Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser

Size: px
Start display at page:

Download "Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser"

Transcription

1 Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser Second 1-Hour Examination Electron Correlation Methods Wednesday, November 6, 2002, 11:00-11:50 Name: Question 1. Electron Correlation. 20 Question 2. Approaches to EC. 20 Question 3. Perturbation Theory. 20 Question 4. Multilevel Theories. 20 Question 5. Situations. 20 Total 100 1

2 Question 1. Electron Correlation. (20 points) (a) What is electron correlation? Consider the electron correlation in helium atom to illustrate the fundamental problem of Hartree-Fock theory. Be brief and to the point. Drawings might help. (4 p.) (b) What is the main effects of electron correlation on the electron density of helium atom? In particular, will helium be smaller or larger once electron correlation is turned on? (2 points) (c) What are the main effects of electron correlation on the electron density distribution of the dinitrogen molecule? (4 points) 2

3 (d) What do the terms Hartree-Fock Limit and CI Limit mean? What do you need to do to reach (or at least get close to) the these limits? Draw a diagram in which the vertical axis is total energy. Draw horizontal lines for the energy computed at RHF/STO-3G, RHF/6-311G**, the HF Limit and the CI Limit. (10 points) Hartree-Fock Limit: Configuration Interaction Limit: Total Energy Diagram: 3

4 Question 2. Approaches to Electron Correlation. (20 points) The basic idea of all electron correlation theories is the same and involves the mixing in of excited configurations into the ground state configuration. Let s take a look at the molecule dilithium, Li Li, to illustrate some of these ideas. (a) This molecule has a total of electrons; electrons are in the core and electrons are in the valence. Suppose we use a minimal basis set, how many molecular orbitals are occupied and how many orbitals are in the virtual space? (6 points) (b) In a full CI calculation for Li Li, you need to consider single excitations, double excitations, up to what kind of excitation? (2 points) (c) Use the usual MO level diagram (horizontal lines with up & down arrows) and illustrate the ground state configuration, one configuration generated by a single excitation, one configuration generated by a double excitation, one configuration generated by a triple excitation, and one configuration generated by a quadruple excitation. Do show the correct number of MO lines in each picture assuming that a minimal basis set is used. (5 points) Ground Single Double Triple Quadruple State Excitation Excitation Excitation Excitation 4

5 (d) Now let s use a simpler molecule, H H, and consider only single and double excitations in the MOs provided by a minimal basis set. So, the ground state is σ 2 1, the single excited configuration is σ 1 1 σ 1 2 and the double excited configuration is σ 2 2. The correlated wavefunction will be a linear combination Ψ = c GS Ψ(σ 2 1 ) + c SE Ψ(σ 1 1 σ 1 2 ) + c DE Ψ(σ 2 2 ) and the target is the determination of the correlation coefficients c GS, c SE, and c DE. Respond to the following questions. (7 points) Describe in principle how the correlation coefficients are determined in CISD theory. In particular, is an iterative procedure necessary? Describe in principle how the correlation coefficients are determined in MP2 theory. In particular, is an iterative procedure necessary? In CISD theory, are the molecular orbitals used in the ground state and in the excited states the same or are they different? How are the molecular orbitals determined? CIS and CID theory are CI theories that consider only single or double excitations, respectively. Write the correlated wavefunctions for these two cases. 5

6 Question 3. Perturbation Theory. (20 points) (a) Explain briefly what the following terms mean. MP2(fc) (2 points) MP3(full) (2 points) MP4(full,SDQ) (4 points) How does MP2 scale with N, the number of basis functions? (1 point) How does MP4(SDTQ) scale with N, the number of basis functions? (1 point) MP4(fc)/6-311G*//MP2(full)/6-311G* (4 points) 6

