Magnetic Field Simulation and Mapping for the Qweak Experiment. Peiqing Wang University of Manitoba

Size: px
Start display at page:

Download "Magnetic Field Simulation and Mapping for the Qweak Experiment. Peiqing Wang University of Manitoba"

Transcription

1 Magnetic Field Simulation and Mapping for the Qweak Experiment Peiqing Wang University of Manitoba Winter Nuclear and Particle Physics Conference (WNPPC'07), Banff, Alberta, Feb. 2007

2 Background of the Qweak Experiment at Jefferson Lab Parity violating electron proton scattering to test Running of the Weak Mixing Angle Standard model prediction: sin2θw varies with momentum transfer Q of the interaction process called running of weak mixing angle J. Erler & P. Langacker, Particle Data Group 2006 p Qweak = 1 4 sin 2 θ w In experiment,all extracted valuesofsin2θmustagreewith thestandard modelprediction,or new physicsisindicated!!

3 Setup of Qweak Experiment A(Q 2 π 0) = GF απ 2 p Q Q weak + Q4 B Q 2 4πα 2 π= Canadian contribution (NSERC) up to$420k Cdn forconstruction ofmagnetcoils,managed bytriu M F Equipment must select & detect scattered electrons at small angles G ev,p = 0.8 ( )

4 Qweak Toroidal Magnet (QTOR) Open geometry allows the electrons to pass through 1. Incident beam energy ~1.165GeV 2. Scattering angle ~8o 3. Deflection angle of elastic electrons ~10o 4. Magnetic field integral ~0.67 T m 1. 8 coil packages 2. Each coil package consists of a double pancake structure 3. Hollow, water cooled copper conductor

5 Simulate the magnetic field Method: the magnetic field was calculated using the Biot Savart Law and performing numerical integration over the distribution of conductor current density. Procedure: Define proper coordinate system Setup the position and orientation for each current element Perform numerical integration The conductor is divided into small bars, each small bar acts as a current element. Visualization of current element positions

6 Realistic model for magnetic field simulation Manufactured coil dimensions have many inconsistencies with design specifications Leads Exit end Center Entrance end Actual coil dimensions were put into simulation programs.

7 Some simulation results The magnetic field on the median plane at sector 1 over Phi = 0o, R = 0~250cm, z = 250~250cm. DC Current: 8615 A Temperature: 20 oc BΦ Sector 1 R [cm]

8 Properties of the QTOR magnet Smallanglescattered electrons, Large field integral Largeanglescattered electrons,small field integral Focusing the elastic electrons on detector bars Separating the elastic and inelastic electrons Inelastically scattered electrons (blue tracks), are swept away from the detectors Elastically scattered electrons (red tracks) are focused onto the detectors

9 Tracing the electron trajectories Electron distribution on detector bar at a distance 570 cm to magnet center X (θ) Inelastic electrons Detector bar elastic electrons Y (Φ)

10 Magnetic field mapping device Precise, 3 d field mapping device built by Canadian group for G0 will be used to Magnetic field probes map the field and verify coil locations/symmetry Toroidal magnet and support structure 4m Designed & assembled by TRIUMF Field Mapper

11 The control and data acquisition system The main GUI of the supervisory control and data acquisition software The layout of control system Designed & assembled by TRIUMF

12 Determination of coil locations Requirements for coil misalignments: ±1.5mm (position), ±0.1 (orientation) Method: measure zero crossings of specific B field components to infer coil locations: Simulated results: Good agreement: recovered offsets agree within rounding error of starting conditions

13 Status and to do s Magnetic field simulation has been done for as built magnet coils QTOR assembly in support structure is underway Field mapping will be carried out this fall at MIT Bates Manufactured coils The installation of the Qweak experiment is expected to be carried out at Jefferson Lab by 2009 A coil on its carrier Coil stand

