Physics Considerations in the Design of NCSX *

Size: px
Start display at page:

Download "Physics Considerations in the Design of NCSX *"

Transcription

1 1 IAEA-CN-94/IC-1 Physics Considerations in the Design of NCSX * G. H. Neilson 1, M. C. Zarnstorff 1, L. P. Ku 1, E. A. Lazarus 2, P. K. Mioduszewski 2, W. A. Cooper 3, M. Fenstermacher 4, E. Fredrickson 1, G. Y. Fu 1, A. Grossman 5, P. J. Heitzenroeder 1, R. H. Hatcher 1, S. P. Hirshman 2, S. R. Hudson 1, M. Isaev 6, D. W. Johnson 1, H. W. Kugel 1, J. F. Lyon 2, R. Majeski 1, M. Mikhailov 6, D. R. Mikkelsen 1, D. A. Monticello 1, H. E. Mynick 1, B. E. Nelson 2, N. Pomphrey 1, W. T. Reiersen 1, A. H. Reiman 1, P. H. Rutherford 1, J. A. Schmidt 1, D. A. Spong 2, D. J. Strickler 2, A. Subbotin 6 1) Princeton Plasma Physics Laboratory, Princeton, NJ ) Oak Ridge National Laboratory, Oak Ridge, TN ) École Polytechnique Federale de Lausanne, Lausanne, Switzerland. 4) Lawrence Livermore National Laboratory, Livermore, CA ) University of California at San Diego, San Diego, CA ) RRC Kurchatov Institute, Moscow, Russia. contact of main author: hneilson@pppl.gov Abstract. Compact stellarators have the potential to make steady-state, disruption-free magnetic fusion systems with β ~ 5% and relatively low aspect ratio (R/ a < 4.5) compared to most drift-optimized stellarators. Magnetic quasi-symmetry can be used to reduce orbit losses. The National Compact Stellarator Experiment (NCSX) is designed to test compact stellarator physics in a high-beta quasi-axisymmetric configuration and to determine the conditions for high-beta disruption-free operation. It is designed around a reference plasma with low ripple, good magnetic surfaces, and stability to the important ideal instabilities at β ~ 4%. The device size, available heating power, and pulse lengths provide access to a high-beta target plasma state. The NCSX has magnetic flexibility to explore a wide range of equilibrium conditions and has operational flexibility to achieve a wide range of beta and collisionality values. The design provides space to accommodate plasma-facing components for divertor operation and ports for an extensive array of diagnostics. 1. Introduction Fusion energy research is increasingly focused on the challenge of finding the best magnetic configuration for a practical fusion reactor. Stellarators are of particular interest because they can solve two major problems for magnetic confinement achieving steady state operation and avoiding disruptions. Consequently, substantial investments are being made in new stellarator facilities, including the large superconducting LHD [1] and W7-X [2] experiments. The three-dimensional plasma geometry of stellarators provides degrees of freedom, not available in axisymmetric configurations, to target favorable physics properties (low magnetic field ripple, well-confined particle orbits, high-beta stability without the need for current drive or feedback) in their design. Design features now being studied experimentally include the use of helical magnetic-axis excursions (TJ-II [3], H1-NF [4], and Heliotron-J [5]) and approximate alignment of particle drift orbits with magnetic surfaces (W7-AS [6] and W7-X [2]). In quasi-symmetric stellarator design the 3D magnetic field strength has an approximate symmetry direction in Boozer coordinates [7] to keep charged particle drift orbits well confined. Compact stellarators are designed with an aspect ratio R/ a much less than that of * Research supported by the U.S. Department of Energy under Contract No. DE-AC76-CH with the Princeton Plasma Physics Laboratory and Contract No. DE-AC05-00OR with the Oak Ridge National Laboratory.

2 2 IAEA-CN-94/IC-1 currentless optimized stellarators ( 4.5 vs. 10). Stellarator coils are designed to generate most of the rotational transform and to shape the plasma to achieve the desired physics properties. The bootstrap current can be used to generate some of the rotational transform (iota). Care must be taken in the design to minimize islands which are a feature of the three-dimensional geometry. The National Compact Stellarator Experiment (NCSX) [8, 9] is designed to be a quasi-axisymmetric stellarator (QAS), so that its transport properties are similar to those of tokamaks. The design has high beta (> 4%), moderate aspect ratio ( 4.4), and reversed magnetic shear. A successful experimental test of magnetic quasi-symmetry has already been carried out in the Helically Symmetric Experiment (HSX) [10]. The mission of NCSX is to test compact stellarator physics in a high-beta QAS configuration and to determine the conditions for high-beta disruption-free operation in order to evaluate its potential as a fusion concept. A QAS strategy is also used in the CHS-qa study [11]. A quasi-poloidal, compact stellarator with lower aspect ratio is being designed for the QPS experiment [12]. 2. Coil Design FIG. 1. NCSX modular coils and reference plasma. The NCSX uses modular coils (Fig. 1) to generate the main helical magnetic field. For equilibrium flexibility, there are also toroidal field coils, poloidal field coils, and helical-field trim coils. The physics basis for the coil design is a computed three-period reference QAS plasma with β = 4%. An assumed moderately broad pressure profile typical of experiments and a consistent bootstrap current profile which generates about one-fourth of the rotational transform at the edge are used. Existing stellarator coil design methods, based on the VMEC [13] equilibrium code, were extended in order to design feasible coils and plasmas for low-aspect-ratio stellarators with internal currents. An initial filamentary FIG. 2. Poincaré plots of PIES magnetic surfaces for target freeboundary PIES equilibrium at β=4.1% for finite-cross section model of NCSX coils. Dashed line: first wall; solid line: VMEC equilibrium boundary.

3 3 IAEA-CN-94/IC-1 TABLE I. NCSX Configuration Physics Design Summary Parameter or Property Achieved in β = 4% Target Equilibrium Aspect ratio R/ a 4.4 Stability at β = 4% Shear Large external iota fraction. Quasi-symmetry Magnetic surface quality Stable to ext. kink, vertical, Mercier modes iota = 0.39 (center), 0.65 (edge) ~0.75 from coils effective ripple ε h 0.1% (center), 0.4% (r/a 0.7). total effective island width <10% of toroidal flux Criteria Substantially lower than existing driftoptimized stellarator designs, e.g. HSX, W7-X. Sufficient to test stabilization of a sustainable toroidal plasma by 3D shaping. For neoclassical island reduction and healing. Monotonically increasing except very near the edge. Conservative approach for disruptionresistance. Low helical ripple neoclassical transport compared to axisymmetric designs; tolerable balanced neutral-beam-injected ion losses in high-beta, low-b scenarios. For negligible contribution to losses. Based on PIES equilibrium calculations and estimated neoclassical and finite-χ /χ island width corrections. modular coil solution is found by minimizing the root-mean-squared normal component of the magnetic field on the surface of the reference plasma, following the reverse engineering approach used in the W7-X design [14]. The coil geometry is then modified by a technique which couples the coil [15] and plasma optimization processes to directly design coils which produce a free-boundary target equilibrium possessing the reference plasma physics properties (rather than a particular shape), as well as engineering parameters such as coil spacing and bend radius. The achieved physics properties are summarized in Table I. An effective ripple parameter ε h, characterizing transport in the 1/ν regime [16], measures the degree of quasi-axisymmetry. In the final step, the coil geometry is modified again using a technique to reduce the width of residual islands in the free-boundary equilibrium calculated by the PIES code [17]. The coil design process leads to a free-boundary high-beta target equilibrium that has good magnetic surfaces, with the sum of effective island widths < 1% with finite-model coils (Fig. 2), while preserving target physics and engineering properties. Although optimized for a single equilibrium, the NCSX coil design can support a broad range of equilibria with favorable physics properties and a wide range of plasma profiles, as is necessary for its mission. This is accomplished by varying the currents in the toroidal field, poloidal field, and modular coil circuits. Since it is planned to initiate NCSX plasmas on vacuum magnetic surfaces, the existence of good vacuum configurations is critical. A vacuum case with iota < 0.5 everywhere, is shown in Fig. 3. Good configurations with iota > 0.5 are also available, providing flexibility to either encounter or avoid possible instabilities associated with the iota = 0.5 resonance during startup.