7 (b) An MP4(full)/6-311G*//MP2(full)/6-311G* calculation of N 2 produced the following output. (The complete output is posted on the course web site.) Circle the RHF, MP2, MP3, and MP4 energies in the output. Look at the numbers and comment on anything you notice and that you think is interesting. (6 points) SCF Done: E(RHF) = A.U. after 1 cycles Convg = D-10 -V/T = S**2 = Range of M.O.s used for correlation: 1 36 NBasis= 36 NAE= 7 NBE= 7 NFC= 0 NFV= 0 NROrb= 36 NOA= 7 NOB= 7 NVA= 29 NVB= 29 Spin components of T(2) and E(2): alpha-alpha T2 = D-01 E2= D-01 alpha-beta T2 = D-01 E2= D+00 beta-beta T2 = D-01 E2= D-01 ANorm= D+01 E2= D+00 EUMP2= D+03 R2 and R3 integrals will be kept in memory, NReq= DD1Dir will call FoFMem 1 times, MxPair= 56 NAB= 28 NAA= 0 NBB= 0. MP4(D)= D-01 MP4(S)= D-02 MP4(R+Q)= D-02 T4(AAA)= D-03 T4(AAB)= D-02 Time for triples= seconds. MP4(T)= D-01 E3= D-01 EUMP3= D+03 E4(DQ)= D-02 UMP4(DQ)= D+03 E4(SDQ)= D-01 UMP4(SDQ)= D+03 E4(SDTQ)= D-01 UMP4(SDTQ)= D+03 Observations? Comments? Insights? 7

8 Question 4. G1 and G2 Multilevel Theories. (20 points) (a) Describe the basic frustration in the approaches to electron correlation and outline the concept used by the multilevel approaches to resolve this frustration. Use a diagram if it helps. (8 points) (b) Describe in detail how G1 and G2 differ. State exactly how this/these additional term(s) are computed (method, basis set, based on what structure). (6 points) (c) You are an associate editor of J. Phys. Chem. handling a manuscript in which G1 and G2 data are reported for a homolysis. One referee recommends publication as is. The other referee recommends rejection unless the authors also report G3 results. How will you decide? (6 points.) 8

9 Question 5. Situations. (20 points) (a) You want to compute the activation barrier for the Diels-Alder reaction between butadiene and ethene to within 5 kcal/mol. Do you need small, large or very large basis sets? Do you have to include electron correlation in the computation of structures? Do you have to include electron correlation in the computation of energies? Which method would you suggest to use? Briefly argue why. (b) You want to compute the homolytic dissociation energy of hydrogenperoxide to within 1 kcal/mol. Do you need small, large or very large basis sets? Do you have to include electron correlation in the computation of structures? Do you have to include electron correlation in the computation of energies? Which method would you suggest to use? Briefly argue why. 9

Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser

Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser Chemistry 433 Computational Chemistry Fall Semester 2002 Dr. Rainer Glaser Second 1-Hour Examination Electron Correlation Methods Wednesday, November 6, 2002, 11:00-11:50 Name: Answer Key Question 1. Electron

More information

MU, Chemistry Computational Chemistry Spring Semester 2009 Dr. Rainer Glaser

MU, Chemistry Computational Chemistry Spring Semester 2009 Dr. Rainer Glaser Name: MU, Chemistry8 330 ComputationalChemistry SpringSemester2009 Dr.RainerGlaser Third1 HourExamination Friday,April24,2009,11:00 11:50am Question1.ElectronCorrelation 20 Question2.PerturbationTheory

More information

MU, Chemistry Computational Chemistry Spring Semester 2009 Dr. Rainer Glaser

MU, Chemistry Computational Chemistry Spring Semester 2009 Dr. Rainer Glaser Name: MU, Chemistry8 330 ComputationalChemistry SpringSemester2009 Dr.RainerGlaser Third1 HourExamination Friday,April24,2009,11:00 11:50am ANSWERKEY Question1.ElectronCorrelation 20 Question2.PerturbationTheory

More information

4 Post-Hartree Fock Methods: MPn and Configuration Interaction

4 Post-Hartree Fock Methods: MPn and Configuration Interaction 4 Post-Hartree Fock Methods: MPn and Configuration Interaction In the limit of a complete basis, the Hartree-Fock (HF) energy in the complete basis set limit (ECBS HF ) yields an upper boundary to the

More information

Methods for Treating Electron Correlation CHEM 430

Methods for Treating Electron Correlation CHEM 430 Methods for Treating Electron Correlation CHEM 430 Electron Correlation Energy in the Hartree-Fock approximation, each electron sees the average density of all of the other electrons two electrons cannot