14 TheQweak Collaboration Qweak Collaboration Spokespersons Carlini, Roger (Principal Investigator) Thomas Jefferson National Accelerator Facility Finn, J. Michael College of William and Mary Kowalski, Stanley Massachusetts Institute of Technology Page, Shelley University of Manitoba Qweak Collaboration Members Armstrong, David College of William and Mary Averett, Todd College of William and Mary Benesch, Jay Thomas Jefferson National Accelerator Facility Birchall, James University of Manitoba Bosted, Peter Thomas Jefferson National Accelerator Facility Bruell, Antje Thomas Jefferson National Accelerator Facility Capuano, Carissa College of William and Mary Cates, Gordon University of Virginia Chattopadhyay, Swapan Thomas Jefferson National Accelerator Facility Covrig, Silviu University of New Hampshire Davis, Charles TRIUMF Dow, Karen Massachusetts Institute of Technology Dunne, James Mississippi State University Du t t a, Dip an gkar - Mis s iss ip p i St at e Un iver s it y Ent, Rolf Thomas Jefferson National Accelerator Facility Erler, Jens University of Mexico Falk, Willie University of Manitoba Forest, Tony Idaho State University Franklin, Wilbur Massachusetts Institute of Technology Gaskell, David Thomas Jefferson National Accelerator Facility Gram es, Joe - Thomas Jefferson National Accelerator Facility Gericke, Michael University of Manitoba Grimm, Klaus College of William and Mary Hersman, F. W. University of New Hampshire Holtrop, Maurik University of New Hampshire King, Paul Ohio University Johnston, Kathleen Louisiana Tech University Jones, Richard University of Connecticut Joo, Kyungseon University of Connecticut Keppel, Cynthia Hampton University Khol, Michael Massachusetts Institute of Technology Korkmaz, Elie University of Northern British Columbia Lee, Lawrence TRIUMF Liang, Yongguang Ohio University Lung, Allison Thomas Jefferson National Accelerator Facility Mack, David Thomas Jefferson National Accelerator Facility Majewski, Stanislaw Thomas Jefferson National Accelerator Facility Mammei, Juliette Virginia Polytechnic Inst. & State Univ. Mammei, Russell Virginia Polytechnic Inst. & State Univ. Martin, Jeffery University of Winnipeg Meekins, David Thomas Jefferson National Accelerator Facility Mkrtchyan, Hamlet Yerevan Physics Institute Morgan, Norman Virginia Polytechnic Inst. & State Univ. Myers, Ka t h er in e - Geo r ge Was h in gt on Un ivers it y Opper, Allena Geo r ge Was h in gt on Un iver s it y Pan, Jie - Un iver sit y o f Man it o ba Pas ch ke, Ken t - Un iver s it y o f Vir gin ia Pitt, Mark Virginia Polytechnic Inst. & State Univ. Poelker, B. (Matt) Thomas Jefferson National Accelerator Facility Porcelli, Tracy University of Northern British Columbia Prok, Yelena Massachusetts Institute of Technology Ramsay, W. Desmond University of Manitoba Ramsey Musolf, Michael California Institute of Technology Roche, Julie Ohio University Simicevic, Neven Louisiana Tech University Smith, Gregory Thomas Jefferson National Accelerator Facility Suleiman, Riad Thomas Jefferson National Accelerator Facility Tsentalovich, Evgeni Massachusetts Institute of Technology van Oers, W.T.H. University of Manitoba Wang, Peiqing University of Manitoba Wells, Steven Louisiana Tech University Wood, Stephen Thomas Jefferson National Accelerator Facility Young, Ross Thomas Jefferson National Accelerator Facility Zhu, Hongguo University of New Hampshire Zorn, Carl Thomas Jefferson National Accelerator Facility 2/1/2007

The Qweak Collaboration

The Qweak Collaboration The Qweak Collaboration D. Armstrong, A. Asaturyan, T. Averett, J. Benesch, J. Birchall, P. Bosted, A. Bruell, C. Capuano, R.D. Carlini 1 (Principal Investigator), G. Cates, C. Carrigee, S. Chattopadhyay,

More information

The Q weak Experiment at Jefferson Lab

The Q weak Experiment at Jefferson Lab The Q weak Experiment at Jefferson Lab The science The experiment Status & milestones With thanks to: PAVI09 organizers for this kind invitation Q weak collaboration for their support, hard work (& slides!)

More information

The Tracking Analysis in the Q-weak Experiment

The Tracking Analysis in the Q-weak Experiment Noname manuscript No. (will be inserted by the editor) The Tracking Analysis in the Q-weak Experiment J. Pan for the Q-weak Collaboration: D. Androic D. S. Armstrong A. Asaturyan T. Averett J. Balewski

More information

Jie Pan University of Manitoba

Jie Pan University of Manitoba Jie Pan University of Manitoba (for the Qweak Collaboration) The JLab Hall-C User Meeting Jan 3, 018 1 Overview Qweak determines QpW and sinθw to high precision via measuring parity-violation asymmetry

More information

James Dowd. The College of William & Mary. Sept , 2017

James Dowd. The College of William & Mary. Sept , 2017 Using the Q weak Apparatus to Probe the γz-box The College of William & Mary (for the Q weak Collaboration) This work was supported in part by the National Science Foundation under Grant No. PHY-1405857.

More information

The Q weak Experiment at JLab

The Q weak Experiment at JLab The Q weak Experiment at JLab A search for parity violating new physics at the TeV scale! by measurement of the Protonʼs weak charge.! Roger D. Carlini Jefferson Laboratory Scatter longitudinally polarized

More information

Qweak: A Precision Standard Model Test at Jefferson Lab Mark Pitt * Virginia Tech

Qweak: A Precision Standard Model Test at Jefferson Lab Mark Pitt * Virginia Tech Qweak: A Precision Standard Model Test at Jefferson Lab Mark Pitt * Virginia Tech 78 th Annual Meeting of the Southeastern Section of the American Physical Society Roanoke, Virginia October 19-, 011 Qweak

More information

The Qweak Experiment

The Qweak Experiment The Qweak Experiment A Search for New Physics at the TeV Scale via a Measurement of the Proton's Weak Charge Virginia Tech 2011 JLab User's Group Meeting Jefferson Lab, Newport News, Virginia Outline Introduction

More information

The Q-weak Experiment

The Q-weak Experiment The Q-weak Experiment A search for parity violating new physics at the TeV scale by measurement of the Proton s weak charge. Roger D. Carlini Jefferson Laboratory (Content of this talk includes the work

