.Pennock ve J.E. Shigley, 2011 Mechanical Vibrations, Singiresu S. Rao, 2010 Mechanical Vibrations: Theory and

More information

Ch 3.7: Mechanical & Electrical Vibrations

Ch 3.7: Mechanical & Electrical Vibrations Ch 3.7: Mechanical & Electrical Vibrations Two important areas of application for second order linear equations with constant coefficients are in modeling mechanical and electrical oscillations. We will

More information

Linear Control Systems Solution to Assignment #1

Linear Control Systems Solution to Assignment #1 Linear Control Systems Solution to Assignment # Instructor: H. Karimi Issued: Mehr 0, 389 Due: Mehr 8, 389 Solution to Exercise. a) Using the superposition property of linear systems we can compute the

More information

TOPIC E: OSCILLATIONS SPRING 2019

TOPIC E: OSCILLATIONS SPRING 2019 TOPIC E: OSCILLATIONS SPRING 2019 1. Introduction 1.1 Overview 1.2 Degrees of freedom 1.3 Simple harmonic motion 2. Undamped free oscillation 2.1 Generalised mass-spring system: simple harmonic motion

More information

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION

ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION ME 375 EXAM #1 Friday, March 13, 2015 SOLUTION PROBLEM 1 A system is made up of a homogeneous disk (of mass m and outer radius R), particle A (of mass m) and particle B (of mass m). The disk is pinned

More information

Unforced Mechanical Vibrations

Unforced Mechanical Vibrations Unforced Mechanical Vibrations Today we begin to consider applications of second order ordinary differential equations. 1. Spring-Mass Systems 2. Unforced Systems: Damped Motion 1 Spring-Mass Systems We

More information

Lab 11 - Free, Damped, and Forced Oscillations

Lab 11 - Free, Damped, and Forced Oscillations Lab 11 Free, Damped, and Forced Oscillations L11-1 Name Date Partners Lab 11 - Free, Damped, and Forced Oscillations OBJECTIVES To understand the free oscillations of a mass and spring. To understand how

More information

EVALUATION OF VIBRATING COMPACTION PROCESS FOR FRESH CONCRETE

EVALUATION OF VIBRATING COMPACTION PROCESS FOR FRESH CONCRETE EVALUATION OF VIBRATING COMPACTION PROCESS FOR FRESH CONCRETE POLIDOR BRATU This paper is focused on the research performed upon the dynamic model for vibrating compaction of the placed fresh concrete.

More information

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion

University Physics 226N/231N Old Dominion University. Chapter 14: Oscillatory Motion University Physics 226N/231N Old Dominion University Chapter 14: Oscillatory Motion Dr. Todd Satogata (ODU/Jefferson Lab) satogata@jlab.org http://www.toddsatogata.net/2016-odu Monday, November 5, 2016

More information

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod)

28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) 28. Pendulum phase portrait Draw the phase portrait for the pendulum (supported by an inextensible rod) θ + ω 2 sin θ = 0. Indicate the stable equilibrium points as well as the unstable equilibrium points.

More information

Math 240: Spring/Mass Systems II

Math 240: Spring/Mass Systems II Math 240: Spring/Mass Systems II Ryan Blair University of Pennsylvania Monday, March 26, 2012 Ryan Blair (U Penn) Math 240: Spring/Mass Systems II Monday, March 26, 2012 1 / 12 Outline 1 Today s Goals

More information

Physics Mechanics. Lecture 32 Oscillations II

Physics Mechanics. Lecture 32 Oscillations II Physics 170 - Mechanics Lecture 32 Oscillations II Gravitational Potential Energy A plot of the gravitational potential energy U g looks like this: Energy Conservation Total mechanical energy of an object

More information

Laboratory notes. Torsional Vibration Absorber

Laboratory notes. Torsional Vibration Absorber Titurus, Marsico & Wagg Torsional Vibration Absorber UoB/1-11, v1. Laboratory notes Torsional Vibration Absorber Contents 1 Objectives... Apparatus... 3 Theory... 3 3.1 Background information... 3 3. Undamped

More information

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1.

3! + 4! + Binomial series: if α is a nonnegative integer, the series terminates. Otherwise, the series converges if x < 1 but diverges if x > 1. Page 1 Name: ID: Section: This exam has 16 questions: 14 multiple choice questions worth 5 points each. hand graded questions worth 15 points each. Important: No graphing calculators! Any non-graphing

More information

2.3 Damping, phases and all that

2.3 Damping, phases and all that 2.3. DAMPING, PHASES AND ALL THAT 107 2.3 Damping, phases and all that If we imagine taking our idealized mass on a spring and dunking it in water or, more dramatically, in molasses), then there will be

More information

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter.

Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. Chapter 3 Mechanical Systems A. Bazoune 3.1 INRODUCION Mathematical Modeling and response analysis of mechanical systems are the subjects of this chapter. 3. MECHANICAL ELEMENS Any mechanical system consists

More information

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems

Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Free Vibration of Single-Degree-of-Freedom (SDOF) Systems Procedure in solving structural dynamics problems 1. Abstraction/modeling Idealize the actual structure to a simplified version, depending on the

More information

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string?

8. What is the period of a pendulum consisting of a 6-kg object oscillating on a 4-m string? 1. In the produce section of a supermarket, five pears are placed on a spring scale. The placement of the pears stretches the spring and causes the dial to move from zero to a reading of 2.0 kg. If the

More information

Differential Equations: Homework 8

Differential Equations: Homework 8 Differential Equations: Homework 8 Alvin Lin January 08 - May 08 Section.6 Exercise Find a general solution to the differential equation using the method of variation of parameters. y + y = tan(t) r +

More information

LAB 11: FREE, DAMPED, AND FORCED OSCILLATIONS

LAB 11: FREE, DAMPED, AND FORCED OSCILLATIONS Lab 11 ree, amped, and orced Oscillations 135 Name ate Partners OBJECTIVES LAB 11: REE, AMPE, AN ORCE OSCILLATIONS To understand the free oscillations of a mass and spring. To understand how energy is

More information