Time lags and reverberation in the lamp-post geometry of the compact corona illuminating a black-hole accretion disc

Size: px
Start display at page:

Download "Time lags and reverberation in the lamp-post geometry of the compact corona illuminating a black-hole accretion disc"

Transcription

1 Time lags and reverberation in the lamp-post geometry of the compact corona illuminating a black-hole accretion disc Michal Dovčiak Astronomical Institute Academy of Sciences of the Czech Republic, Prague Astrophysics group seminar, School of Physics, University of Bristol 13 th March 214

2 Acknowledgement StrongGravity ( ) EU research project funded under the Space theme of the 7th Framework Programme on Cooperation Title: Probing Strong Gravity by Black Holes Across the Range of Masses Institutes: AsU, CNRS, UNIROMA3, UCAM, CSIC, UCO, CAMK Webpages: en.html

3 Active Galactic Nuclei scheme Urry C. M. & Padovani P. (1995) Unified Schemes for Radio-Loud Active Galactic Nuclei PASP, 17, 83

4 Active Galactic Nuclei X-ray spectrum Fabian A.C. (25) X-ray Reflections on AGN, in proceedings of The X-ray Universe 25, El Escorial, Madrid, Spain, 26-3/9/25

5 References Blandford & McKee (1982) ApJ reverberation of BLR L o (v,t) = dt L p (t )Ψ(v,t t ) Stella (199) Nature time dependent Fe Kα shape (a = ) Matt & Perola (1992) MNRAS Fe Kα response and black hole mass estimate t GM/c 3 time dependent light curve, centroid energy and line equivalent width (h = 6, 1; a = ; θ o ) Campana & Stella (1995) MNRAS line reverberation for a compact and extended source (a = ) Reynolds, Young, Begelman & Fabian (1999) ApJ fully relativistic line reverberation (h = 1; a =, 1) more detailed reprocessing, off-axis flares ionized lines for Schwarzschild case, outward and inward echo, reappearance of the broad relativistic line

6 References Wilkins & Fabian (213) MNRAS fully relativistic, extended corona, propagation effects Cackett et al. (214) MNRAS Fe Kα reverberation in lamp-post model

7 Scheme of the lamp-post geometry central black hole mass, spin compact corona with isotropic emission height, photon index accretion disc Keplerian, geometrically thin, optically thick ionisation due to illumination (L p, h, M, a, n H, q n ) local re-processing in the disc REFLIONX with different directional emissivity prescriptions relativistic effects: Doppler and gravitational energy shift light bending (lensing) aberration (beaming) light travel time Ω r out corona black hole r in h M a δ i δ e observer Φ accretion disc

8 Time delay t [GM/c 3 ] a = r [GM/c 2 ] height y Time delay (a = 1., θo = 6 ) x y Total time delay (a = 1., θo = 6, h = 3) x total light travel time includes the lamp-to-disc and disc-to-observer part first photons arrive from the region in front of the black hole which is further out for higher source contours of the total time delay shows the ring of reflection that develops into two rings when the echo reaches the vicinity of the black hole

9 Light curve.25.2 a =, h = 3, t = 1 inclination a = 1, h = 3, t = 1 inclination Photon flux.15.1 Photon flux t [GM/c 3 ] t [GM/c 3 ] the flux for Schwarzschild BH is much smaller than for Kerr BH due to the hole below ISCO (no inner ring in Schwarzschild case) the shape of the light curve differs substantially for different spins the duration of the echo is quite similar the higher the inclination the sooner first photons will be observed magnification due to lensing effect at high inclinations

10 Dynamic spectrum signature of outer and inner echo in dynamic spectra large amplification when the two echos separate intrinsically narrow Kα line can acquire weird shapes

11 Transfer function for reverberation Stationary emission from the accretion disc: G = g µ e l F (E) = r dr dϕ G(r,ϕ)F l (r,ϕ,e/g) g = E E l Response to the on-axis primary emission: F (E,t) = dt r dr dϕ G(r,ϕ) N p (t )N inc (r)m(r,ϕ,e/g,t + t pd )δ([t t do ] [t + t pd ]) µ e = cosδ e l = ds o dsl N inc = ginc Γ dω p ds inc Line reverberation: F (E,t) = dt N p (t ) r dr dϕ Ψ (r,ϕ)δ(e ge rest )δ([t t ] [t pd + t do ]) }{{} t Ψ = g G N inc M Transfer function response to a flare [N p (t ) = δ(t )]: r Ψ(E,t) = Ψ (g, t) 1 (r, ϕ) F (E,t) = g = E/E rest t pd + t do = t E rest dt N p (t )Ψ(E,t t ) (g, t) (r,ϕ) = g r ( t) ϕ g ( t) g ( t) ϕ r

12 Caustics Schwarzschild case the black curves show the points where the energy shift contours are tangent to the time delay ones contour of ISCO in energy-time plane is shown by the blue curve the correspondent points A, B, C, D and E are shown in each plot for better understanding

13 Caustics extreme Kerr case the black curves show the points where the energy shift contours are tangent to the time delay ones contour of ISCO in energy-time plane is shown by the blue curve the correspondent points A, B, C, D and E are shown in each plot for better understanding

14 Caustics θo = 5, h = x g y t I plots of infinite magnification in the x-y (top) and g-t (bottom) planes I the plots for Schwarzschild case (red) above ISCO are very similar to the extreme Kerr case (blue) I the shape of these regions change with inclination

15 Dynamic spectrum narrow spectral line

16 Dynamic spectrum neutral disc

17 Dynamic spectrum ionised disc E 2 F (E)

18 Definition of the phase lag F refl (E,t) = N p (t) ψ(e,t) ˆFrefl (E,f ) = ˆN p (f ). ˆψ(E,f ) where ˆψ(E,f ) = A(E,f )e iφ(e,f ) if then N p (t) = cos(2πft) and ˆψ(E) = A(E)e iφ(e) F refl (E,t) = A(E)cos{2πf [t + τ(e)]} where τ(e) φ(e) 2πf F(E,t) N p (t) (ψ r (E,t) + δ(t)) ˆF (E,f ) ˆN p (f ).( ˆψ r (E,f ) + 1) and tanφ tot (E,f ) = A r(e,f )sinφ r (E,f ) 1 + A r (E,f )cosφ r (E,f )