More information

Introduction to Computational Chemistry

Introduction to Computational Chemistry Introduction to Computational Chemistry Vesa Hänninen Laboratory of Physical Chemistry Chemicum 4th floor vesa.hanninen@helsinki.fi September 10, 2013 Lecture 3. Electron correlation methods September

More information

Beyond the Hartree-Fock Approximation: Configuration Interaction

Beyond the Hartree-Fock Approximation: Configuration Interaction Beyond the Hartree-Fock Approximation: Configuration Interaction The Hartree-Fock (HF) method uses a single determinant (single electronic configuration) description of the electronic wavefunction. For

More information

Molecular Simulation I

Molecular Simulation I Molecular Simulation I Quantum Chemistry Classical Mechanics E = Ψ H Ψ ΨΨ U = E bond +E angle +E torsion +E non-bond Jeffry D. Madura Department of Chemistry & Biochemistry Center for Computational Sciences

More information

QUANTUM CHEMISTRY FOR TRANSITION METALS

QUANTUM CHEMISTRY FOR TRANSITION METALS QUANTUM CHEMISTRY FOR TRANSITION METALS Outline I Introduction II Correlation Static correlation effects MC methods DFT III Relativity Generalities From 4 to 1 components Effective core potential Outline

More information

Chemistry 4560/5560 Molecular Modeling Fall 2014

Chemistry 4560/5560 Molecular Modeling Fall 2014 Final Exam Name:. User s guide: 1. Read questions carefully and make sure you understand them before answering (if not, ask). 2. Answer only the question that is asked, not a different question. 3. Unless

More information

Computational Methods. Chem 561

Computational Methods. Chem 561 Computational Methods Chem 561 Lecture Outline 1. Ab initio methods a) HF SCF b) Post-HF methods 2. Density Functional Theory 3. Semiempirical methods 4. Molecular Mechanics Computational Chemistry " Computational

More information

Electron Correlation Methods

Electron Correlation Methods Electron Correlation Methods HF method: electron-electron interaction is replaced by an average interaction E HF c = E 0 E HF E 0 exact ground state energy E HF HF energy for a given basis set HF E c

More information

Electron Correlation

Electron Correlation Electron Correlation Levels of QM Theory HΨ=EΨ Born-Oppenheimer approximation Nuclear equation: H n Ψ n =E n Ψ n Electronic equation: H e Ψ e =E e Ψ e Single determinant SCF Semi-empirical methods Correlation

More information

Electron Correlation - Methods beyond Hartree-Fock

Electron Correlation - Methods beyond Hartree-Fock Electron Correlation - Methods beyond Hartree-Fock how to approach chemical accuracy Alexander A. Auer Max-Planck-Institute for Chemical Energy Conversion, Mülheim September 4, 2014 MMER Summerschool 2014

More information

计算物理作业二. Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit.

计算物理作业二. Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit. 计算物理作业二 Excercise 1: Illustration of the convergence of the dissociation energy for H 2 toward HF limit. In this exercise, basis indicates one of the following basis sets: STO-3G, cc-pvdz, cc-pvtz, cc-pvqz

More information

Performance of Hartree-Fock and Correlated Methods

Performance of Hartree-Fock and Correlated Methods Chemistry 460 Fall 2017 Dr. Jean M. Standard December 4, 2017 Performance of Hartree-Fock and Correlated Methods Hartree-Fock Methods Hartree-Fock methods generally yield optimized geomtries and molecular

More information

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r)

( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) Born Oppenheimer Approximation: Ĥ el ( R)Ψ el ( r;r) = E el ( R)Ψ el ( r;r) For a molecule with N electrons and M nuclei: Ĥ el What is E el (R)? s* potential surface Reaction Barrier Unstable intermediate

More information

OVERVIEW OF QUANTUM CHEMISTRY METHODS

OVERVIEW OF QUANTUM CHEMISTRY METHODS OVERVIEW OF QUANTUM CHEMISTRY METHODS Outline I Generalities Correlation, basis sets Spin II Wavefunction methods Hartree-Fock Configuration interaction Coupled cluster Perturbative methods III Density