4 4 IAEA-CN-94/IC-1 The coil design provides a wide operating space in β and plasma current (I P ) for the reference pressure and current profile shapes and constant magnetic field (B = 1.7 T at R = 1.4 m). As shown in Fig. 4, VMEC equilibria stable to external kink and ballooning modes and having low ripple ε h can be made with β ranging from 0 to 4% and I P from 0 to 100% of its reference value. Stable equilibria at higher beta (at least 6%) can be made with modest increase in ripple. The design is robust to variations in pressure and current profile shapes. While the reference current profile is hollow, stable equilibria with β = 3%, and ε h < 0.5% are found with peaked current profiles as well. By varying coil currents, the equilibrium parameters to which the physics properties are sensitive can be varied, providing the capability to test theoretical predictions. Kink stability beta limits can be lowered from the nominal 4% to about 1% so theoretical stability limits can be studied over a range of beta values. While the design has been optimized to make the effective ripple at r/a 0.7 very low, it can easily be increased by almost an order of magnitude, while preserving stability, to test the dependence of neoclassical losses and confinement enhancement on the degree of quasi-symmetry. The rotational transform profile can be varied to study its effects on transport and stability. The external rotational transform can be varied at fixed shear from 0.2 to +0.1 about the reference profile. The global shear (ι edge - ι 0 ) can be increased by a factor of 2 at fixed ι 0 ; limits on reducing the shear are still being studied. Satisfactory magnetic surfaces have been calculated with PIES for several points in the NCSX Beta (%) % 0.89% 0.79% Current (ka) FIG. 3. Poincaré plots of PIES magnetic surfaces for vacuum configuration with iota of (filamentary coil model). Dashed line: first wall; solid line: VMEC equilibrium boundary % 0.68% 0.67% 0.61% 0.72% % 0.65% 0.51% 0.72% 0.60% % 0.46% 0.42% 0.41% 0.45% % 0.39% 0.36% 0.40% 0.45% 0.92% % FIG. 4. Operating diagram in plasma current-beta space for NCSX coils and reference profiles. Effective ripple (ε h ) at r/a 0.7 are identified for equilibria found stable to external kink and ballooning modes. Shaded equilibria are unstable. Unmarked regions were not analyzed.

5 5 IAEA-CN-94/IC-1 operating space, but additional island width control may be needed. Planned resonant trim coils can be added to provide additional control of island-producing resonances for purposes of reducing island widths or performing controlled island physics experiments. 3. Device Size and Performance The NCSX device size (major radius R = 1.4 m), magnetic field range (B = Tesla), pulse length ( s) and plasma heating power (initially 3 MW) are set to produce the plasma conditions and profiles needed to test critical physics issues over a range of beta and collisionality values. The device will be initially equipped with two of the four existing 1.5-MW, 50-keV, 0.3-s neutral beam injectors, formerly used on the PBX-M experiment. They are arranged for balanced tangential injection to be able to balance rotational transform perturbations due to beam-driven currents. Monte Carlo beam slowing down calculations predict 24% hydrogen beam ion loss for balanced injection at B = 1.2 T. Plasmas with β = 2.6% and collisionality ν* = 0.25 are predicted with the initial 3-MW beam system, assuming an enhancement factor of 2.9 times the ISS95 [18] stellarator confinement time scaling, or 0.9 times an equivalent ITER-97P L-mode tokamak scaling [19]. With the full complement of hydrogen neutral beams (6 MW) and these same confinement enhancement assumptions, the reference beta value of 4% and collisionality ν* = 0.25 predicted. The ISS95 enhancement factor required to reach 4% beta is reduced to 1.8 by allowing the density to rise to the Sudo limit [20], with an attendant increase in collisionality. The NCSX magnet system is designed for pulsed operating scenarios with magnetic fields up to 2.0 T (for 0.2 s) for low-collisionality plasma studies and pulse lengths up to 1.2 s (at B = 1.2 T) for experiments with pulse lengths long compared to current equilibration times. The magnet design also provides operating scenarios with plasma current up to 350 ka (providing a factor of 2 range for internal rotational transform flexibility). The neutral beam pulse length can be increased to 0.5 s with modest changes and potentially to >1 s with additional upgrades. Radio frequency waves can be launched from the high-field side to more directly heat electrons than with the neutral beams. 4. Discharge Evolution Time-dependent modeling of NCSX discharge evolution has been carried out to demonstrate the existence of satisfactory paths from vacuum fields to a target high-beta state, consistent with the technical capabilities of the coils and heating systems. The coils are designed to provide Ohmic heating, current drive, external rotational transform, and plasma shape control. Neutral beams provide plasma heating and current drive, although the balance of co- and counter-injection is adjusted to minimize the latter. The bootstrap current provides significant rotational transform. A simulation methodology based on the TRANSP 1-1/2-D tokamak analysis code was developed to model the time-evolution of the poloidal flux and iota profile. Because NCSX is quasi-axisymmetric, tokamak modeling tools can provide an accurate guide. An equivalent tokamak equilibrium is generated having the same external iota, major radius, aspect ratio, plasma volume, and toroidal flux as the reference NCSX equilibrium. In the simulation, the plasma shape, external iota profile (simulated as an externally-specified driven current profile), and density profile shape are kept constant in time. The plasma current, density, neutral beam heating power, and co-/counter- beam balance are programmed. The electron and ion thermal diffusivities are automatically adjusted to match an assumed global energy