More information

Experiences from Q weak

Experiences from Q weak Experiences from Q weak David S. Armstrong College of William & Mary Physics Beyond the Standard Model and Precision Nucleon Structure Measurements with Parity- Violating Electron Scattering ECT*, Trento

More information

The Q[superscript p][subscript Weak] experiment

The Q[superscript p][subscript Weak] experiment The Q[superscript p][subscript Weak] experiment The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation As Published Publisher Androic,

More information

Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic e+p Scattering

Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic e+p Scattering Thesis Prize Talk UGM 2015 Qweak Installation: May 2010-May 2012 ~1 year of beam in 3 running periods: 06/02/2015 Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements

More information

The Qweak Experiments:

The Qweak Experiments: The Qweak Experiments: A Direct Measurement of the Weak Charge of the Proton Dipangkar Dutta Mississippi State University (for the Qweak Collaboration) Mississippi State U. D. Dutta EINN 2015 Nov 2-7,

More information

Optimization of Drift Chamber Performance for The Q weak Experiment

Optimization of Drift Chamber Performance for The Q weak Experiment Optimization of Drift Chamber Performance for The Q weak Experiment A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science with Honors in Physics from the College

More information

Measurement of Nuclear Transparency in A(e,e +) Reactions

Measurement of Nuclear Transparency in A(e,e +) Reactions Measurement of Nuclear Transparency in A(e,e +) Reactions Ben Clasie Jefferson Laboratory Experiment 01 107 Spokespersons: Dipangkar Dutta, Rolf Ent and Ken Garrow Introduction Search for Color Transparency

More information

Project P2 - The weak charge of the proton

Project P2 - The weak charge of the proton Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de K. Gerz, S. Baunack, K. S. Kumar, F. E. Maas The goal of Project P2 is to determine the electroweak mixing angle sin

More information

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc.

MOLLER Experiment. Many slides courtesy of K. Kumar, K. Paschke, J. Mammei, M. Dalton, etc. MOLLER Experiment D.S. Armstrong Nov. 9 2010 Precision Tests of the Standard Model ECT* Workshop Moller scattering: intro Previous measurement: SLAC E158 MOLLER: new physics reach Experimental Concept

More information

Strange-Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment

Strange-Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment Strange-Quark Contributions to Parity-Violating Asymmetries in the Forward G0 Electron-Proton Scattering Experiment D. S. Armstrong, 1 J. Arvieux, 2 R. Asaturyan, 3 T. Averett, 1 S. L. Bailey, 1 G. Batigne,

More information

Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering

Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering 31 AUGUST 7 Transverse Beam Spin Asymmetries in Forward-Angle Elastic Electron-Proton Scattering D. S. Armstrong, 1 J. Arvieux,, * R. Asaturyan, 3, * T. Averett, 1 S. L. Bailey, 1 G. Batigne, 4 D. H. Beck,

More information

Inclusive Electron Scattering from Nuclei at x>1 and High Q 2 with a 5.75 GeV Beam. Nadia Fomin University of Virginia

Inclusive Electron Scattering from Nuclei at x>1 and High Q 2 with a 5.75 GeV Beam. Nadia Fomin University of Virginia Inclusive Electron Scattering from Nuclei at x>1 and High Q with a 5.75 GeV Beam Nadia Fomin University of Virginia Hall C Meeting, January 006 Overview Introduction Physics Background and Motivation Progress

More information

Hall C Users Meeting. January 22-23, 2010

Hall C Users Meeting. January 22-23, 2010 Hall C Users Meeting January 22-23, 2010 Experiments completed in last year Exp Title Spin Asymmetries of the Nucleon Experiment E07-003 (SANE) Spokespersons S. Choi, M. Jones, Z. E. Meziani, O. Rondon

More information

The Qweak experiment: a precision measurement of the proton s weak charge

The Qweak experiment: a precision measurement of the proton s weak charge The Qweak experiment: a precision measurement of the proton s weak charge R. D. Carlini Jefferson Lab, 1000 Jefferson Avenue, Newport News, Virginia 3606, USA Abstract. The Qweak experiment [1] will conduct

More information

PREX / CREX Status. Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. docdb

PREX / CREX Status. Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. docdb PREX / CREX Status Jan 25, 2018 Bob Michaels, on behalf of the PREX collaboration. Wiki https://prex.jlab.org/wiki/index.php/main_page docdb http://prex.jlab.org/cgi-bin/docdb/public/documentdatabase (

More information

Measurement Using Polarized e + /e Beams

Measurement Using Polarized e + /e Beams C 3q Measurement Using Polarized e + /e Beams Xiaochao Zheng Univ. of Virginia March 7, 009 Introduction Standard Model of Electroweak Interaction Neutral Weak Coupling Constants Test of the Standard Model

More information

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues

Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues Acknowledgements: D. Armstrong, M. Dalton, K. Paschke, J. Mammei, M. Pitt, B. Waidyawansa and all my theory colleagues An Experiments Krishna Kumar Stony Brook University The Electroweak Box Workshop at

More information

Measuring Form Factors and Structure Functions With CLAS

Measuring Form Factors and Structure Functions With CLAS Measuring Form Factors and Structure Functions With CLAS Jerry Gilfoyle for the CLAS Collaboration Physics Department, University of Richmond, Virginia Outline: 1. Jefferson Lab and the CLAS Detector..