More information

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G

LUMO + 1 LUMO. Tómas Arnar Guðmundsson Report 2 Reikniefnafræði G Q1: Display all the MOs for N2 in your report and classify each one of them as bonding, antibonding or non-bonding, and say whether the symmetry of the orbital is σ or π. Sketch a molecular orbital diagram

More information

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education

Session 1. Introduction to Computational Chemistry. Computational (chemistry education) and/or (Computational chemistry) education Session 1 Introduction to Computational Chemistry 1 Introduction to Computational Chemistry Computational (chemistry education) and/or (Computational chemistry) education First one: Use computational tools

More information

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

NWChem: Coupled Cluster Method (Tensor Contraction Engine) NWChem: Coupled Cluster Method (ensor Contraction Engine) What we want to solve H Ψ = E Ψ Many Particle Systems Molecular/Atomic Physics, Quantum Chemistry (electronic Schrödinger equations) Solid State

More information

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser

Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser Chemistry 416 Spectroscopy Fall Semester 1997 Dr. Rainer Glaser Third 1-Hour Examination Vibrational Spectroscopy Monday, November 24, 1997, 8:40-9:30 Name: Answer Key Question 1 (Combination) 25 Question

More information

CHEM6085: Density Functional Theory Lecture 10

CHEM6085: Density Functional Theory Lecture 10 CHEM6085: Density Functional Theory Lecture 10 1) Spin-polarised calculations 2) Geometry optimisation C.-K. Skylaris 1 Unpaired electrons So far we have developed Kohn-Sham DFT for the case of paired

More information

This is called a singlet or spin singlet, because the so called multiplicity, or number of possible orientations of the total spin, which is

This is called a singlet or spin singlet, because the so called multiplicity, or number of possible orientations of the total spin, which is 9. Open shell systems The derivation of Hartree-Fock equations (Chapter 7) was done for a special case of a closed shell systems. Closed shell means that each MO is occupied by two electrons with the opposite

More information

Project 1 Report File: Chem4PB3_project_1_2017-solutions last changed: 02-Feb-2017

Project 1 Report File: Chem4PB3_project_1_2017-solutions last changed: 02-Feb-2017 Project 1 Report File: Chem4PB3_project_1_2017-solutions last changed: 02-Feb-2017 1. Formaldehyde comparison of results from different methods Yellow shaded boxes are closest to experimental Method #e-

More information

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby

Advanced Electronic Structure Theory Density functional theory. Dr Fred Manby Advanced Electronic Structure Theory Density functional theory Dr Fred Manby fred.manby@bris.ac.uk http://www.chm.bris.ac.uk/pt/manby/ 6 Strengths of DFT DFT is one of many theories used by (computational)

More information

CHEM3023: Spins, Atoms and Molecules

CHEM3023: Spins, Atoms and Molecules CHEM3023: Spins, Atoms and Molecules Lecture 5 The Hartree-Fock method C.-K. Skylaris Learning outcomes Be able to use the variational principle in quantum calculations Be able to construct Fock operators

More information

NWChem: Coupled Cluster Method (Tensor Contraction Engine)

NWChem: Coupled Cluster Method (Tensor Contraction Engine) NWChem: Coupled Cluster Method (Tensor Contraction Engine) Why CC is important?! Correlation effects are important!! CC is size-extensive theory: can be used to describe dissociation processes.! Higher-order

More information

Lecture 4: methods and terminology, part II

Lecture 4: methods and terminology, part II So theory guys have got it made in rooms free of pollution. Instead of problems with the reflux, they have only solutions... In other words, experimentalists will likely die of cancer From working hard,

More information

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager

Introduction to multiconfigurational quantum chemistry. Emmanuel Fromager Institut de Chimie, Strasbourg, France Page 1 Emmanuel Fromager Institut de Chimie de Strasbourg - Laboratoire de Chimie Quantique - Université de Strasbourg /CNRS M2 lecture, Strasbourg, France. Notations