19 Parameter values and integrated spectrum E 2 x F(E) 1 1 a = 1, h = 3, θ o = 3 reflected primary E [kev] M = 1 8 M a = 1 () θ o = 3 (6 ) h = 3 (1.5, 6, 15, 3) L p =.1L Edd Γ = 2 (1.5, 3) n H =.1 (.1, 5, 5,.2) 1 15 cm 3 q n = 2 (, 5, 3) Energy bands: soft excess:.3.8 kev primary: 1 3 kev iron line: 3 9 kev Compton hump: 15 4 kev

20 Phase lag dependence on geometry relative photon flux a = 1, θ o = 3 height [GM/c 2 ] t [ks] a = 1, θ o = 3-15 height [GM/c 2 ] f [µhz] relative photon flux a = 1, θ o = 6 height [GM/c 2 ] t [ks] a = 1, θ o = 6-1 height [GM/c 2 ] f [µhz] reflected photon flux decreases with height primary flux increases with hight the delay of response is increasing with height the duration of the response is longer the phase lag increases with height, it depends mainly on the average response time and magnitude of relative photon flux the phase lag null points are shifted to lower frequencies for higher heights due to longer timescales of response

21 Phase lag dependence on geometry.12.1 a = 1, θ o = 3 height [GM/c 2 ] a = 1, θ o = 6 height [GM/c 2 ] relative photon flux and the phase lag increase with inclination for low heights relative photon flux t [ks] relative photon flux t [ks] the delay and duration of response do not change much with the inclination and thus the phase lag null points frequencies change only slightly a = 1, θ o = 3 a = 1, θ o = height [GM/c 2 ] f [µhz] height [GM/c 2 ] f [µhz]

22 Phase lag dependence on spin and energy band relative photon flux a =, h = 3, θ o = 6 energy band.3-.8 kev 1-3 kev 3-9 kev 15-4 kev t [ks] a =, h = 3, θ o = energy band.3-.8 kev kev 15-4 kev f [µhz] relative photon flux a = 1, h = 3, θ o = 6 energy band.3-.8 kev 1-3 kev 3-9 kev 15-4 kev t [ks] a = 1, h = 3, θ o = 6 energy band kev 3-9 kev 15-4 kev f [µhz] the relative flux in the energy band where primary dominates may in some cases be larger than that in Kα and Compton hump energy bands the magnitude of the phase lag in different energy bands differs (in extreme Kerr case the larger lag in SE is due to larger ionisation near BH) the magnitude of the phase lag is smaller in Schwarzschild case due to the hole in the disc under the ISCO the null points of the phase lag change only slightly with energy and spin

23 Ionisation a = 1, h = 3, θ o = 3 ξ ionisation r [GM/c 2 ] f [µhz] the phase lag in Kα band is shown the reflection component of the spectra are steeper for higher ionisation the magnitude of the phase lag depend on ionisation the null points of the phase lag does not change with the ionisation

24 Directionality and photon index a = 1, h = 3, θ o = 3-6 directionality darkening -7 isotropic brightening f [µhz] a = 1, h = 3, θ o = 3 Np:Nr f [µhz] a = 1, h = 3, θ o = 3 photon index f [µhz] the phase lag in SE band is shown the magnitude of the phase lag changes in all three cases the null points of the phase lag does not change with different directionility dependences or power-law photon index

25 Phase lag energy dependence for low f : A r (E,f ) A E (E)A f (f ) φ r (E,f ) φ r (f ) and τ(e,f ) 1 2πf atan [A r (E,f ) A r (E,f )] sinφ r (f ) 1 + [A r (E,f ) + A r (E,f )] cosφ r (f ) + A r (E,f )A r (E,f ) and for f such that φ r (f ) = ± π 2 : τ(e,f ) 1 2πf [A r(e,f ) A r (E,f )]

26 Phase lag energy dependence a = 1, h = 3, θ o = energy band.3-.8 kev kev 15-4 kev f [µhz] a = 1, h = 3, θ o = 6 energy band kev 3-9 kev 15-4 kev f [µhz] a = 1, h = 3, θ o = 3 a = 1, h = 3, θ o = 6.1 f = 4µHz f = 13µHz E 2 x F(E).1 f = 4µHz f = 12µHz E 2 x F(E) E [kev] E [kev] the energy dependence of the phase lag follows the spectral shape perfectly at particular frequencies

27 Phase lag energy dependence a =, h = 3, θ o = 3-5 energy band kev 3-9 kev 15-4 kev f [µhz] a =, h = 3, θ o = energy band.3-.8 kev kev 15-4 kev f [µhz] a =, h = 3, θ o = 3 a =, h = 3, θ o = 6.1 f = 3µHz f = 11µHz E 2 x F(E).6.5 f = 3µHz f = 1µHz E 2 x F(E) E [kev] E [kev] if the second phase lag maximum is too small the phase lag energy dependence does not follow the spectral shape that well

28 Summary two aspects of reverberation in the timing and frequency domains the response of the disc peaks in the vicinity of the black hole the phase lag is used to get information on the system properties the frequency dependence of the phase lag is mainly due to geometry (height of the corona) the magnitude of the phase lag depends on many details of the model (height, spin, ionisation, unisotropy, energy,...) extended corona brings several new parameters (size, propagation speed, ignition position, inhomogeinities) broadens the response of the disc

Implementing an X-ray reverberation model in XSPEC

Implementing an X-ray reverberation model in XSPEC Implementing an X-ray reverberation model in XSPEC M. D. Caballero-Garcia, M. Dovčiak (ASU CAS, Prague), A. Epitropakis (D. of Physics, Heraklion) et al. M. Dovčiak (ASU CAS, Prague), M. D. Caballero-Garcia

More information

arxiv: v1 [astro-ph.he] 12 Jan 2016

arxiv: v1 [astro-ph.he] 12 Jan 2016 Astronomy & Astrophysics manuscript no. AA-205-27246-printerformat c ESO 206 January 3, 206 Signatures of X ray reverberation in the power spectra of AGN I. Papadakis,2, T. Pecháček,3, M. Dovčiak 3, A.