More information

PoS(Bormio 2013)024. P2 - The weak charge of the proton. D. Becker, K. Gerz. S. Baunack, K. Kumar, F. E. Maas

PoS(Bormio 2013)024. P2 - The weak charge of the proton. D. Becker, K. Gerz. S. Baunack, K. Kumar, F. E. Maas Institute for Nuclear Physics, University of Mainz E-mail: beckerd@kph.uni-mainz.de, gerz@kph.uni-mainz.de S. Baunack, K. Kumar, F. E. Maas In early 2012, preparations for a new high precision measurement

More information

The MOLLER experiment - testing the Standard Model at Jefferson Lab

The MOLLER experiment - testing the Standard Model at Jefferson Lab The MOLLER experiment - testing the Standard Model at Jefferson Lab Dustin McNulty Idaho State University mcnulty@jlab.org for the May 30, 2012 The MOLLER experiment - testing the Standard Model at Jefferson

More information

The QWeak Experiment: A measurement of the proton weak charge and up-down quark weak couplings.

The QWeak Experiment: A measurement of the proton weak charge and up-down quark weak couplings. The QWeak xperiment: A measurement of the proton weak charge and up-down quark weak couplings. University of Manitoba -mail: mgericke@physics.umanitoba.ca In May 2012, the Q p Weak collaboration completed

More information

EIC Monte Carlo and the Question of Jets

EIC Monte Carlo and the Question of Jets EIC Monte Carlo and the Question of Jets University of Colorado at Boulder seele@down.colorado.edu - March 16, 2004 Jefferson Lab Monte Carlo History of Development Basic Structure Current State Question

More information

SoLID Physics Program in Hall A at Jefferson Lab

SoLID Physics Program in Hall A at Jefferson Lab SoLID Physics Program in Hall A at Jefferson Lab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu October 5, 01 Seamus Riordan DNP 01 SoLID 1/9 SoLID Collaboration Program

More information

n3he: A Measurement of Parity Violation in the Capture of Cold Polarized Neutrons on He-3

n3he: A Measurement of Parity Violation in the Capture of Cold Polarized Neutrons on He-3 n3he: A Measurement of Parity Violation in the Capture of Cold Polarized Neutrons on He-3 Mark McCrea University of Manitoba for the n3he Collaboration October 24 Canadian Contributions Supported with

More information

Helicity Correlated Beam Systematics in the Q weak. Experiment

Helicity Correlated Beam Systematics in the Q weak. Experiment Helicity Correlated Beam Systematics in the Q weak Experiment Joshua Hoskins College of William and Mary Q weak Collaboration Southest Section of the American Physical Society October 20, 2011 Measuring

More information

1 Introduction. THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE. W. Deconinck 1, for the Q W eak Collaboration

1 Introduction. THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE. W. Deconinck 1, for the Q W eak Collaboration THE Q W eak EXPERIMENT: A SEARCH FOR NEW PHYSICS AT THE TeV SCALE W. Deconinck 1, for the Q W eak Collaboration (1) College of William & Mary, Williamsburg, VA, USA E-mail: wdeconinck@wm.edu Abstract The

More information

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering

DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering DIS-Parity: Physics Beyond the Standard Model with Parity NonConserving Deep Inelastic Scattering Paul E. Reimer Argonne National Laboratory 10 January 2003 Introduction: Weinberg-Salam Model and sin 2

More information

Separated Response Function Ratios. in Forward Pion Electroproduction. APS Meeting, St. Louis, MO, April Cornel Butuceanu.

Separated Response Function Ratios. in Forward Pion Electroproduction. APS Meeting, St. Louis, MO, April Cornel Butuceanu. π π + in Forward Pion Electroproduction Separated Response Function Ratios Cornel Butuceanu ccbutu@jlab.org APS Meeting, St. Louis, MO, 1-15 April 008 Jefferson Lab F π Collaboration R. Ent, D. Gaskell,

More information

Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range

Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range Precision Measurement of Parity-violation in Deep Inelastic Scattering Over a Broad Kinematic Range P. A. Souder July 28, 2010 PVDIS 1 Outline Physics potential Standard Model Test Charge Symmetry Violation

More information

GEANT4 Simulation of Pion Detectors for the MOLLER Experiment

GEANT4 Simulation of Pion Detectors for the MOLLER Experiment GEANT4 Simulation of Pion Detectors for the MOLLER Experiment A thesis submitted in partial fulfillment of the requirement for the degree of Bachelor of Science in Physics from the College of William and

More information

Energy Dependence of Biological Systems Under Radiation Exposure

Energy Dependence of Biological Systems Under Radiation Exposure Energy Dependence of Biological Systems Under Radiation Exposure Rachel Black Paper G29.00006 Energy Dependence of Cancer Cell Irradiation 09:24 AM 09:36 AM Ariano Munden Paper G29.00007 Calibration Of

More information

Hall C Research Program

Hall C Research Program Hall C Research Program Have been running experiments since November 1995 613 PAC Days run, or 29.7 experiments (If 94 days lost in PAC jeopardy process are included ~ 70 PAC days/year) 308 +27 PAC Days