More information

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier

Ab initio calculations for potential energy surfaces. D. Talbi GRAAL- Montpellier Ab initio calculations for potential energy surfaces D. Talbi GRAAL- Montpellier A theoretical study of a reaction is a two step process I-Electronic calculations : techniques of quantum chemistry potential

More information

one ν im: transition state saddle point

one ν im: transition state saddle point Hypothetical Potential Energy Surface Ethane conformations Hartree-Fock theory, basis set stationary points all ν s >0: minimum eclipsed one ν im: transition state saddle point multiple ν im: hilltop 1

More information

Density Functional Theory

Density Functional Theory Chemistry 380.37 Fall 2015 Dr. Jean M. Standard October 28, 2015 Density Functional Theory What is a Functional? A functional is a general mathematical quantity that represents a rule to convert a function

More information

Computational Chemistry. An Introduction to Molecular Dynamic Simulations

Computational Chemistry. An Introduction to Molecular Dynamic Simulations Computational Chemistry An Introduction to Molecular Dynamic Simulations Computational chemistry simulates chemical structures and reactions numerically, based in full or in part on the fundamental laws

More information

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University

AN INTRODUCTION TO QUANTUM CHEMISTRY. Mark S. Gordon Iowa State University AN INTRODUCTION TO QUANTUM CHEMISTRY Mark S. Gordon Iowa State University 1 OUTLINE Theoretical Background in Quantum Chemistry Overview of GAMESS Program Applications 2 QUANTUM CHEMISTRY In principle,

More information

Exercise 1: Structure and dipole moment of a small molecule

Exercise 1: Structure and dipole moment of a small molecule Introduction to computational chemistry Exercise 1: Structure and dipole moment of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the dipole moment of a small

More information

Computational Chemistry I

Computational Chemistry I Computational Chemistry I Text book Cramer: Essentials of Quantum Chemistry, Wiley (2 ed.) Chapter 3. Post Hartree-Fock methods (Cramer: chapter 7) There are many ways to improve the HF method. Most of

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Advocacy chit Chemistry 350/450 Final Exam Part I May 4, 005. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle

More information

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij )

MO Calculation for a Diatomic Molecule. /4 0 ) i=1 j>i (1/r ij ) MO Calculation for a Diatomic Molecule Introduction The properties of any molecular system can in principle be found by looking at the solutions to the corresponding time independent Schrodinger equation

More information

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE

QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE Chemistry 460 Fall 2017 Dr. Jean M. Standard November 1, 2017 QUANTUM CHEMISTRY PROJECT 3: ATOMIC AND MOLECULAR STRUCTURE OUTLINE In this project, you will carry out quantum mechanical calculations of

More information

Conformational energy analysis

Conformational energy analysis Lab 3 Conformational energy analysis Objective This computational project deals with molecular conformations the spatial arrangement of atoms of molecules. Conformations are determined by energy, so the

More information

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen

Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule. Vesa Hänninen Introduction to computational chemistry Exercise I: Structure and electronic energy of a small molecule Vesa Hänninen 1 Introduction In this exercise the equilibrium structure and the electronic energy

More information

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014

Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi. Lecture 28, December 08, 2014 Chem 4502 Introduction to Quantum Mechanics and Spectroscopy 3 Credits Fall Semester 2014 Laura Gagliardi Lecture 28, December 08, 2014 Solved Homework Water, H 2 O, involves 2 hydrogen atoms and an oxygen

More information

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser

Chemistry 210 Organic Chemistry I Winter Semester 2002 Dr. Rainer Glaser Chemistry 210 rganic Chemistry I Winter Semester 2002 Dr. Rainer Glaser Examination #2 Molecular rbitals, Intra- and Intermolecular Bonding, Conformational Theory of Alkanes & Cycloalkanes. Friday, February

More information

1 Rayleigh-Schrödinger Perturbation Theory

1 Rayleigh-Schrödinger Perturbation Theory 1 Rayleigh-Schrödinger Perturbation Theory All perturbative techniques depend upon a few simple assumptions. The first of these is that we have a mathematical expression for a physical quantity for which