More information

Polarization signatures of X-ray reflection. Giorgio Matt ( Dip.. Fisica, Università Roma Tre )

Polarization signatures of X-ray reflection. Giorgio Matt ( Dip.. Fisica, Università Roma Tre ) Polarization signatures of X-ray reflection Giorgio Matt ( Dip.. Fisica, Università Roma Tre ) Plan of the talk Reflection from opt. thick matter - Accretion discs (GR effects) in AGN and GBH - WD surface

More information

Broadband X-ray emission from radio-quiet Active Galactic Nuclei

Broadband X-ray emission from radio-quiet Active Galactic Nuclei 29 th ASI Meeting ASI Conference Series, 2011, Vol. 3, pp 19 23 Edited by Pushpa Khare & C. H. Ishwara-Chandra Broadband X-ray emission from radio-quiet Active Galactic Nuclei G. C. Dewangan Inter-University

More information

Signatures of strong-field gravity accretion: Relativistic effects in spectra and polarization from black-hole accretion discs

Signatures of strong-field gravity accretion: Relativistic effects in spectra and polarization from black-hole accretion discs extp meeting Beijing, 26 27 October 2015 Signatures of strong-field gravity accretion: Relativistic effects in spectra and polarization from black-hole accretion discs Selected topics as science drivers

More information

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk

Accretion Disks. 1. Accretion Efficiency. 2. Eddington Luminosity. 3. Bondi-Hoyle Accretion. 4. Temperature profile and spectrum of accretion disk Accretion Disks Accretion Disks 1. Accretion Efficiency 2. Eddington Luminosity 3. Bondi-Hoyle Accretion 4. Temperature profile and spectrum of accretion disk 5. Spectra of AGN 5.1 Continuum 5.2 Line Emission

More information

SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN

SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN SOFT X-RAY LAGS AND THE CORRELATION WITH BH MASS IN RADIO QUIET AGN flux time Barbara De Marco (Centro de Astrobiología, CSIC-INTA) Collaborators: G. Ponti, P. Uttley, M. Cappi, G. Miniutti, M. Dadina,

More information

StrongGravity - probing strong gravity by black holes across the range of masses

StrongGravity - probing strong gravity by black holes across the range of masses StrongGravity - probing strong gravity by black holes across the range of masses Michal Dovčiak on behalf of StrongGravity consortium From the Dolomites to the event horizon: Sledging down the Black Hole

More information

Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc

Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc Mon. Not. R. Astron. Soc. 000, 000 000 (1998) Iron line profiles including emission from within the innermost stable orbit of a black hole accretion disc A.J. Young 1, R.R. Ross 1,2 and A.C. Fabian 1 1

More information

arxiv:astro-ph/ v3 27 May 2005

arxiv:astro-ph/ v3 27 May 2005 X-ray Variability of AGN and the Flare Model arxiv:astro-ph/0410079v3 27 May 2005 R.W. Goosmann 1, B. Czerny 2, A.-M. Dumont 1, M. Mouchet 1, and A. Różańska 2 1 LUTH, Observatoire de Paris, Meudon, France

More information

Cosine of emission angle: Energy (kev)

Cosine of emission angle: Energy (kev) EFFECTS OF STRONG GRAVITY ON THE X-RAY SPECTRA OF AGN AND BHCs A. MARTOCCHIA 1, V. KARAS 2 and G. MATT 3 (1) SISSA-ISAS Via Beirut 2/4, I-34014 Trieste (Italy) (2) Astronomical Institute, Charles University

More information

arxiv:astro-ph/ v1 4 Oct 2004

arxiv:astro-ph/ v1 4 Oct 2004 X-ray Variability of AGN and the Flare Model arxiv:astro-ph/0410079v1 4 Oct 2004 R.W. Goosmann 1, B. Czerny 2, A.-M. Dumont 1, M. Mouchet 1, and A. Różańska 2 1 LUTH, Observatoire de Paris, Meudon, France

More information

The perspectives of X-ray polarimetry on accreting sources

The perspectives of X-ray polarimetry on accreting sources The perspectives of X-ray polarimetry on accreting sources (with MoCA: a Monte Carlo code for Comptonization in Astrophysics) FP7 Strong Gravity Project WP4 Comptonization models: spectra and polarization

More information

The Origins, Applications and Mysteries of the Fluorescent Iron Line p.1/29

The Origins, Applications and Mysteries of the Fluorescent Iron Line p.1/29 The Origins, Applications and Mysteries of the Fluorescent Iron Line Scott C. Noble November 3, 2004 CTA, Physics Dept., UIUC The Origins, Applications and Mysteries of the Fluorescent Iron Line p.1/29

More information

Winds and X-ray reverberation in AGN

Winds and X-ray reverberation in AGN Winds and X-ray reverberation in AGN Jane Turner (UMBC) James Reeves (Keele) Valentina Braito (Leicester) Andrew Lobban (Keele) Stuart Sim (MPA) Knox Long (STScI) Daniel Proga (Nevada) Steve Kraemer (Catholic)

More information

Towards modelling X-ray reverberation in AGN: piecing together the extended corona

Towards modelling X-ray reverberation in AGN: piecing together the extended corona Advance Access publication 2016 February 8 doi:10.1093/mnras/stw276 Towards modelling X-ray reverberation in AGN: piecing together the extended corona D. R. Wilkins, 1 E. M. Cackett, 2 A. C. Fabian 3 and

More information

An explanation for the soft X-ray excess in AGN. Jamie Crummy collaborators: Andy Fabian, Luigi Gallo, Randy Ross Suzaku Team

An explanation for the soft X-ray excess in AGN. Jamie Crummy collaborators: Andy Fabian, Luigi Gallo, Randy Ross Suzaku Team An explanation for the soft X-ray excess in AGN Jamie Crummy collaborators: Andy Fabian, Luigi Gallo, Randy Ross Suzaku Team Soft excess The soft excess is at a constant temperature over a large range