More information

Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes

Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes PR12-06-105 Inclusive Scattering from Nuclei at x>1 in the quasielastic and deeply inelastic regimes J. Arrington (Spokesperson), D.F. Geesaman, K. Hafidi, R. Holt, D.H. Potterveld, P.E. Reimer, P. Solvignon

More information

New technique for the reduction of helicity-correlated instrumental asymmetries in photoemitted beams of spin-polarized electrons

New technique for the reduction of helicity-correlated instrumental asymmetries in photoemitted beams of spin-polarized electrons New technique for the reduction of helicity-correlated instrumental asymmetries in photoemitted beams of spin-polarized electrons J. M. Dreiling,* S. J. Burtwistle, and T. J. Gay Jorgensen Hall, University

More information

The Hall C Spin Program at JLab

The Hall C Spin Program at JLab The Hall C Spin Program at JLab Karl J. Slifer University of Virginia For the RSS collaboration We discuss the preliminary results of the Resonant Spin Structure (RSS) experiment and outline future spin-dependent

More information

Proton Radius Puzzle and the PRad Experiment at JLab

Proton Radius Puzzle and the PRad Experiment at JLab Proton Radius Puzzle and the PRad Experiment at JLab NC A&T State University, NC USA for the PRad collaboration Spokespersons:, H. Gao, M. Khandaker, D. Dutta Outline The Proton Radius Puzzle Recent status

More information

P.M. King Ohio University for the MOLLER Collaboration

P.M. King Ohio University for the MOLLER Collaboration Parity violating electron scattering at JLab: the MOLLER experiment P.M. King Ohio University for the MOLLER Collaboration SESAPS, 10 November 2016; University of Virginia, Charlottesville, VA The Standard

More information

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge

The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge The Q p weak Experiment: A Search for New TeV Scale Physics via a Measurement of the Proton s Weak Charge Measure: Parity-violating asymmetry in e + p elastic scattering at Q 2 ~ 0.03 GeV 2 to ~4% relative

More information

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II

Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II Parity-violating Electron Scattering and Strangeness in the Nucleon: Results from HAPPEX-II L. J. Kaufman University of Massachusetts The HAPPEX Collaboration Thomas Jefferson National Accelerator Facility

More information

Status of the PRad Experiment (E )

Status of the PRad Experiment (E ) Status of the PRad Experiment (E12-11-106) NC A&T State University for the PRad collaboration Outline PRad Physics goals ep-scattering and the proton radius PRad experiment experimental setup development

More information

E , E , E

E , E , E JLab Experiments E12-09-017, E12-09-011, E12-09-002 First-Year of Hall C experiments towards a complete commissioning of the SHMS for precision experiments Spokespersons: P. Bosted, D. Dutta, R. Ent, D.

More information

New Measurements of the European Muon Collaboration Effect in Very Light Nuclei

New Measurements of the European Muon Collaboration Effect in Very Light Nuclei New Measurements of the European Muon Collaboration Effect in Very Light Nuclei The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Citation

More information

The New Proton Charge Radius Experiment at JLab

The New Proton Charge Radius Experiment at JLab The New Proton Charge Radius Experiment at JLab Dipangkar Dutta Mississippi State University (for the PRad Collaboration) INPC 2016 Sept 12, 2016 Adelaide, Australia Outline 1. The Proton Charge Radius

More information

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment

Atomic Parity Non-Conservation in Francium: The FrPNC Experiment IL NUOVO CIMENTO Vol.?, N.?? Atomic Parity Non-Conservation in Francium: The FrPNC Experiment at TRIUMF S. Aubin( 1 ), E. Gomez( 2 ), J. A. Behr( 3 ), M. R. Pearson( 3 ), D. Sheng( 4 ), J. Zhang( 4 ),

More information

Jefferson Lab 12 GeV Science Program

Jefferson Lab 12 GeV Science Program QCD Evolution Workshop 2014 International Journal of Modern Physics: Conference Series Vol. 37 (2015) 1560019 (8 pages) c The Author DOI: 10.1142/S2010194515600198 Jefferson Lab 12 GeV Science Program

More information

Pulsed Cold Neutron Beam Polarimetry for the. NPDGamma Experiment. U of Manitoba Subatomic Physics Club November 2004

Pulsed Cold Neutron Beam Polarimetry for the. NPDGamma Experiment. U of Manitoba Subatomic Physics Club November 2004 Pulsed Cold Neutron Beam Polarimetry for the NPDGamma Exeriment U of Manitoba Subatomic Physics Club November 2004 resented by Chad Gillis Shelley Page J.D. Bowman (Sokeserson), M. Gericke, G.S. Mitchell,

More information

The Jlab 12 GeV Upgrade

The Jlab 12 GeV Upgrade The Jlab 12 GeV Upgrade R. D. McKeown Jefferson Lab College of William and Mary 1 12 GeV Science Program The physical origins of quark confinement (GlueX, meson and baryon spectroscopy) The spin and flavor

More information

1. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary

1. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary Vladas Tvaskis (University of Manitoba) Hall C Users Meeting January 202. Polarimetry Strategy 2. Møller Polarimeter 3. Compton Polarimeter 4. Summary Q Weak requires measurement of the beam polarization