6 6 IAEA-CN-94/IC-1 ( ka ) 100 I BS I p % β β Τ TIME (SECONDS) TIME (SECONDS) FIG. 5. Waveforms from time-dependent simulation of high-beta NCSX discharge. (a) Plasma current (programmed) and calculated bootstrap current. (b) Calculated beta values using tokamak (β T ) and stellarator (β) definitions. confinement scaling (minimum of neo-alcator and ITER-97P L-mode scaling). The TRANSP code models poloidal flux diffusion, beam deposition and slowing down, neutral beam current drive, and power balance. It calculates the profiles of electron and ion temperature and pressure, fast ion pressure, current, and iota. The transformation to the actual NCSX geometry is accomplished by using the VMEC code to calculate a time-series of free-boundary equilibria with the actual NCSX coil geometry and the TRANSP-simulated profiles as input. Results are presented here for a simulation with B = 1.4 T and an available 6 MW of balanced neutral beam injection. Figure 5 shows time sequences of key input and output parameters of the 1-1/2-D modeling. Important aspects of discharge programming to obtain the target beta and a nearly stationary bootstrap current profile at the end of the discharge are minimizing the Ohmic current during startup, adjusting the co-counter beam balance to approximately balance the Ohmic current profile, rapidly (~1.5 MA/s) increasing the current initially followed by clamping of the applied loop voltage, and modulating the neutral beam heating power to control the total pressure. At t = 303 ms of the TRANSP simulation, the average toroidal beta has risen to about 4% (corresponding to 4.5% when transformed to a stellarator equilibrium because of a different magnetic field normalization), peak electron and ion temperatures are 2.4 kev and 2.8 kev respectively, and the volume-averaged electron and ion collisionality values are ν e * = 0.2, ν i * = 0.1. The current (130 ka) is well matched to the bootstrap current (140 ka), and the current profile is predominantly bootstrap. The parameters and profiles in this state are similar, though not identical, to those of the reference equil- FIG. 6. Poincaré plots of PIES magnetic surfaces for equilibrium at t = 303 ms in discharge simulation. Dashed line: first wall; solid line: VMEC equilibrium boundary.

7 7 IAEA-CN-94/IC-1 ibrium. Free-boundary VMEC equilibria were generated for the sequence of profiles resulting from this simulation and the NCSX coils by varying the coil currents to optimize physics properties. The plasma is calculated to be stable to ballooning, kink, and vertical modes and to have good quasi-axisymmetry (ε h < 0.4% at r/a 0.5) throughout the discharge. Magnetic surface quality is analyzed using the PIES code. Results at t = 303 ms, when 99% of the current is bootstrap, are shown in Fig. 6. The m = 5 island, which extends over 5% of the cross-section area in the PIES calculation, is predicted to be reduced to 2.5% by neoclassical effects which are not included in the PIES calculations. The island widths can also be reduced using the trim coils. A number of small island chains are visible in Figure 5. When the island width is smaller than a critical value, electron diffusion across the island dominates diffusion along the field line, and the presence of the island has little effect on transport. The critical island width is about 2%-3% of the minor radius for the mode numbers of interest. 5. Power and Particle Handling Control of impurities and neutral recycling is the main power and particle handling issue in the design of NCSX. [21] For impurity control, low-z materials (carbon) are planned for surfaces with intense plasma-wall interactions. For neutral control, recycling sources and baffles will be arranged so as to inhibit neutral flow to the main plasma. Motivated in part by recent W7-AS divertor results showing improved edge control and plasma performance [22], the NCSX is designed so that a pumped slot divertor can be installed in the future. The basic requirement affecting the design of the coils and the vacuum vessel is providing sufficient connection length of field lines in the scrapeoff layer outside the last closed magnetic surface (LCMS). Connection lengths longer than 100 m are sufficient to allow high temperatures at the LCMS and significant 0.8 temperature drops along field lines to reasonably low target temperatures, and hence the 0.6 establishment of low temperatures and a high recycling regime to control the impurity source at 0.4 the target. Scrapeoff layer field-line following calculations for magnetic configurations which have finite plasma pressure were made using the MFBE code [23]. In NCSX the field lines launched close to the LCMS (here taken to be the VMEC boundary) make many toroidal revolutions close to it and do not exhibit very strong stochasticity. This is seen in Fig. 7, a Poincaré plot of scrapeoff field lines for the reference high-beta state and the NCSX coils. The field lines are launched from the midplane, half from the inside and half from the outside, from 0 to 10 mm outside the LCMS. Most lines remain within a 4-cm wide band conformal to the boundary (except near the tips of the bananashaped cross sections, where the divertor would be located) long enough to complete 20 toroidal revolutions (~200 m) and provide the required connection lengths. These calculations are used as Z (m) R (m) FIG. 7 Poincaré plots of scrapeoff field lines started at the inboard and outboard midplane within 0-1 cm of the nominal (VMEC) boundary and followed for 20 toroidal revolutions. Envisioned divertor hardware is indicated schematically.

8 8 IAEA-CN-94/IC-1 a guide in the placement of plasma-facing components with sufficient clearance to provide long connection lengths. 6. Summary The NCSX is designed to provide the capabilities needed to assess the physics of compact stellarators. It will produce high beta equilibria with good physics properties and magnetic surfaces, have an ample operating space and flexibility, and provide access to high-beta target equilibria starting from vacuum. Based on these physics considerations, a feasible engineering concept for the NCSX has been developed. [24] It provides the space and access provisions to augment the initial configuration with new capabilities, particularly diagnostics [25] and plasma-facing components, as needed in the course of the experimental program. [1] FUJIWARA, M., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-OV1/4. [2] LOTZ, W., et al., in Plasma Physics and Controlled Nuclear Fusion Research 1990 (Proc. 13th Int. Conf. Washington, 1990) Vol.2, IAEA, Vienna (1991) 603. [3] ALEJALDRE, C., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-OV4/4. [4] HARRIS, J. H., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-EXP1/02. [5] OBIKI, T., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-EXP1/09. [6] SAPPER, J. et al., Fusion Technol. 17 (1990) 62. [7] BOOZER, A. H., Phys. Fluids 23 (1980) 904. [8] ZARNSTORRF, M., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-IC/1. [9] NEILSON, G. H., et al., Phys. Plasmas 7 (2000) [10] TALMADGE, J. N., this conference, Paper IAEA-CN-94-EX/P3-22. [11] OKAMURA, S., et al., in Fusion Energy 2000 (Proc. 18th Conf., Sorrento, Italy, 4-10 Oct., 2000), IAEA, Vienna (2001), Paper IAEA-CN-77-ICP/16. [12] SPONG, D. A., et al., Nucl. Fusion 41 (2001) 711; LYON, J. F., et al., this conference, Paper IAEA-CN-94-IC/P-05. [13] HIRSHMAN, S. P., et al., Comput. Phys. Commun. 43 (1986) 143. [14] NÜHRENBERG, J. and ZILLE, R., Phys. Lett. A 129 (1988) 113. [15] STRICKLER D. J., et al., Fusion Sci. and Technol. 41 (2002) 107. [16] NEMOV, V V., et al., Phys. Plasmas 6 (1999) [17] HUDSON, S. R., et al., Eliminating Islands in High-Pressure Free-Boundary Stellarator Magnetohydrodynamic Equilibrium Solutions, submitted to Phys. Rev. Lett. [18] STROTH, U., et al., Nuclear Fusion 36 (1996) [19] KAYE, S., et al., Nuclear Fusion 39 (1999) [20] SUDO, S., et al., Nuclear Fusion 30 (1990) 11. [21] MIODUSZEWSKI, P., et al., Plasma boundary considerations for the National Compact Stellarator Experiment, Proceedings of 15th PSI Conference, Gifu, Japan, May 27-31, 2002, to be published in J. Nucl. Mat. [22] GRIGULL, P. et al., 28th EPS Conference, Madeira, Portugal, June, 2001 [23] STRUMBERGER, E. et al., Nucl Fusion, 37 (1997) 19. [24] NELSON, B. E., et al., this conference, Paper IAEA-CN-94-FT/2-4. [25] JOHNSON, D., et al., Diagnostics Plan for the National Compact Stellarator Experiment, Rev. Sci. Inst., to be published.

PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY

PRINCETON PLASMA PHYSICS LABORATORY PRINCETON UNIVERSITY, PRINCETON, NEW JERSEY PREPARED FOR THE U.S. DEPARTMENT OF ENERGY, UNDER CONTRACT DE-AC02-76CH03073 PPPL-3517 UC-70 PPPL-3517 Physics Issues in the Design of Low Aspect-Ratio, High-Beta, Quasi-Axisymmetric Stellarators by M.C.

More information

Shear Flow Generation in Stellarators - Configurational Variations

Shear Flow Generation in Stellarators - Configurational Variations Shear Flow Generation in Stellarators - Configurational Variations D. A. Spong 1), A. S. Ware 2), S. P. Hirshman 1), J. H. Harris 1), L. A. Berry 1) 1) Oak Ridge National Laboratory, Oak Ridge, Tennessee

More information

Physics design of a high-β quasi-axisymmetric stellarator

Physics design of a high-β quasi-axisymmetric stellarator Plasma Phys. Control. Fusion 41 (1999) B273 B283. Printed in the UK PII: S0741-3335(99)07029-3 Physics design of a high-β quasi-axisymmetric stellarator A Reiman, G Fu, S Hirshman, L Ku, D Monticello,

More information

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift )

Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Configuration Optimization of a Planar-Axis Stellarator with a Reduced Shafranov Shift ) Shoichi OKAMURA 1,2) 1) National Institute for Fusion Science, Toki 509-5292, Japan 2) Department of Fusion Science,

More information

Active MHD Control Needs in Helical Configurations

Active MHD Control Needs in Helical Configurations Active MHD Control Needs in Helical Configurations M.C. Zarnstorff 1 Presented by E. Fredrickson 1 With thanks to A. Weller 2, J. Geiger 2, A. Reiman 1, and the W7-AS Team and NBI-Group. 1 Princeton Plasma

More information

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK

Stellarators. Dr Ben Dudson. 6 th February Department of Physics, University of York Heslington, York YO10 5DD, UK Stellarators Dr Ben Dudson Department of Physics, University of York Heslington, York YO10 5DD, UK 6 th February 2014 Dr Ben Dudson Magnetic Confinement Fusion (1 of 23) Previously... Toroidal devices

More information

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time

(a) (b) (c) (d) (e) (f) r (minor radius) time. time. Soft X-ray. T_e contours (ECE) r (minor radius) time time Studies of Spherical Tori, Stellarators and Anisotropic Pressure with M3D 1 L.E. Sugiyama 1), W. Park 2), H.R. Strauss 3), S.R. Hudson 2), D. Stutman 4), X-Z. Tang 2) 1) Massachusetts Institute of Technology,

More information

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS

OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS OPTIMIZATION OF STELLARATOR REACTOR PARAMETERS J. F. Lyon, L.P. Ku 2, P. Garabedian, L. El-Guebaly 4, L. Bromberg 5, and the ARIES Team Oak Ridge National Laboratory, Oak Ridge, TN, lyonjf@ornl.gov 2 Princeton

More information

Predictive Study on High Performance Modes of Operation in HL-2A 1

Predictive Study on High Performance Modes of Operation in HL-2A 1 1 EX/P-0 Predictive Study on High Performance Modes of Oration in HL-A 1 Qingdi GAO 1), R. V. BUDNY ), Fangzhu LI 1), Jinhua ZHANG 1), Hongng QU 1) 1) Southwestern Institute of Physics, Chengdu, Sichuan,

More information

MHD Stabilization Analysis in Tokamak with Helical Field

MHD Stabilization Analysis in Tokamak with Helical Field US-Japan Workshop on MHD Control, Magnetic Islands and Rotation the University of Texas, Austin, Texas, USA AT&T Executive Education & Conference Center NOVEMBER 3-5, 8 MHD Stabilization Analysis in Tokamak

More information

Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan

Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan Quasi-Symmetric Stellarators as a Strategic Element in the US Fusion Energy Research Plan Quasi-Symmetric Stellarator Research The stellarator offers ready solutions to critical challenges for toroidal

More information

Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1

Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1 1 FTP/P7-34 Multifarious Physics Analyses of the Core Plasma Properties in a Helical DEMO Reactor FFHR-d1 J. Miyazawa 1, M. Yokoyama 1, Y. Suzuki 1, S. Satake 1, R. Seki 1, Y. Masaoka 2, S. Murakami 2,

More information

MHD. Jeff Freidberg MIT

MHD. Jeff Freidberg MIT MHD Jeff Freidberg MIT 1 What is MHD MHD stands for magnetohydrodynamics MHD is a simple, self-consistent fluid description of a fusion plasma Its main application involves the macroscopic equilibrium

More information

Significance of MHD Effects in Stellarator Confinement

Significance of MHD Effects in Stellarator Confinement Significance of MHD Effects in Stellarator Confinement A. Weller 1, S. Sakakibara 2, K.Y. Watanabe 2, K. Toi 2, J. Geiger 1, M.C. Zarnstorff 3, S.R. Hudson 3, A. Reiman 3, A. Werner 1, C. Nührenberg 1,

More information

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift )

DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) DT Fusion Ignition of LHD-Type Helical Reactor by Joule Heating Associated with Magnetic Axis Shift ) Tsuguhiro WATANABE National Institute for Fusion Science, 322-6 Oroshi-cho, Toki 509-5292, Japan (Received

More information

Integrated Particle Transport Simulation of NBI Plasmas in LHD )

Integrated Particle Transport Simulation of NBI Plasmas in LHD ) Integrated Particle Transport Simulation of NBI Plasmas in LHD Akira SAKAI, Sadayoshi MURAKAMI, Hiroyuki YAMAGUCHI, Arimitsu WAKASA, Atsushi FUKUYAMA, Kenichi NAGAOKA 1, Hiroyuki TAKAHASHI 1, Hirohisa

More information

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na

Introduction to Nuclear Fusion. Prof. Dr. Yong-Su Na Introduction to Nuclear Fusion Prof. Dr. Yong-Su Na What is a stellarator? M. Otthe, Stellarator: Experiments, IPP Summer School (2008) 2 Closed Magnetic System ion +++ ExB drift Electric field, E - -

More information

Tokamak/Helical Configurations Related to LHD and CHS-qa

Tokamak/Helical Configurations Related to LHD and CHS-qa 9TH WORKSHOP ON MHD STABILITY CONTROL: "CONTROL OF MHD STABILITY: BACK TO THE BASICS" NOVEMBER 21-23, 2004, PRINCETON PLASMA PHYSICS LABORATORY Tokamak/Helical Configurations Related to LHD and CHS-qa