More information

Measuring Black Hole Spin in AGN. Laura Brenneman (Harvard-Smithsonian CfA)

Measuring Black Hole Spin in AGN. Laura Brenneman (Harvard-Smithsonian CfA) Measuring Black Hole Spin in AGN Laura Brenneman (Harvard-Smithsonian CfA) Single and Double Special Massive thanks Black to: Holes in Galaxies Chris Reynolds, University Andy Fabian, of Michigan Martin

More information

New Suzaku Results on Active Galaxies. or Reflections on AGN. James Reeves (Keele) and Suzaku team (given by Lance Miller)

New Suzaku Results on Active Galaxies. or Reflections on AGN. James Reeves (Keele) and Suzaku team (given by Lance Miller) New Suzaku Results on Active Galaxies or Reflections on AGN James Reeves (Keele) and Suzaku team (given by Lance Miller) Overview Overview of Suzaku and instrument performance. Why Suzaku is important

More information

MAPPING THE INNERMOST REGIONS OF AGNS WITH SHORT TIMESCALE FE LINE VARIABILITY

MAPPING THE INNERMOST REGIONS OF AGNS WITH SHORT TIMESCALE FE LINE VARIABILITY 1 MAPPING THE INNERMOST REGIONS OF AGNS WITH SHORT TIMESCALE FE LINE VARIABILITY Giovanni Miniutti, Kazushi Iwasawa, and Andrew C. Fabian Institute of Astronomy, Madingley Road, Cambridge CB3 0HA, UK ABSTRACT

More information

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview

High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion. Overview High-Energy Astrophysics Lecture 6: Black holes in galaxies and the fundamentals of accretion Robert Laing Overview Evidence for black holes in galaxies and techniques for estimating their mass Simple

More information

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre

X-ray data analysis. Andrea Marinucci. Università degli Studi Roma Tre X-ray data analysis Andrea Marinucci Università degli Studi Roma Tre marinucci@fis.uniroma3.it Goal of these lectures X-ray data analysis why? what? how? Why? Active Galactic Nuclei (AGN) Physics in a

More information

Transient iron fluorescence: new clues on the AGN disk/corona?

Transient iron fluorescence: new clues on the AGN disk/corona? Transient iron fluorescence: new clues on the AGN disk/corona? Emanuele Nardini Horizon 2020 INAF/Arcetri AstroFIt2/MSCA in collaboration with: D. Porquet (CNRS/Strasbourg), J. Reeves (Keele+UMBC), V.

More information

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei?

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei? Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei? Qingjuan Yu Princeton University Observatory, Princeton, NJ 08544-1001, USA Email: yqj@astro.princeton.edu and Youjun Lu

More information

Strong gravity and relativistic accretion disks around supermassive black holes

Strong gravity and relativistic accretion disks around supermassive black holes Strong gravity and relativistic accretion disks around supermassive black holes Predrag Jovanović Astronomical Observatory, Volgina 7, 11060 Belgrade 38, SERBIA Abstract Here we used numerical simulations

More information

NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc

NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc NuSTAR + XMM Observations of NGC 1365: A Constant Inner Disc Dom Walton Caltech G. Risaliti, F. Harrison, E. Kara, M. Parker, E. Rivers, on behalf of the NuSTAR active galaxy working groups Black Hole

More information

Accretion on Black Holes: Testing the Lamp Post Geometry Thomas Dauser Remeis Observatory Bamberg & ECAP

Accretion on Black Holes: Testing the Lamp Post Geometry Thomas Dauser Remeis Observatory Bamberg & ECAP Accretion on Black Holes: Testing the Lamp Post Geometry Thomas Dauser Remeis Observatory Bamberg & ECAP in collaboration with J. García, J. Wilms, M. Fink, T. Beuchert, and many others 10 1 kev 2 (Photons

More information

Getting to Grips with X-ray Reverberation and Lag Spectra. Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian

Getting to Grips with X-ray Reverberation and Lag Spectra. Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian Getting to Grips with X-ray Reverberation and Lag Spectra Dan Wilkins with Ed Cackett, Erin Kara, Andy Fabian X-ray BunClub May 212 Outline 1. Observing X-ray reverberation and lag spectra 2. Simulating

More information

NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG and NGC Alessia Tortosa Università Roma Tre

NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG and NGC Alessia Tortosa Università Roma Tre NuSTAR spectral analysis of the two bright Seyfert 1 galaxies: MCG 8-11-11 and NGC 6814 Alessia Tortosa Università Roma Tre From the Dolomites to the event horizon: sledging down the black hole potential

More information

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES

RELATIVISTIC SPECTROSCOPY OF BLACK HOLES RELATIVISTIC SPECTROSCOPY OF BLACK HOLES Michael Parker ESAC science seminar 24/5/18 BLACK HOLES 101 For an object to just escape a massive body, it needs the sum: Kinetic energy + gravitational binding

More information

X-ray variability of AGN

X-ray variability of AGN X-ray variability of AGN Magnus Axelsson October 20, 2006 Abstract X-ray variability has proven to be an effective diagnostic both for Galactic black-hole binaries and active galactic nuclei (AGN). This

More information

Irradiation of an Accretion Disk by a Jet: Spin Measurements of Black Holes. Thomas Dauser 1

Irradiation of an Accretion Disk by a Jet: Spin Measurements of Black Holes. Thomas Dauser 1 Irradiation of an Accretion Disk by a Jet: Spin Measurements of Black Holes Thomas Dauser in collaboration with J. Wilms, J. Garcia (CfA/UMd), R. Duro, C. S. Reynolds (UMd), N. Schartel (ESA-ESAC), K.