More information

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden

Multiconfigurational Quantum Chemistry. Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden Multiconfigurational Quantum Chemistry Björn O. Roos as told by RL Department of Theoretical Chemistry Chemical Center Lund University Sweden April 20, 2009 1 The Slater determinant Using the spin-orbitals,

More information

Lecture 4: Hartree-Fock Theory

Lecture 4: Hartree-Fock Theory Lecture 4: Hartree-Fock Theory One determinant to rule them all, One determinant to find them, One determinant to bring them all and in the darkness bind them Second quantization rehearsal The formalism

More information

Hartree, Hartree-Fock and post-hf methods

Hartree, Hartree-Fock and post-hf methods Hartree, Hartree-Fock and post-hf methods MSE697 fall 2015 Nicolas Onofrio School of Materials Engineering DLR 428 Purdue University nonofrio@purdue.edu 1 The curse of dimensionality Let s consider a multi

More information

Gaussian: Basic Tutorial

Gaussian: Basic Tutorial Input file: # hf sto-g pop=full Water - Single Point Energy 0 H.0 H.0 H 04.5 Route Section Start with # Contains the keywords Gaussian: Basic Tutorial Route Section Title Section Charge-Multiplicity Molecule

More information

Handbook of Computational Quantum Chemistry

Handbook of Computational Quantum Chemistry Handbook of Computational Quantum Chemistry David B. Cook Dept. of Chemistry University of Sheffield DOVER PUBLICATIONS, INC. Mineola, New York F Contents 1 Mechanics and molecules 1 1.1 1.2 1.3 1.4 1.5

More information

Introduction to Computational Quantum Chemistry: Theory

Introduction to Computational Quantum Chemistry: Theory Introduction to Computational Quantum Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC 3108 Course Lectures 2007 Introduction Hartree Fock Theory Configuration Interaction Lectures 1 Introduction

More information

Intermission: Let s review the essentials of the Helium Atom

Intermission: Let s review the essentials of the Helium Atom PHYS3022 Applied Quantum Mechanics Problem Set 4 Due Date: 6 March 2018 (Tuesday) T+2 = 8 March 2018 All problem sets should be handed in not later than 5pm on the due date. Drop your assignments in the

More information

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space

Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Practical Issues on the Use of the CASPT2/CASSCF Method in Modeling Photochemistry: the Selection and Protection of an Active Space Roland Lindh Dept. of Chemistry Ångström The Theoretical Chemistry Programme

More information

Molecular Orbitals for Ozone

Molecular Orbitals for Ozone Molecular Orbitals for Ozone Purpose: In this exercise you will do semi-empirical molecular orbital calculations on ozone with the goal of understanding the molecular orbital print out provided by Spartan

More information

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica

Computational Material Science Part II. Ito Chao ( ) Institute of Chemistry Academia Sinica Computational Material Science Part II Ito Chao ( ) Institute of Chemistry Academia Sinica Ab Initio Implementations of Hartree-Fock Molecular Orbital Theory Fundamental assumption of HF theory: each electron

More information

Section 3 Electronic Configurations, Term Symbols, and States

Section 3 Electronic Configurations, Term Symbols, and States Section 3 Electronic Configurations, Term Symbols, and States Introductory Remarks- The Orbital, Configuration, and State Pictures of Electronic Structure One of the goals of quantum chemistry is to allow

More information

Chemistry 3502/4502. Final Exam Part I. May 14, 2005

Chemistry 3502/4502. Final Exam Part I. May 14, 2005 Chemistry 3502/4502 Final Exam Part I May 14, 2005 1. For which of the below systems is = where H is the Hamiltonian operator and T is the kinetic-energy operator? (a) The free particle (e) The

More information

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory.

Lecture 5: More about one- Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Lecture 5: More about one- determinant wave functions Final words about the Hartree-Fock theory. First step above it by the Møller-Plesset perturbation theory. Items from Lecture 4 Could the Koopmans theorem

More information

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.

2~:J~ -ryej- r- 2 Jr. A - f3. sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6. .~, ~ I, sr(djk nv~tor rn~ +~ rvjs (::-CJ) ::;-1-.'--~ -. rhd. ('-.Ji.L.~ )- r'-d)c, -r/~ JJr - 2~d ~2-Jr fn'6.)1e'" 21t-ol Je C'...-------- lj-vi, J? Jr Jr \Ji 2~:J~ -ryej- r- 2 Jr A - f3 c _,~,= ~,.,w._..._.