More information

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries

1 EX/P5-9 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries 1 International Stellarator/Heliotron Database Activities on High-Beta Confinement and Operational Boundaries A. Weller 1), K.Y. Watanabe 2), S. Sakakibara 2), A. Dinklage 1), H. Funaba 2), J. Geiger 1),

More information

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device

Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Ion Heating Experiments Using Perpendicular Neutral Beam Injection in the Large Helical Device Kenichi NAGAOKA, Masayuki YOKOYAMA, Yasuhiko TAKEIRI, Katsumi IDA, Mikiro YOSHINUMA, Seikichi MATSUOKA 1),

More information

PHYSICS DESIGN FOR ARIES-CS

PHYSICS DESIGN FOR ARIES-CS PHYSICS DESIGN FOR ARIES-CS L. P. KU, a * P. R. GARABEDIAN, b J. LYON, c A. TURNBULL, d A. GROSSMAN, e T. K. MAU, e M. ZARNSTORFF, a and ARIES TEAM a Princeton Plasma Physics Laboratory, Princeton University,

More information

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science

Recent Development of LHD Experiment. O.Motojima for the LHD team National Institute for Fusion Science Recent Development of LHD Experiment O.Motojima for the LHD team National Institute for Fusion Science 4521 1 Primary goal of LHD project 1. Transport studies in sufficiently high n E T regime relevant

More information

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk

Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Max-Planck-Institut für Plasmaphysik Der Stellarator Ein alternatives Einschlusskonzept für ein Fusionskraftwerk Robert Wolf robert.wolf@ipp.mpg.de www.ipp.mpg.de Contents Magnetic confinement The stellarator

More information

Status of Physics and Configuration Studies of ARIES-CS. T.K. Mau University of California, San Diego

Status of Physics and Configuration Studies of ARIES-CS. T.K. Mau University of California, San Diego Status of Physics and Configuration Studies of ARIES-CS T.K. Mau University of California, San Diego L.P. Ku, PPPL J.F. Lyon, ORNL P.R. Garabedian, CIMS/NYU US/Japan Workshop on Power Plant Studies and

More information

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control

Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control Stationary, High Bootstrap Fraction Plasmas in DIII-D Without Inductive Current Control P. A. Politzer, 1 A. W. Hyatt, 1 T. C. Luce, 1 F. W. Perkins, 4 R. Prater, 1 A. D. Turnbull, 1 D. P. Brennan, 5 J.

More information

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT

STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT STELLARATOR REACTOR OPTIMIZATION AND ASSESSMENT J. F. Lyon, ORNL ARIES Meeting October 2-4, 2002 TOPICS Stellarator Reactor Optimization 0-D Spreadsheet Examples 1-D POPCON Examples 1-D Systems Optimization

More information

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation -

- Effect of Stochastic Field and Resonant Magnetic Perturbation on Global MHD Fluctuation - 15TH WORKSHOP ON MHD STABILITY CONTROL: "US-Japan Workshop on 3D Magnetic Field Effects in MHD Control" U. Wisconsin, Madison, Nov 15-17, 17, 2010 LHD experiments relevant to Tokamak MHD control - Effect

More information

Rotation and Neoclassical Ripple Transport in ITER

Rotation and Neoclassical Ripple Transport in ITER Rotation and Neoclassical Ripple Transport in ITER Elizabeth J. Paul 1 Matt Landreman 1 Francesca Poli 2 Don Spong 3 Håkan Smith 4 William Dorland 1 1 University of Maryland 2 Princeton Plasma Physics

More information

Mission and Design of the Fusion Ignition Research Experiment (FIRE)

Mission and Design of the Fusion Ignition Research Experiment (FIRE) Mission and Design of the Fusion Ignition Research Experiment (FIRE) D. M. Meade 1), S. C. Jardin 1), J. A. Schmidt 1), R. J. Thome 2), N. R. Sauthoff 1), P. Heitzenroeder 1), B. E. Nelson 3), M. A. Ulrickson

More information

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany

BRIEF COMMUNICATION. Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator. Greifswald, Wendelsteinstr. 1, Greifswald, Germany BRIEF COMMUNICATION Near-magnetic-axis Geometry of a Closely Quasi-Isodynamic Stellarator M.I. Mikhailov a, J. Nührenberg b, R. Zille b a Russian Research Centre Kurchatov Institute, Moscow,Russia b Max-Planck-Institut

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer)

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 15: Alternate Concepts (with Darren Sarmer) 1. In todays lecture we discuss the basic ideas behind the main alternate concepts to the tokamak.

More information

Innovative Concepts Workshop Austin, Texas February 13-15, 2006

Innovative Concepts Workshop Austin, Texas February 13-15, 2006 Don Spong Oak Ridge National Laboratory Acknowledgements: Jeff Harris, Hideo Sugama, Shin Nishimura, Andrew Ware, Steve Hirshman, Wayne Houlberg, Jim Lyon Innovative Concepts Workshop Austin, Texas February

More information

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE

Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE 1 EX/P6-18 Noninductive Formation of Spherical Tokamak at 7 Times the Plasma Cutoff Density by Electron Bernstein Wave Heating and Current Drive on LATE M. Uchida, T. Maekawa, H. Tanaka, F. Watanabe, Y.

More information

Effect of rotational transform and magnetic shear on confinement of stellarators

Effect of rotational transform and magnetic shear on confinement of stellarators Effect of rotational transform and magnetic shear on confinement of stellarators E. Ascasíbar(1), D. López-Bruna(1), F. Castejón(1), V.I. Vargas(1), V. Tribaldos(1), H. Maassberg(2), C.D. Beidler(2) R.

More information

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD

Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD 1 Simulation Study of Interaction between Energetic Ions and Alfvén Eigenmodes in LHD Y. Todo 1), N. Nakajima 1), M. Osakabe 1), S. Yamamoto 2), D. A. Spong 3) 1) National Institute for Fusion Science,

More information

Non-Solenoidal Plasma Startup in

Non-Solenoidal Plasma Startup in Non-Solenoidal Plasma Startup in the A.C. Sontag for the Pegasus Research Team A.C. Sontag, 5th APS-DPP, Nov. 2, 28 1 Point-Source DC Helicity Injection Provides Viable Non-Solenoidal Startup Technique

More information

Evolution of Bootstrap-Sustained Discharge in JT-60U

Evolution of Bootstrap-Sustained Discharge in JT-60U 1 Evolution of Bootstrap-Sustained Discharge in JT-60U Y. Takase 1), S. Ide 2), Y. Kamada 2), H. Kubo 2), O. Mitarai 3), H. Nuga 1), Y. Sakamoto 2), T. Suzuki 2), H. Takenaga 2), and the JT-60 Team 1)

More information

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations

ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations 1 EXC/P5-02 ELM Suppression in DIII-D Hybrid Plasmas Using n=3 Resonant Magnetic Perturbations B. Hudson 1, T.E. Evans 2, T.H. Osborne 2, C.C. Petty 2, and P.B. Snyder 2 1 Oak Ridge Institute for Science

More information

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges

Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges Dependence of Achievable β N on Discharge Shape and Edge Safety Factor in DIII D Steady-State Scenario Discharges by J.R. Ferron with T.C. Luce, P.A. Politzer, R. Jayakumar, * and M.R. Wade *Lawrence Livermore