More information

Searches for Physics Beyond the Standard Model. Electroweak Tests of the Standard Model. Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010

Searches for Physics Beyond the Standard Model. Electroweak Tests of the Standard Model. Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010 Searches for Physics Beyond the Standard Model Electroweak Tests of the Standard Model Willem T.H. van Oers UCN Workshop at RCNP April 8 9, 2010 Outline Introduction The Qweak Experiment The MOLLER Experiment

More information

Parity Violation Experiments & Beam Requirements

Parity Violation Experiments & Beam Requirements Parity Violation Experiments & Beam Requirements Riad Suleiman Center for Injectors and Sources MCC Ops Training August 05, 2009 Outline Fundamental Interactions and Conservation Rules Parity Reversal

More information

Background Information:

Background Information: Measurement of Light in Radiation Damaged Quartz Bars for Q weak Katie Kinsley Advisors: Dave Mack, Julie Roche Thomas Jefferson National Accelerator Facility Newport News, VA Summer 2007 (final edit Sept

More information

Sub-percent precision Møller polarimetry in experimental Hall C

Sub-percent precision Møller polarimetry in experimental Hall C Sub-percent precision Møller polarimetry in experimental Hall C College of William and Mary E-mail: jmagee@jlab.org Modern experiments in Jefferson Lab Hall C require precise knowledge of the electron

More information

Experiences*from*Q weak

Experiences*from*Q weak Experiences*from*Q weak David*S.*Armstrong College&of&William&&&Mary Physics*eyond*the*Standard*Model*and* Precision*Nucleon*Structure*Measurements* with*parityviolating*electron*scattering ECT*,&Trento&&&&&August&1&2016

More information

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement

Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement Hyperfine Interact (2013) 220:89 93 DOI 10.1007/s10751-013-0855-0 Creation of polarized ultracold neutrons and observation of Ramsey resonance for electric dipole moment measurement K. Matsuta Y. Masuda

More information

PREX Overview Extracting the Neutron Radius from 208 Pb

PREX Overview Extracting the Neutron Radius from 208 Pb PREX Overview Extracting the Neutron Radius from 208 Pb Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu March 17, 2013 Seamus Riordan CREX 2013 PREX 1/19 Outline Motivation

More information

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA

Superconducting Magnets for Future Electron-Ion Collider. Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Superconducting Magnets for Future Electron-Ion Collider Yuhong Zhang Thomas Jefferson National Accelerator Facility, USA Mini-workshop on Accelerator, IAS, HKUST, Hong Kong, January 18-19, 2018 1 Outline

More information

Office of Special Education Projects State Contacts List - Part B and Part C

Office of Special Education Projects State Contacts List - Part B and Part C Office of Special Education Projects State Contacts List - Part B and Part C Source: http://www.ed.gov/policy/speced/guid/idea/monitor/state-contactlist.html Alabama Customer Specialist: Jill Harris 202-245-7372

More information

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB

Precision tests of the Standard Model with trapped atoms 1 st lecture. Luis A. Orozco SUNYSB Precision tests of the Standard Model with trapped atoms 1 st lecture Luis A. Orozco SUNYSB The Standard Model (brief review) Symmetries Conserved quantities Gauge Symmetries (local and continuous) Particles

More information

The first electron beam polarization measurement with a diamond micro-strip detector

The first electron beam polarization measurement with a diamond micro-strip detector The first electron beam polarization measurement with a diamond micro-strip detector A. Narayan 1, D. Dutta 1, V. Tvaskis 2,3, D. Gaskell 4, J. W. Martin 2, A. Asaturyan 5, J. Benesch 4, G. Cates 6, B.

More information

Status of the PREX Experiment R n through PVeS at JLab

Status of the PREX Experiment R n through PVeS at JLab Status of the PREX Experiment R n through PVeS at JLab Seamus Riordan University of Massachusetts, Amherst sriordan@physics.umass.edu for the PREX Collaboration June 18, 2011 Seamus Riordan NuSym11 PREX

More information

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University

E (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2. Thir Gautam Hampton University E12-07-108 (GMp) Precision Measurement of the Proton Elastic Cross Section at High Q 2 Thir Gautam Hampton University On behalf of the GMp Collaboration Hall A Collaboration Meeting January 18, 2017 GMp

More information

PoS(INPC2016)259. Latest Results from The Olympus Experiment. Axel Schmidt Massachusetts Institute of Technology

PoS(INPC2016)259. Latest Results from The Olympus Experiment. Axel Schmidt Massachusetts Institute of Technology Massachusetts Institute of Technology E-mail: schmidta@mit.edu The two experimental techniques for determining the proton s elastic form factors unpolarized cross section measurements and polarization

More information

The Neutron Structure Function from BoNuS

The Neutron Structure Function from BoNuS The Neutron Structure Function from BoNuS Stephen Bültmann 1 Physics Department, Old Dominion University, Norfolk, VA 359, USA Abstract. The BoNuS experiment at Jefferson Lab s Hall B measured the structure

More information

The Luminosity Monitor

The Luminosity Monitor OLYMPUS Technical Review, DESY, September 15, 2009 The Luminosity Monitor Michael Kohl Hampton University, Hampton, VA 23668 Jefferson Laboratory, Newport News, VA 23606 Proposed Experiment Electrons/positrons