More information

The NuSTAR view of Radio-quiet AGN

The NuSTAR view of Radio-quiet AGN The NuSTAR view of Radio-quiet AGN (Università degli Studi Roma Tre) on behalf of the NuSTAR AGN Physics WG Active Galactic Nuclei 11 Where Black Holes and Galaxies meet Trieste, 23-26 September 2014 Outline

More information

Active Galactic Nuclei

Active Galactic Nuclei Active Galactic Nuclei Optical spectra, distance, line width Varieties of AGN and unified scheme Variability and lifetime Black hole mass and growth Geometry: disk, BLR, NLR Reverberation mapping Jets

More information

Resolving the Space-Time Around Black Holes

Resolving the Space-Time Around Black Holes Resolving the Space-Time Around Black Holes Kendrah Murphy & Tahir Yaqoob Johns Hopkins University Image from Dovciak et al. (2004) Introduction Black holes are defined by their mass, charge, and angular

More information

GIORGIO MATT (DIP. FISICA, UNIVERSITÀ ROMA TRE, ITALY)

GIORGIO MATT (DIP. FISICA, UNIVERSITÀ ROMA TRE, ITALY) PROBING STRONG GRAVITY AROUND BLACK HOLES (WITH E.M. RADIATION) GIORGIO MATT (DIP. FISICA, UNIVERSITÀ ROMA TRE, ITALY) Plan of the talk Black holes : general properties Strong gravity effects on e.m. radiation

More information

Extreme gravity in neutron-star systems with XEUS

Extreme gravity in neutron-star systems with XEUS Extreme gravity in neutron-star systems with XEUS Mariano Méndez Kapteyn Astronomical Institute, University of Groningen, The Netherlands Probing strong gravitational fields Adapted from Kramer et al.

More information

Strong gravity effects: X-ray spectra, variability and polarimetry

Strong gravity effects: X-ray spectra, variability and polarimetry Black Holes from Stars to Galaxies Across the Range of Masses Proceedings IAU Symposium No. 238, 2006 c 2007 International Astronomical Union V. Karas & G. Matt, eds. doi:10.1017/s174392130700484x Strong

More information

I : Probing the formation and growth of black holes using spin

I : Probing the formation and growth of black holes using spin Astro2010 Science White Paper (submitted to both CFP and GCT) Spin and Relativistic Phenomena Around Black Holes L. Brenneman, J. Miller, P. Nandra, M. Volonteri, M. Cappi, G. Matt, S. Kitamoto, F. Paerels,

More information

A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151

A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 4151 A Suzaku, NuSTAR, and XMM-Newton view on variable absorption and relativistic reflection in NGC 411 T. Beuchert, A.G. Markowitz, T. Dauser, J.A. García, M.L. Keck, J. Wilms, M. Kadler, L.W. Brenneman,

More information

What can we learn from the AGN radio quiet continuum with SIMBOL-X?

What can we learn from the AGN radio quiet continuum with SIMBOL-X? What can we learn from the AGN radio quiet continuum with SIMBOL-X? Pierre-Olivier Petrucci LAOG, Grenoble, France Generalities about the RQ AGN X-ray emission - continuum - reflection component Expected

More information

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei?

Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei? A&A 377, 17 22 (2001) DOI: 10.1051/0004-6361:20011064 c ESO 2001 Astronomy & Astrophysics Fe Kα line: A tool to probe massive binary black holes in Active Galactic Nuclei? Qingjuan Yu 1 and Youjun Lu 2

More information

Revealing the coronal properties of Seyfert galaxies with NuSTAR

Revealing the coronal properties of Seyfert galaxies with NuSTAR Revealing the coronal properties of Seyfert galaxies with NuSTAR Andrea Marinucci (Roma Tre) on behalf of the NuSTAR AGN Physics WG Dublin The X-ray Universe 2014 June 19, 2014 Overview Brief introduction

More information

arxiv:astro-ph/ v1 23 Dec 2005

arxiv:astro-ph/ v1 23 Dec 2005 3D spectroscopy as a tool for investigation of the BLR of lensed QSOs Luka Č. Popović Astronomical Observatory, Volgina 7, 11160 Belgrade, Serbia lpopovic@aob.bg.ac.yu arxiv:astro-ph/0512594v1 23 Dec 2005

More information

arxiv:astro-ph/ v1 27 May 1998

arxiv:astro-ph/ v1 27 May 1998 STRONG GRAVITY AND X-RAY SPECTROSCOPY arxiv:astro-ph/9805328v1 27 May 1998 A. MACIO LEK-NIEDŹWIECKI Lódź University, Department of Physics Pomorska 149/153, 90-236 Lódź, Poland AND P. MAGDZIARZ University

More information

On the black hole mass and soft X-ray lag relation in radio quiet AGN

On the black hole mass and soft X-ray lag relation in radio quiet AGN On the black hole mass and soft X-ray lag relation in radio quiet AGN B. De Marco (University of Bologna INAF/IASF Bologna - Italy) Collaborators: M. Cappi, M. Dadina (INAF/IASF Bologna, Italy) G. Ponti

More information

Using Microlensing to Probe Strong Gravity Near Supermassive Black Holes

Using Microlensing to Probe Strong Gravity Near Supermassive Black Holes Using Microlensing to Probe Strong Gravity Near Supermassive Black Holes Interstellar: Kip Thorne and Double Negative visual-effects team Presented by: George Chartas Chris Kochanek (OSU) Henric Krawczynski

More information

X-ray time lags and reverberation from accreting black holes

X-ray time lags and reverberation from accreting black holes X-ray time lags and reverberation from accreting black holes Phil Uttley University of Amsterdam Thanks to: Ed Cackett, Erin Kara, Andy Fabian, Dan Wilkins (Review paper: arxiv:1405.6575) 1. Background

More information

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts!