More information

Initial Experimental Program Plan for HSX

Initial Experimental Program Plan for HSX Initial Experimental Program Plan for HSX D.T. Anderson, A F. Almagri, F.S.B. Anderson, J. Chen, S. Gerhardt, V. Sakaguchi, J. Shafii and J.N. Talmadge, UW-Madison HSX Plasma Laboratory Team The Helically

More information

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS

INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS INITIAL EVALUATION OF COMPUTATIONAL TOOLS FOR STABILITY OF COMPACT STELLARATOR REACTOR DESIGNS A.D. Turnbull and L.L. Lao General Atomics (with contributions from W.A. Cooper and R.G. Storer) Presentation

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Non-solenoidal startup using point-source DC helicity injectors

More information

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX

Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX 1 Reduction of Neoclassical Transport and Observation of a Fast Electron Driven Instability with Quasisymmetry in HSX J.M. Canik 1), D.L. Brower 2), C. Deng 2), D.T. Anderson 1), F.S.B. Anderson 1), A.F.

More information

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD

Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD 1 TH/P6-38 Integrated Heat Transport Simulation of High Ion Temperature Plasma of LHD S. Murakami 1, H. Yamaguchi 1, A. Sakai 1, K. Nagaoka 2, H. Takahashi 2, H. Nakano 2, M. Osakabe 2, K. Ida 2, M. Yoshinuma

More information

THE DIII D PROGRAM THREE-YEAR PLAN

THE DIII D PROGRAM THREE-YEAR PLAN THE PROGRAM THREE-YEAR PLAN by T.S. Taylor Presented to Program Advisory Committee Meeting January 2 21, 2 3 /TST/wj PURPOSE OF TALK Show that the program plan is appropriate to meet the goals and is well-aligned

More information

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks

Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks Direct drive by cyclotron heating can explain spontaneous rotation in tokamaks J. W. Van Dam and L.-J. Zheng Institute for Fusion Studies University of Texas at Austin 12th US-EU Transport Task Force Annual

More information

IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES

IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES IMPACT OF EDGE CURRENT DENSITY AND PRESSURE GRADIENT ON THE STABILITY OF DIII-D HIGH PERFORMANCE DISCHARGES by L.L. LAO, J.R. FERRON, E.J. STRAIT, V.S. CHAN, M.S. CHU, E.A. LAZARUS, TIC. LUCE, R.L. MILLER,

More information

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS

AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS AN UPDATE ON DIVERTOR HEAT LOAD ANALYSIS T.K. Mau, A. Grossman, A.R. Raffray UC-San Diego H. McGuinness RPI ARIES-CS Project Meeting June 4-5, 5 University of Wisconsin, Madison OUTLINE Divertor design

More information

Optimization of Compact Stellarator Configuration as Fusion Devices Report on ARIES Research

Optimization of Compact Stellarator Configuration as Fusion Devices Report on ARIES Research Optimization of Compact Stellarator Configuration as Fusion Devices Report on ARIES Research Farrokh Najmabadi and the ARIES Team UC San Diego OFES Briefing November 16, 2005 Germantown Electronic copy:

More information

Study of neoclassical transport and bootstrap current for W7-X in the 1/ν regime, using results from the PIES code

Study of neoclassical transport and bootstrap current for W7-X in the 1/ν regime, using results from the PIES code INSTITUTE OF PHYSICS PUBLISHING Plasma Phys. Control. Fusion 46 (2004) 179 191 PLASMA PHYSICS AND CONTROLLED FUSION PII: S0741-3335(04)65723-X Study of neoclassical transport and bootstrap current for

More information

Overview of Pilot Plant Studies

Overview of Pilot Plant Studies Overview of Pilot Plant Studies and contributions to FNST Jon Menard, Rich Hawryluk, Hutch Neilson, Stewart Prager, Mike Zarnstorff Princeton Plasma Physics Laboratory Fusion Nuclear Science and Technology

More information

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device

Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device REVIEW OF SCIENTIFIC INSTRUMENTS 76, 053505 2005 Measurements of rotational transform due to noninductive toroidal current using motional Stark effect spectroscopy in the Large Helical Device K. Ida, a

More information

GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D

GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D GA A26474 SYNERGY IN TWO-FREQUENCY FAST WAVE CYCLOTRON HARMONIC ABSORPTION IN DIII-D by R.I. PINSKER, W.W. HEIDBRINK, M. PORKOLAB, F.W. BAITY, M. CHOI, J.C. HOSEA, and Y. ZHU JULY 2009 DISCLAIMER This

More information

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas

First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas 1 PD/1-1 First Observation of ELM Suppression by Magnetic Perturbations in ASDEX Upgrade and Comparison to DIII-D Matched-Shape Plasmas R. Nazikian 1, W. Suttrop 2, A. Kirk 3, M. Cavedon 2, T.E. Evans

More information

ELMs and Constraints on the H-Mode Pedestal:

ELMs and Constraints on the H-Mode Pedestal: ELMs and Constraints on the H-Mode Pedestal: A Model Based on Peeling-Ballooning Modes P.B. Snyder, 1 H.R. Wilson, 2 J.R. Ferron, 1 L.L. Lao, 1 A.W. Leonard, 1 D. Mossessian, 3 M. Murakami, 4 T.H. Osborne,

More information

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research

Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research 1 TH/P9-10 Three Dimensional Effects in Tokamaks How Tokamaks Can Benefit From Stellarator Research S. Günter, M. Garcia-Munoz, K. Lackner, Ph. Lauber, P. Merkel, M. Sempf, E. Strumberger, D. Tekle and

More information

Simulation of Double-Null Divertor Plasmas with the UEDGE Code

Simulation of Double-Null Divertor Plasmas with the UEDGE Code Preprint UCRL-JC-134341 Simulation of Double-Null Divertor Plasmas with the UEDGE Code M. E. Rensink, S. L. Allen, G. 0. Porter, T. 0. Rognlien This article was submitted to 7th International Workshop

More information

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal

Effects of stellarator transform on sawtooth oscillations in CTH. Jeffrey Herfindal Effects of stellarator transform on sawtooth oscillations in CTH Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, E.C. Howell, C.A. Johnson, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A.

More information

PFC/JA NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT

PFC/JA NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT PFC/JA-88-12 NEUTRAL BEAM PENETRATION CONSIDERATIONS FOR CIT J. Wei, L. Bromberg, R. C. Myer, and D. R. Cohn Plasma Fusion Center Massachusetts Institute of Technology Cambridge, Massachusetts 2139 To

More information

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706

D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd. University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 D.J. Schlossberg, D.J. Battaglia, M.W. Bongard, R.J. Fonck, A.J. Redd University of Wisconsin - Madison 1500 Engineering Drive Madison, WI 53706 Concept Overview Implementation on PEGASUS Results Current

More information

Progress Toward High Performance Steady-State Operation in DIII D

Progress Toward High Performance Steady-State Operation in DIII D Progress Toward High Performance Steady-State Operation in DIII D by C.M. Greenfield 1 for M. Murakami, 2 A.M. Garofalo, 3 J.R. Ferron, 1 T.C. Luce, 1 M.R. Wade, 1 E.J. Doyle, 4 T.A. Casper, 5 R.J. Jayakumar,

More information

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME

GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME GA A25853 FAST ION REDISTRIBUTION AND IMPLICATIONS FOR THE HYBRID REGIME by R. NAZIKIAN, M.E. AUSTIN, R.V. BUDNY, M.S. CHU, W.W. HEIDBRINK, M.A. MAKOWSKI, C.C. PETTY, P.A. POLITZER, W.M. SOLOMON, M.A.