More information

FUTURE SCIENTIFIC OPPORTUNITIES AT JEFFERSON LAB

FUTURE SCIENTIFIC OPPORTUNITIES AT JEFFERSON LAB MENU 2007 11th International Conference on Meson-Nucleon Physics and the Structure of the Nucleon September10-14, 2007 IKP, Forschungzentrum Jülich, Germany FUTURE SCIENTIFIC OPPORTUNITIES AT JEFFERSON

More information

Super Bigbite Spectrometer (SBS) Status

Super Bigbite Spectrometer (SBS) Status Super Bigbite Spectrometer (SBS) Status Mark Jones SBS Program manager 1/18/2017 Hall A Jan 2017 Meeting 1 Outline Status of SBS project Overview of experiments Status of SBS equipment SBS equipment covered

More information

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology

R. P. Redwine. Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Pion Physics in the Meson Factory Era R. P. Redwine Bates Linear Accelerator Center Laboratory for Nuclear Science Department of Physics Massachusetts Institute of Technology Bates Symposium 1 Meson Factories

More information

Renee H. Fatemi. Contact Information. Education. Academic Positions. Professional Activities. Awarded Research Grants and Fellowships

Renee H. Fatemi. Contact Information. Education. Academic Positions. Professional Activities. Awarded Research Grants and Fellowships Renee H. Fatemi Contact Information University of Kentucky 177 Chem.-Phys. Building Lexington, KY 40506-0055 859.257.2664 renee.fatemi@uky.edu Education Ph.D., Nuclear Physics, 2002; Univeristy of Virginia,

More information

Neutron skins of nuclei vs neutron star deformability

Neutron skins of nuclei vs neutron star deformability Neutron skins of nuclei vs neutron star deformability Chuck Horowitz, Indiana U., INT, Mar. 2018 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react with protons to make

More information

a sensitive probe for New Physics

a sensitive probe for New Physics + e branching ratio: Precise measurement of the a sensitive probe for New Physics For PiENu Collaboration A. Aguilar-Arevalo11, M. Aoki4, M. Blecher9, D.I. Britton8, D. Bryman6, S. Chen10, J. Comfort1,

More information

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.

Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4. Hall C - 12 GeV pcdr Max. Central Momentum 11 GeV/c 9 GeV/c Min. Scattering Angle 5.5 deg 10 deg Momentum Resolution.15% -.2% Solid Angle 2.1 msr 4.4 msr Momentum Acceptance 40% Target Length Acceptance

More information

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics

Text. References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics Lecture 7 Experimental Nuclear Physics PHYS 741 Text heeger@wisc.edu References and Figures from: - Basdevant et al., Fundamentals in Nuclear Physics - Henley et al., Subatomic Physics 98 Scattering Topics

More information

Parity Violation in DIS at 12 GeV

Parity Violation in DIS at 12 GeV Parity Violation in DIS at 12 GeV P. A. Souder, Syracuse July 25, 2010 PVDIS with at 12 GeV 1 Outline Physics potential Standard Model Test Charge Symmetry Violation (CSV) Higher Twist d/u for the Proton

More information

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility

PoS(CD12)001. Overview of Nuclear Physics at Jefferson Lab. R. D. McKeown Thomas Jefferson National Accelerator Facility Overview of Nuclear Physics at Jefferson Lab Thomas Jefferson National Accelerator Facility E-mail: bmck@jlab.org The Continuous Electron Beam Accelerator Facility (CEBAF) and associated experimental equipment

More information

Parity Violation Experiments

Parity Violation Experiments Parity Violation Experiments Krishna Kumar University of Massachusetts thanks to the HAPPEX, G0 and Qweak Collaborations, D. Armstrong, E. Beise, G. Cates, E. Chudakov, D. Gaskell, C. Furget, J. Grames,

More information

The G 0 Experiment: Backangle Running

The G 0 Experiment: Backangle Running The G 0 Experiment: Backangle Running Riad Suleiman Virginia Tech November 02, 2006 OUTLINE The Structure of the Proton and the Goal of the G 0 Experiment Parity Violation in Electron-Nucleon Interaction

More information

Building a Tracking Detector for the P2 Experiment

Building a Tracking Detector for the P2 Experiment Building a Tracking Detector for the P Experiment DPG Frühjahrstagung, Hamburg 016 Marco Zimmermann Institute for Nuclear Physics March 3, 016 The P Experiment: Overview The Idea Precision measurement

More information

The PIENU Experiment

The PIENU Experiment The PIENU Experiment For the PIENU Collaboration A. Aguilar-Arevalo 11, M. Aoki 4, M. Blecher 9, D.I. Britton 8, D. Bryman 6, S. Chen 10, J. Comfort 1, L. Doria 5, P. Gumplinger 5, C. Hurst 6, A. Hussein

More information

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond

Hunting for Quarks. G n M Co-conspirators: Jerry Gilfoyle for the CLAS Collaboration University of Richmond Hunting for Quarks Jerry Gilfoyle for the CLAS Collaboration University of Richmond JLab Mission What we know and don t know. The Neutron Magnetic Form Factor Experiments with CLAS More JLab Highlights