GRB history. Discovered 1967 Vela satellites. classified! Published 1973! Ruderman 1974 Texas: More theories than bursts! Discovered 1967 Vela satellites classified! Published 1973! GRB history Ruderman 1974 Texas: More theories than bursts! Burst diversity E peak ~ 300 kev Non-thermal spectrum In some thermal contrib. Short

More information

Echoes of Black Holes: In Search of Rapidly Spinning Black Holes with Timing Observations. White Paper Submission to

Echoes of Black Holes: In Search of Rapidly Spinning Black Holes with Timing Observations. White Paper Submission to Echoes of Black Holes: In Search of Rapidly Spinning Black Holes with Timing Observations White Paper Submission to Astro 2010: The Astronomy and Astrophysics Decadal Survey Stars and Stellar Evolution,

More information

PoS(INTEGRAL 2012)049

PoS(INTEGRAL 2012)049 Testing reflection features in 4U 175 44 with XMM-Newton, BeppoSAX, and RXTE in the hard and soft states Università di Cagliari - Italy E-mail: emailelise.egron@dsf.unica.it Tiziana Di Salvo Università

More information

NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS

NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS NEW CONSTRAINTS ON THE BLACK HOLE SPIN IN RADIO LOUD QUASARS Andreas Schulze (NAOJ, EACOA Fellow)) Chris Done, Youjun Lu, Fupeng Zhang, Yoshiyuki Inoue East Asian Young Astronomers Meeting, EAYAM 2017

More information

Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries

Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries NASA/NuSTAR, Wilkins et al 2015 Formation of lamp-post coronae in Seyfert Galaxies and X-ray binaries Yajie Yuan (Spitzer Fellow, Princeton) In collaboration with: Roger Blandford, Dan Wilkins (Stanford)

More information

Variation of the broad X-ray iron line in MCG± during a flare

Variation of the broad X-ray iron line in MCG± during a flare Mon. Not. R. Astron. Soc. 306, L19±L24 (1999) Variation of the broad X-ray iron line in MCG±6-30-15 during a flare K. Iwasawa, 1w A. C. Fabian, 1 A. J. Young, 1 H. Inoue 2 and C. Matsumoto 2 1 Institute

More information

The origin of UV / Optical Variability of AGN: Relationship to X-ray Variability. Ian M c Hardy. University of Southampton 1

The origin of UV / Optical Variability of AGN: Relationship to X-ray Variability. Ian M c Hardy. University of Southampton 1 The origin of UV / Optical Variability of AGN: Relationship to X-ray Variability Ian M c Hardy University of 1 Main Questions What drives UV/optical variability in AGN? How is the X-ray band related to

More information

Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses)

Schwarzchild Radius. Black Hole Event Horizon 30 km 9 km. Mass (solar) Object Star. Star. Rs = 3 x M (Rs in km; M in solar masses) Schwarzchild Radius The radius where escape speed = the speed of light. Rs = 2 GM/c2 Rs = 3 x M (Rs in km; M in solar masses) A sphere of radius Rs around the black hole is called the event horizon. Object

More information

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen.

Citation for published version (APA): Wang, Y. (2018). Disc reflection in low-mass X-ray binaries. [Groningen]: Rijksuniversiteit Groningen. University of Groningen Disc reflection in low-mass X-ray binaries Wang, Yanan IMPORTANT NOTE: You are advised to consult the publisher's version (publisher's PDF) if you wish to cite from it. Please check

More information

ACTIVE GALACTIC NUCLEI: optical spectroscopy. From AGN classification to Black Hole mass estimation

ACTIVE GALACTIC NUCLEI: optical spectroscopy. From AGN classification to Black Hole mass estimation ACTIVE GALACTIC NUCLEI: optical spectroscopy From AGN classification to Black Hole mass estimation Second Lecture Reverberation Mapping experiments & virial BH masses estimations Estimating AGN black hole

More information

The X-Ray Universe. The X-Ray Universe

The X-Ray Universe. The X-Ray Universe The X-Ray Universe The X-Ray Universe Potsdam University Dr. Lidia Oskinova Sommersemester 2017 lida@astro.physik.uni-potsdam.de astro.physik.uni-potsdam.de ~lida/vorlesungxrayso17.html Chandra X-ray,

More information

Ultra-fast disk wind from a high accretion rate black hole 1H

Ultra-fast disk wind from a high accretion rate black hole 1H Ultra-fast disk wind from a high accretion rate black hole 1H 0707-495 Kouichi Hagino (ISAS/JAXA) H. Odaka, C. Done, R. Tomaru, S. Watanabe, T. Takahashi K. Hagino et al. 2016, MNRAS, 461, 3954 BREAKING

More information

Accretion flows onto black holes

Accretion flows onto black holes Accretion flows onto black holes Chris Done University of Durham Strong gravity Black holes: extreme spacetime curvature Test Einsteins GR - event horizon, last stable orbit.. The thing about a black hole,

More information

Nuclear X-ray Emission and Mass Outflow From Broad Lined Radio Galaxies (Lorentz Center, Leiden 2009)

Nuclear X-ray Emission and Mass Outflow From Broad Lined Radio Galaxies (Lorentz Center, Leiden 2009) Nuclear X-ray Emission and Mass Outflow From Broad Lined Radio Galaxies (Lorentz Center, Leiden 2009) James Reeves (Keele Univ, UK) Collaborators:- Rita Sambruna (NASA/GSFC), Francesco Tombesi (NASA/GSFC

More information

The Accretion Geometry of NGC 5548

The Accretion Geometry of NGC 5548 The Accretion Geometry of NGC 5548 Emma Gardner & Chris Done Durham University Reverberation as a Tool for Investigating Accretion Geometries UV Disc Illuminates Clouds Clouds Re-emit Flux as Lines Czerny

More information

Concave accretion discs and X-ray reprocessing

Concave accretion discs and X-ray reprocessing Mon. Not. R. Astron. Soc. 306, L25±L30 (1999) Concave accretion discs and X-ray reprocessing Eric G. Blackman Theoretical Astrophysics, Caltech 130-33, Pasadena, CA 91125, USA Accepted 1999 February 24.