More information

Advanced Tokamak Research in JT-60U and JT-60SA

Advanced Tokamak Research in JT-60U and JT-60SA I-07 Advanced Tokamak Research in and JT-60SA A. Isayama for the JT-60 team 18th International Toki Conference (ITC18) December 9-12, 2008 Ceratopia Toki, Toki Gifu JAPAN Contents Advanced tokamak development

More information

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal

Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform. Jeffrey Herfindal Control of Sawtooth Oscillation Dynamics using Externally Applied Stellarator Transform Jeffrey Herfindal D.A. Ennis, J.D. Hanson, G.J. Hartwell, S.F. Knowlton, X. Ma, D.A. Maurer, M.D. Pandya, N.A. Roberds,

More information

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH

DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH DIAGNOSTICS FOR ADVANCED TOKAMAK RESEARCH by K.H. Burrell Presented at High Temperature Plasma Diagnostics 2 Conference Tucson, Arizona June 19 22, 2 134 /KHB/wj ROLE OF DIAGNOSTICS IN ADVANCED TOKAMAK

More information

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D

GA A23713 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D GA A271 RECENT ECCD EXPERIMENTAL STUDIES ON DIII D by C.C. PETTY, J.S. degrassie, R.W. HARVEY, Y.R. LIN-LIU, J.M. LOHR, T.C. LUCE, M.A. MAKOWSKI, Y.A. OMELCHENKO, and R. PRATER AUGUST 2001 DISCLAIMER This

More information

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment.

Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment. Heat Flux Management via Advanced Magnetic Divertor Configurations and Divertor Detachment E. Kolemen a, S.L. Allen b, B.D. Bray c, M.E. Fenstermacher b, D.A. Humphreys c, A.W. Hyatt c, C.J. Lasnier b,

More information

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup

Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup Advancing Local Helicity Injection for Non-Solenoidal Tokamak Startup M.W. Bongard G.M. Bodner, M.G. Burke, R.J. Fonck, J.L. Pachicano, J.M. Perry, C. Pierren, J.A. Reusch, A.T. Rhodes, N.J. Richner, C.

More information

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U

STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-60U Abstract STEADY-STATE EXHAUST OF HELIUM ASH IN THE W-SHAPED DIVERTOR OF JT-6U A. SAKASAI, H. TAKENAGA, N. HOSOGANE, H. KUBO, S. SAKURAI, N. AKINO, T. FUJITA, S. HIGASHIJIMA, H. TAMAI, N. ASAKURA, K. ITAMI,

More information

From tokamaks to stellarators: understanding the role of 3D shaping

From tokamaks to stellarators: understanding the role of 3D shaping Under consideration for publication in J. Plasma Phys. From tokamaks to stellarators: understanding the role of 3D shaping Samuel A. Lazerson and John C. Schmitt 2 Princeton Plasma Physics Laboratory,

More information

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER

RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER GA A24759 RWM FEEDBACK STABILIZATION IN DIII D: EXPERIMENT-THEORY COMPARISONS AND IMPLICATIONS FOR ITER by A.M. GAROFALO, J. BIALEK, M.S. CHANCE, M.S. CHU, D.H. EDGELL, G.L. JACKSON, T.H. JENSEN, R.J.

More information

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas )

Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Comparison of Ion Internal Transport Barrier Formation between Hydrogen and Helium Dominated Plasmas ) Kenichi NAGAOKA 1,2), Hiromi TAKAHASHI 1,2), Kenji TANAKA 1), Masaki OSAKABE 1,2), Sadayoshi MURAKAMI

More information

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U

Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U 1 Formation of An Advanced Tokamak Plasma without the Use of Ohmic Heating Solenoid in JT-60U Y. Takase, 1) S. Ide, 2) S. Itoh, 3) O. Mitarai, 4) O. Naito, 2) T. Ozeki, 2) Y. Sakamoto, 2) S. Shiraiwa,

More information

Plasma Stability in Tokamaks and Stellarators

Plasma Stability in Tokamaks and Stellarators Plasma Stability in Tokamaks and Stellarators Gerald A. Navratil GCEP Fusion Energy Workshop Princeton, NJ 1- May 006 ACKNOWLEDGEMENTS Borrowed VGs from many colleagues: J. Bialek, A. Garofalo,R. Goldston,

More information

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD

Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD 21st IAEA Fusion Energy Conference Chengdu, China, 16-21 October, 2006 IAEA-CN-149/ Study of High-energy Ion Tail Formation with Second Harmonic ICRF Heating and NBI in LHD K. Saito et al. NIFS-851 Oct.

More information

Observation of Neo-Classical Ion Pinch in the Electric Tokamak*

Observation of Neo-Classical Ion Pinch in the Electric Tokamak* 1 EX/P6-29 Observation of Neo-Classical Ion Pinch in the Electric Tokamak* R. J. Taylor, T. A. Carter, J.-L. Gauvreau, P.-A. Gourdain, A. Grossman, D. J. LaFonteese, D. C. Pace, L. W. Schmitz, A. E. White,

More information

GA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFF-AXIS NBI

GA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFF-AXIS NBI GA A27444 PROBING RESISTIVE WALL MODE STABILITY USING OFF-AXIS NBI by J.M. HANSON, F. TURCO M.J. LANCTOT, J. BERKERY, I.T. CHAPMAN, R.J. LA HAYE, G.A. NAVRATIL, M. OKABAYASHI, H. REIMERDES, S.A. SABBAGH,

More information

Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR

Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR 1 Comparison of Divertor Heat Flux Splitting by 3D Fields with Field Line Tracing Simulation in KSTAR W. Choe 1,2*, K. Kim 1,2, J.-W. Ahn 3, H.H. Lee 4, C.S. Kang 4, J.-K. Park 5, Y. In 4, J.G. Kwak 4,

More information

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK

STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK GA A24738 STABILIZATION OF m=2/n=1 TEARING MODES BY ELECTRON CYCLOTRON CURRENT DRIVE IN THE DIII D TOKAMAK by T.C. LUCE, C.C. PETTY, D.A. HUMPHREYS, R.J. LA HAYE, and R. PRATER JULY 24 DISCLAIMER This

More information

Current Drive Experiments in the HIT-II Spherical Tokamak

Current Drive Experiments in the HIT-II Spherical Tokamak Current Drive Experiments in the HIT-II Spherical Tokamak T. R. Jarboe, P. Gu, V. A. Izzo, P. E. Jewell, K. J. McCollam, B. A. Nelson, R. Raman, A. J. Redd, P. E. Sieck, and R. J. Smith, Aerospace & Energetics

More information

and expectations for the future

and expectations for the future 39 th Annual Meeting of the FPA 2018 First operation of the Wendelstein 7-X stellarator and expectations for the future Hans-Stephan Bosch Max-Planck-Institut für Plasmaphysik Greifswald, Germany on behalf

More information

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES

GA A23114 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES GA A311 DEPENDENCE OF HEAT AND PARTICLE TRANSPORT ON THE RATIO OF THE ION AND ELECTRON TEMPERATURES by C.C. PETTY, M.R. WADE, J.E. KINSEY, R.J. GROEBNER, T.C. LUCE, and G.M. STAEBLER AUGUST 1999 This report

More information

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg.