More information

Quantum Chemistry Methods

Quantum Chemistry Methods 1 Quantum Chemistry Methods T. Helgaker, Department of Chemistry, University of Oslo, Norway The electronic Schrödinger equation Hartree Fock theory self-consistent field theory basis functions and basis

More information

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield

Handbook of Computational Quantum Chemistry. DAVID B. COOK The Department of Chemistry, University of Sheffield Handbook of Computational Quantum Chemistry DAVID B. COOK The Department of Chemistry, University of Sheffield Oxford New York Tokyo OXFORD UNIVERSITY PRESS 1998 CONTENTS 1 Mechanics and molecules 1 1.1

More information

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions

Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy. --- Influence of intramolecular interactions Valence electronic structure of isopropyl iodide investigated by electron momentum spectroscopy --- Influence of intramolecular interactions Minfu Zhao, Xu Shan, Shanshan Niu, Yaguo Tang, Zhaohui Liu,

More information

Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson

Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson Háskóli Íslands, raunvísindasvið Reikniefnafræði - Verkefni 2 Haustmisseri 2013 Kennari - Hannes Jónsson Guðjón Henning 18. september 2013 1 A. Molecular orbitals of N 2 Q1: Display all the MOs for N 2

More information

Highly accurate quantum-chemical calculations

Highly accurate quantum-chemical calculations 1 Highly accurate quantum-chemical calculations T. Helgaker Centre for Theoretical and Computational Chemistry, Department of Chemistry, University of Oslo, Norway A. C. Hennum and T. Ruden, University

More information

Introduction to Electronic Structure Theory

Introduction to Electronic Structure Theory CSC/PRACE Spring School in Computational Chemistry 2017 Introduction to Electronic Structure Theory Mikael Johansson http://www.iki.fi/~mpjohans Objective: To get familiarised with the, subjectively chosen,

More information

MO theory is better for spectroscopy (Exited State Properties; Ionization)

MO theory is better for spectroscopy (Exited State Properties; Ionization) CHEM 2060 Lecture 25: MO Theory L25-1 Molecular Orbital Theory (MO theory) VB theory treats bonds as electron pairs. o There is a real emphasis on this point (over-emphasis actually). VB theory is very

More information

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory

Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory Electronic structure theory: Fundamentals to frontiers. 1. Hartree-Fock theory MARTIN HEAD-GORDON, Department of Chemistry, University of California, and Chemical Sciences Division, Lawrence Berkeley National

More information

Introduction to Computational Chemistry: Theory

Introduction to Computational Chemistry: Theory Introduction to Computational Chemistry: Theory Dr Andrew Gilbert Rm 118, Craig Building, RSC andrew.gilbert@anu.edu.au 3023 Course Lectures Introduction Hartree Fock Theory Basis Sets Lecture 1 1 Introduction

More information

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry.

This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. 1 Computational Chemistry (Quantum Chemistry) Primer This is a very succinct primer intended as supplementary material for an undergraduate course in physical chemistry. TABLE OF CONTENTS Methods...1 Basis

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Coupled-Cluster Perturbative Triples for Bond Breaking

Coupled-Cluster Perturbative Triples for Bond Breaking Coupled-Cluster Perturbative Triples for Bond Breaking Andrew G. Taube and Rodney J. Bartlett Quantum Theory Project University of Florida INT CC Meeting Seattle July 8, 2008 Why does chemistry need triples?