More information

Active Galactic Nuclei - Zoology

Active Galactic Nuclei - Zoology Active Galactic Nuclei - Zoology Normal galaxy Radio galaxy Seyfert galaxy Quasar Blazar Example Milky Way M87, Cygnus A NGC 4151 3C273 BL Lac, 3C279 Galaxy Type spiral elliptical, lenticular spiral irregular

More information

Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes

Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes MNRAS 430, 1694 1708 (2013) doi:10.1093/mnras/sts710 Irradiation of an accretion disc by a jet: general properties and implications for spin measurements of black holes T. Dauser, 1 J. Garcia, 2 J. Wilms,

More information

TEMA 6. Continuum Emission

TEMA 6. Continuum Emission TEMA 6. Continuum Emission AGN Dr. Juan Pablo Torres-Papaqui Departamento de Astronomía Universidad de Guanajuato DA-UG (México) papaqui@astro.ugto.mx División de Ciencias Naturales y Exactas, Campus Guanajuato,

More information

Relativistic effects on reflection X-ray spectra of AGN

Relativistic effects on reflection X-ray spectra of AGN SLAC-PUB-12271 January 2007 Relativistic effects on reflection X-ray spectra of AGN Khee-Gan Lee A,B,C, Steven V. Fuerst D, Graziella Branduardi-Raymont A, Kinwah Wu A,E, and Oliver Crowley A,B A Mullard

More information

Active galactic nuclei (AGN)

Active galactic nuclei (AGN) Active galactic nuclei (AGN) General characteristics and types Supermassive blackholes (SMBHs) Accretion disks around SMBHs X-ray emission processes Jets and their interaction with ambient medium Radio

More information

ASTRO-H Studies of Accretion Flow onto Supermassive Black Hole

ASTRO-H Studies of Accretion Flow onto Supermassive Black Hole ASTRO-H Studies of Accretion Flow onto Supermassive Black Hole 2015 October 21 The Institute of Physical and Chemical Research (RIKEN) Nishina center Hirofumi Noda 1. Contents I. Introduction II. Geometry

More information

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects

AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects AGN Physics of the Ionized Gas Physical conditions in the NLR Physical conditions in the BLR LINERs Emission-Line Diagnostics High-Energy Effects 1 Evidence for Photoionization - continuum and Hβ luminosity

More information

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections

Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Simultaneous X-ray and Radio Observations of Seyferts, and Disk-Jet Connections Ashley Lianne King, University of Michigan Advisor: Jon M. Miller Collaborators: John Raymond, Michael Rupen, Kayhan Gültekin,

More information

ASCA Observations of Radio-Loud AGNs

ASCA Observations of Radio-Loud AGNs ASCA Observations of Radio-Loud AGNs Rita M. Sambruna & Michael Eracleous Department of Astronomy & Astrophysics, The Pennsylvania State University 525 Davey Lab, University Park, PA 16802 and arxiv:astro-ph/9811017v1

More information

Probing general relativistic precession with tomography and polarimetry

Probing general relativistic precession with tomography and polarimetry Probing general relativistic precession with tomography and polarimetry Adam Ingram Michiel van der Klis, Matt Middleton, Chris Done, Diego Altamirano, Phil Uttley, Magnus Axelsson, Tom Maccarone, Juri

More information

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo

Introduction to AGN. General Characteristics History Components of AGN The AGN Zoo Introduction to AGN General Characteristics History Components of AGN The AGN Zoo 1 AGN What are they? Active galactic nucleus compact object in the gravitational center of a galaxy that shows evidence

More information

Spotting the misaligned outflows in NGC 1068 using X ray polarimetry

Spotting the misaligned outflows in NGC 1068 using X ray polarimetry Spotting the misaligned outflows in NGC 1068 using X ray polarimetry René W. Goosmann Observatoire astronomique de Strasbourg, France in collaboration with Giorgio Matt, Frédéric Marin, and Martin Gaskell

More information

X-ray reverberation: a tool to constrain the (evolving) disc geometry in BHXRBs

X-ray reverberation: a tool to constrain the (evolving) disc geometry in BHXRBs X-ray reverberation: a tool to constrain the (evolving) disc geometry in BHXRBs Barbara De Marco N. Copernicus Astronomical Center of the Polish Academy of Sciences In collaboration with: G. Ponti, P.O.

More information

The Powerful Black Hole Wind in the Luminous Quasar PDS 456

The Powerful Black Hole Wind in the Luminous Quasar PDS 456 The Powerful Black Hole Wind in the Luminous Quasar PDS 456 James Reeves Astrophysics Group, Keele University & UMBC in collaboration with: E. Nardini (Keele), J. Gofford (Keele/UMBC) - M. Costa, G. Matzeu

More information

MAXI and AGN X-ray Variability

MAXI and AGN X-ray Variability MAXI and AGN X-ray Variability Ian M c Hardy 1 1 School of Physics and Astronomy, University of Southampton, University Road, Southampton SO17 1BJ, UK E-mail(IM): imh@astro.soton.ac.uk Abstract The X-ray

More information

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A.

Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses. E. Pian, R. Falomo, A. Hubble Space Telescope ultraviolet spectroscopy of blazars: emission lines properties and black hole masses E. Pian, R. Falomo, A. Treves 1 Outline Extra Background Introduction Sample Selection Data Analysis

More information

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric

Lecture 20 High-Energy Astronomy. HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Lecture 20 High-Energy Astronomy HEA intro X-ray astrophysics a very brief run through. Swift & GRBs 6.4 kev Fe line and the Kerr metric Tut 5 remarks Generally much better. However: Beam area. T inst

More information

BROAD SPECTRAL LINE AND CONTINUUM VARIABILITIES IN QSO SPECTRA INDUCED BY MICROLENSING:METHODS OF COMPUTATION

BROAD SPECTRAL LINE AND CONTINUUM VARIABILITIES IN QSO SPECTRA INDUCED BY MICROLENSING:METHODS OF COMPUTATION Proceedings of the IX Bulgarian-Serbian Astronomical Conference: Astroinformatics (IX BSACA) Sofia, Bulgaria, July -,, Editors: M. K. Tsvetkov, M. S. Dimitrijević, O. Kounchev, D. Jevremović andk. Tsvetkova

More information

3.1.1 Lightcurve, colour-colour and hardness intensity diagram

3.1.1 Lightcurve, colour-colour and hardness intensity diagram Chapter 3 X ray data analysis methods 3.1 Data Analysis Procedure The analysis and reduction procedure of astronomical data can be broadly classified into two categories - (1) count rate variations as