More information

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016

Neutron skin measurements and its constraints for neutron matter. C. J. Horowitz, Indiana University INT, Seattle, 2016 Neutron skin measurements and its constraints for neutron matter C. J. Horowitz, Indiana University INT, Seattle, 2016 1 Neutron Rich Matter Compress almost anything to 10 11 + g/cm 3 and electrons react

More information

Parity-Violating Electron Scattering on Hydrogen and Deuterium at Backward Angles: G0 Experiment David S. Armstrong College of William & Mary

Parity-Violating Electron Scattering on Hydrogen and Deuterium at Backward Angles: G0 Experiment David S. Armstrong College of William & Mary Parity-Violating Electron Scattering on Hydrogen and Deuterium at Backward Angles: G0 Experiment David S. Armstrong College of William & Mary For the G0 Collaboration PAVI 09 Bar Harbor MA June 22-26 2009

More information

NEPTUN-A Spectrometer for measuring the Spin Analyzing Power in p-p elastic scattering at large P~ at 400 GeV (and 3 TeV) at UNK.

NEPTUN-A Spectrometer for measuring the Spin Analyzing Power in p-p elastic scattering at large P~ at 400 GeV (and 3 TeV) at UNK. NEPTUN-A Spectrometer for measuring the Spin Analyzing Power in p-p elastic scattering at large P~ at 400 GeV (and 3 TeV) at UNK. 1 All M. T. Lin Randall [.aboratory of Physics The University of Michigan,

More information

C-REX : Parity-Violating Measurement of the Weak Charge of

C-REX : Parity-Violating Measurement of the Weak Charge of C-REX : Parity-Violating Measurement of the Weak Charge of 48 Ca to an accuracy of 0.02 fm Spokespersons: Juliette Mammei Dustin McNulty Robert Michaels that s me Kent Paschke Seamus Riordan (contact person)

More information

The first electron beam polarization measurement with a diamond micro-strip detector

The first electron beam polarization measurement with a diamond micro-strip detector The first electron beam polarization measurement with a diamond micro-strip A. Narayan 1, D. Dutta 1, V. Tvaskis 2,3, D. Gaskell 4, J. W. Martin 2, A. Asaturyan 5, J. Benesch 4, G. Cates 6, B. S. Cavness

More information

Analysis of Lepton Pair Production at GlueX

Analysis of Lepton Pair Production at GlueX Analysis of Lepton Pair Production at GlueX A thesis submitted in partial fulfillment of the requirements for the degree of Bachelor of Science degree in Physics from the College of William and Mary by

More information

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration

Min Huang Duke University, TUNL On behalf of the E (g2p) collaboration Min Huang Duke University, TUNL On behalf of the E08-027 (g2p) collaboration Hall A Collaboration Meeting, June 13th, 2013 E08 027 g 2p & the LT Spin Polarizability Spokespeople Alexandre Camsonne (JLab)

More information

The Broadband High Power THz User Facility at the Jefferson Lab - FEL

The Broadband High Power THz User Facility at the Jefferson Lab - FEL The Broadband High Power THz User Facility at the Jefferson Lab - FEL J. Michael Klopf Jefferson Lab Core Managers Meeting June 8, 2006 Jefferson Lab Site Free Electron Laser Facility / THz Lab What is

More information

Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun

Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun Update on Development of High Current Bunched Electron Beam from Magnetized DC Photogun JLEIC Collaboration Meeting October 6, 2016 Riad Suleiman and Matt Poelker Magnetized Cooling JLEIC bunched magnetized

More information

Coulomb Sum Rule. Huan Yao Feb 16,2010. Physics Experiment Data Analysis Summary Collaboration APS April Meeting

Coulomb Sum Rule. Huan Yao Feb 16,2010. Physics Experiment Data Analysis Summary Collaboration APS April Meeting Coulomb Sum Rule 2010 APS April Meeting Huan Yao hyao@jlab.org Feb 16,2010 1 / 17 Physics Motivation The test of Coulomb Sum Rule is to shed light on the question of whether or not the properties of nucleons

More information

Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania (T) Michigan State University

Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania (T) Michigan State University Rank University AMJ AMR ASQ JAP OBHDP OS PPSYCH SMJ SUM 1 University of Pennsylvania 4 1 2 0 2 4 0 9 22 2(T) Michigan State University 2 0 0 9 1 0 0 4 16 University of Michigan 3 0 2 5 2 0 0 4 16 4 Harvard

More information

PREX and CREX. R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin.

PREX and CREX.   R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering. Neutron Skin. http://hallaweb.jlab.org/parity/prex PREX and CREX 08 Pb Horowitz 48 Ca Neutron Skin R N from Electroweak Asymmetry in Elastic Electron-Nucleus Scattering R L 4 6 A ~ 10 PV Q ~ 10 R L PRL 108 (01) 1150

More information

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration:

János Sziklai. WIGNER RCP On behalf of the TOTEM Collaboration: Elastic scattering, total cross-section and charged particle pseudorapidity density in 7 TeV pp reactions measured by the TOTEM Experiment at the LHC János Sziklai WIGNER RCP On behalf of the TOTEM Collaboration:

More information