Progressing Performance Tokamak Core Physics. Marco Wischmeier Max-Planck-Institut für Plasmaphysik Garching marco.wischmeier at ipp.mpg. Progressing Performance Tokamak Core Physics Marco Wischmeier Max-Planck-Institut für Plasmaphysik 85748 Garching marco.wischmeier at ipp.mpg.de Joint ICTP-IAEA College on Advanced Plasma Physics, Triest,

More information

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations

Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations PHYSICS OF PLASMAS 12, 072513 2005 Numerical calculation of the Hamada basis vectors for three-dimensional toroidal magnetic configurations J. N. Talmadge and S. P. Gerhardt a HSX Plasma Laboratory, University

More information

Energetic Particle Stability and Confinement Issues in 3D Configurations

Energetic Particle Stability and Confinement Issues in 3D Configurations Energetic Particle Stability and Confinement Issues in 3D Configurations D. A. Spong Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, USA Collaborators: Y. Todo, M. Osakabe, B. Breizman, D. Brower,

More information

Oscillating-Field Current-Drive Experiment on MST

Oscillating-Field Current-Drive Experiment on MST Oscillating-Field Current-Drive Experiment on MST K. J. McCollam, J. K. Anderson, D. J. Den Hartog, F. Ebrahimi, J. A. Reusch, J. S. Sarff, H. D. Stephens, D. R. Stone University of Wisconsin-Madison D.

More information

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas )

Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Formation and Long Term Evolution of an Externally Driven Magnetic Island in Rotating Plasmas ) Yasutomo ISHII and Andrei SMOLYAKOV 1) Japan Atomic Energy Agency, Ibaraki 311-0102, Japan 1) University

More information

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES

HIGH PERFORMANCE EXPERIMENTS IN JT-60U REVERSED SHEAR DISCHARGES HIGH PERFORMANCE EXPERIMENTS IN JT-U REVERSED SHEAR DISCHARGES IAEA-CN-9/EX/ T. FUJITA, Y. KAMADA, S. ISHIDA, Y. NEYATANI, T. OIKAWA, S. IDE, S. TAKEJI, Y. KOIDE, A. ISAYAMA, T. FUKUDA, T. HATAE, Y. ISHII,

More information

Introduction to Fusion Physics

Introduction to Fusion Physics Introduction to Fusion Physics Hartmut Zohm Max-Planck-Institut für Plasmaphysik 85748 Garching DPG Advanced Physics School The Physics of ITER Bad Honnef, 22.09.2014 Energy from nuclear fusion Reduction

More information

New Schemes for Confinement of Fusion Products in Stellarators

New Schemes for Confinement of Fusion Products in Stellarators New Schemes for Confinement of Fusion Products in Stellarators W.A. Cooper ), M.Yu. Isaev 1), M.F. Heyn 5), V.N. Kalyuzhnyj 3), S.V. Kasilov 3), W. Kernbichler 5), A.Yu. Kuyanov 1), M.I. Mikhailov 1),

More information

1) H-mode in Helical Devices. 2) Construction status and scientific objectives of the Wendelstein 7-X stellarator

1) H-mode in Helical Devices. 2) Construction status and scientific objectives of the Wendelstein 7-X stellarator Max-Planck-Institut für Plasmaphysik 1) H-mode in Helical Devices M. Hirsch 1, T. Akiyama 2, T.Estrada 3, T. Mizuuchi 4, K. Toi 2, C. Hidalgo 3 1 Max-Planck-Institut für Plasmaphysik, EURATOM-Ass., D-17489

More information

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT

GA A23736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT GA A3736 EFFECTS OF CROSS-SECTION SHAPE ON L MODE AND H MODE ENERGY TRANSPORT by T.C. LUCE, C.C. PETTY, and J.E. KINSEY AUGUST DISCLAIMER This report was prepared as an account of work sponsored by an

More information

Configuration Control Experiments in Heliotron J

Configuration Control Experiments in Heliotron J J. Plasma Fusion Res. SERIES, Vol. 8 (29) Configuration Control Experiments in Heliotron J Tohru MIZUUCHI, Shinji KOBAYASHI, Hiroyuki OKADA, Kazunobu NAGASAKI, Satoshi YAMAMOTO, Gen MOTOJIMA b, Shinya

More information

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER

ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER ASSESSMENT AND MODELING OF INDUCTIVE AND NON-INDUCTIVE SCENARIOS FOR ITER D. BOUCHER 1, D. MOREAU 2, G. VAYAKIS 1, I. VOITSEKHOVITCH 3, J.M. ANÉ 2, X. GARBET 2, V. GRANDGIRARD 2, X. LITAUDON 2, B. LLOYD

More information

Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory

Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory 1 EX/P3-30 Comparison of Plasma Flows and Currents in HSX to Neoclassical Theory D.T. Anderson 1, A.R. Briesemeister 1, J.C. Schmitt 2, F.S.B. Anderson 1, K.M. Likin 1, J.N. Talmadge 1, G.M. Weir 1, K.

More information

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D

GA A22443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D GA A443 STUDY OF H MODE THRESHOLD CONDITIONS IN DIII D by R.J. GROEBNER, T.N. CARLSTROM, K.H. BURRELL, S. CODA, E.J. DOYLE, P. GOHIL, K.W. KIM, Q. PENG, R. MAINGI, R.A. MOYER, C.L. RETTIG, T.L. RHODES,

More information

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges

Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Non-inductive plasma startup and current profile modification in Pegasus spherical torus discharges Aaron J. Redd for the Pegasus Team 2008 Innovative Confinement Concepts Workshop Reno, Nevada June 24-27,

More information

Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles

Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles 1 EXD/P3-01 Effect of non-axisymmetric magnetic perturbations on divertor heat and particle flux profiles J-W. Ahn 1, J.M. Canik 1, R. Maingi 1, T.K. Gray 1, J.D. Lore 1, A.G. McLean 1, J.-K. Park 2, A.L.

More information

Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength

Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength Exploration of Configurational Space for Quasi-isodynamic Stellarators with Poloidally Closed Contours of the Magnetic Field Strength V.R. Bovshuk 1, W.A. Cooper 2, M.I. Mikhailov 1, J. Nührenberg 3, V.D.

More information

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak

Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Study of Current drive efficiency and its correlation with photon temperature in the HT-7 tokomak Dr. Jawad Younis Senior Scientist Pakistan Atomic Energy Commission, P. O. Box, 2151,Islamabad Institute

More information