More information

Modeling Compton Thick Obscuration in Accreting Supermassive Black Hole Systems

Modeling Compton Thick Obscuration in Accreting Supermassive Black Hole Systems Modeling Compton Thick Obscuration in Accreting Supermassive Black Hole Systems Kendrah Murphy MIT Kavli Institute for Astrophysics & Space Research Tahir Yaqoob Johns Hopkins University/NASA GSFC Overview

More information

arxiv:astro-ph/ v1 18 Nov 2005

arxiv:astro-ph/ v1 18 Nov 2005 1 AN EXPLANATION FOR THE SOFT X-RAY EXCESS IN AGN arxiv:astro-ph/0511568v1 18 Nov 2005 ABSTRACT J. Crummy 1, A.C. Fabian 1, L. Gallo 2, and R.R. Ross 3 1 Institute of Astronomy, Madingley Road, Cambridge,

More information

Set 4: Active Galaxies

Set 4: Active Galaxies Set 4: Active Galaxies Phenomenology History: Seyfert in the 1920;s reported that a small fraction (few tenths of a percent) of galaxies have bright nuclei with broad emission lines. 90% are in spiral

More information

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar

Quasars ASTR 2120 Sarazin. Quintuple Gravitational Lens Quasar Quasars ASTR 2120 Sarazin Quintuple Gravitational Lens Quasar Quasars Quasar = Quasi-stellar (radio) source Optical: faint, blue, star-like objects Radio: point radio sources, faint blue star-like optical

More information

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN

Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN Starbursts, AGN, and Interacting Galaxies 1 ST READER: ROBERT GLEISINGER 2 ND READER: WOLFGANG KLASSEN Galaxy Interactions Galaxy Interactions Major and Minor Major interactions are interactions in which

More information

SUPPLEMENTARY INFORMATION

SUPPLEMENTARY INFORMATION SUPPLEMENTARY INFORMATION doi: 10.1038/nPHYS1907 Supplementary Information (SI) 1. Radiation from a thin accretion disk around a Kerr black hole observed remotely at asymptotic distances In our numerical

More information

TRANSIENT RELATIVISTICALLY SHIFTED LINES AS A PROBE OF BLACK HOLE SYSTEMS

TRANSIENT RELATIVISTICALLY SHIFTED LINES AS A PROBE OF BLACK HOLE SYSTEMS The Astrophysical Journal, 603:62 66, 2004 March 1 # 2004. The American Astronomical Society. All rights reserved. Printed in U.S.A. TRANSIENT RELATIVISTICALLY SHIFTED LINES AS A PROBE OF BLACK HOLE SYSTEMS

More information

arxiv:astro-ph/ v1 17 Dec 2001

arxiv:astro-ph/ v1 17 Dec 2001 Spectral properties of the Narrow-Line Seyfert 1 Quasar PG1211+143 arxiv:astro-ph/0112387v1 17 Dec 2001 A. Janiuk 1, B. Czerny 1, G.M. Madejski 2 1) N. Copernicus Astronomical Centre, Bartycka 18, 00-716,

More information

Scaling accretion flow models from BHB to AGN

Scaling accretion flow models from BHB to AGN Scaling accretion flow models from BHB to AGN Why doesn t it work? Chris Done 1 1 Department of Physics, University of Durham, South Road, Durham DH1 4ED E-mail(CD): chris.done@durham.ac.uk Abstract Black

More information

Line Profile Variability in AGNs

Line Profile Variability in AGNs Line Profile Variability in AGNs Wolfram Kollatschny, Göttingen Serbia, 2007 University Observatory Institute for Astrophysics Scale Sizes of an AGN HST : 0.1 2pc R. Blandford 1pc = 3.3 ly = 1190. ld =

More information

Structure and Kinematics of the central BLR in AGN

Structure and Kinematics of the central BLR in AGN Structure and Kinematics of the central BLR in AGN Wolfram Kollatschny, Göttingen Divcibare, 2011 University Observatory Institute for Astrophysics Broad Line Region Size? radius: - 10-4...10-1 pc - 1...

More information

Doppler boosting effects on the radiation of relativistic jets in AGN

Doppler boosting effects on the radiation of relativistic jets in AGN Doppler boosting effects on the radiation of relativistic jets in AGN Author:. Facultat de Física, Universitat de Barcelona, Diagonal 645, 08028 Barcelona, Spain. Advisor: Valentí Bosch-Ramon (Dated: January

More information

Relativistic Emission Lines of Accreting Black Holes

Relativistic Emission Lines of Accreting Black Holes Relativistic Emission Lines of Accreting Black Holes Andreas Müller 21. Mai 2003 Quasare und früher Kosmos Forschungsseminar LSW Overview Motivation AGN paradigm AGN X-ray spectra X-ray fluorescence Coronal

More information

Black Holes in the local Universe

Black Holes in the local Universe Outline 1. AGN evolution and the history of accretion 2. From AGN SED to AGN physics Accretion discs and X-ray coronae in AGN 3. Do AGN reveal accretion mode changes? The fundamental plane of BH activity

More information

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai)

Testing the nature of astrophysical black hole candidates. Cosimo Bambi (Fudan University, Shanghai) Testing the nature of astrophysical black hole candidates Cosimo Bambi (Fudan University, Shanghai) 8 June 2013, Annual Meeting of the Physics Department Fudan University, Shanghai Tests of General Relativity

More information

Modeling Quasar Microlensing

Modeling Quasar Microlensing WDS'5 Proceedings of Contributed Papers Physics, 2 26, 25. ISBN 978-8-7378-3-2 MATFYZPRESS Modeling Quasar Microlensing L. Ledvina and D. Heyrovský Institute of Theoretical Physics, Faculty of Mathematics

More information

arxiv:astro-ph/ v1 20 Jun 2000

arxiv:astro-ph/ v1 20 Jun 2000 The Astrophysical Journal, 544, No.1, Nov. 20, 2000 Preprint typeset using L A TEX style emulateapj v. 04/03/99 THE PROFILE OF AN EMISSION LINE FROM RELATIVISTIC OUTFLOWS AROUND A BLACK HOLE Jian-Min Wang

More information