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

CHEM J-5 June 2014

CHEM J-5 June 2014 CHEM1101 2014-J-5 June 2014 The molecular orbital energy level diagrams for H 2, H 2 +, H 2 and O 2 are shown below. Fill in the valence electrons for each species in its ground state and label the types

More information

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah

Jack Simons, Henry Eyring Scientist and Professor Chemistry Department University of Utah 1. Born-Oppenheimer approx.- energy surfaces 2. Mean-field (Hartree-Fock) theory- orbitals 3. Pros and cons of HF- RHF, UHF 4. Beyond HF- why? 5. First, one usually does HF-how? 6. Basis sets and notations

More information

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann

Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Lecture 14 February 3, 2014 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic chemistry,

More information

Lec20 Fri 3mar17

Lec20 Fri 3mar17 564-17 Lec20 Fri 3mar17 [PDF]GAUSSIAN 09W TUTORIAL www.molcalx.com.cn/wp-content/uploads/2015/01/gaussian09w_tutorial.pdf by A Tomberg - Cited by 8 - Related articles GAUSSIAN 09W TUTORIAL. AN INTRODUCTION

More information

The Final Learning Experience

The Final Learning Experience Chemistry 210 Organic Chemistry I Fall Semester 2000 Dr. Rainer Glaser Examination #5 Reactions of Alcohols and Related Reactions The Final Learning Experience Wednesday, December 20, 2000, 1:00-3:00 Name:

More information

Computational Chemistry: Molecular Simulations with Chemical and Biological Applications. Prof. M. Meuwly, Dr. PA Cazade, Dr. M.-W.

Computational Chemistry: Molecular Simulations with Chemical and Biological Applications. Prof. M. Meuwly, Dr. PA Cazade, Dr. M.-W. Computational Chemistry: Molecular Simulations with Chemical and Biological Applications Prof. M. Meuwly, Dr. PA Cazade, Dr. M.-W. Lee Overview 1. Electronic Structure of Molecules 1.1 The Electronic Problem

More information

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry:

Ethene. Introduction. The ethene molecule is planar (i.e. all the six atoms lie in the same plane) and has a high degree of symmetry: FY1006 Innføring i kvantefysikk og TFY4215 Kjemisk fysikk og kvantemekanikk Spring 2012 Chemical Physics Exercise 1 To be delivered by Friday 27.04.12 Introduction Ethene. Ethylene, C 2 H 4, or ethene,

More information

The calculation of the universal density functional by Lieb maximization

The calculation of the universal density functional by Lieb maximization The calculation of the universal density functional by Lieb maximization Trygve Helgaker, Andy Teale, and Sonia Coriani Centre for Theoretical and Computational Chemistry (CTCC), Department of Chemistry,

More information

C:\Users\Leonardo\Desktop\README_ELMO_NOTES.txt Montag, 7. Juli :48

C:\Users\Leonardo\Desktop\README_ELMO_NOTES.txt Montag, 7. Juli :48 *********** * Input * *********** Besides the normal GAMESS-UK input directives, to perform an ELMO calculation one needs to specify the elmo keyword and to provide additional instructions that are contained

More information

CHEM 233, Spring 2016 COMPLETE THIS SECTION : Up to TWO POINTS will be removed for incorrect/missing information!

CHEM 233, Spring 2016 COMPLETE THIS SECTION : Up to TWO POINTS will be removed for incorrect/missing information! EM 233, Spring 2016 Midterm #1 MPLETE TIS SETI : Up to TW PITS will be removed for incorrect/missing information! SWER KEY PRITED FIRST ME PRITED LST ME Ian R. Gould Person on your LEFT (or Empty or isle)

More information

Chemistry 334 Part 2: Computational Quantum Chemistry

Chemistry 334 Part 2: Computational Quantum Chemistry Chemistry 334 Part 2: Computational Quantum Chemistry 1. Definition Louis Scudiero, Ben Shepler and Kirk Peterson Washington State University January 2006 Computational chemistry is an area of theoretical

More information

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction:

The successful wavefunction can be written as a determinant: # 1 (2) # 2 (2) Electrons. This can be generalized to our 2N-electron wavefunction: T2. CNDO to AM1: The Semiempirical Molecular Orbital Models The discussion in sections T2.1 T2.3 applies also to ab initio molecular orbital calculations. T2.1 Slater Determinants Consider the general

More information

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s)

Same idea for polyatomics, keep track of identical atom e.g. NH 3 consider only valence electrons F(2s,2p) H(1s) XIII 63 Polyatomic bonding -09 -mod, Notes (13) Engel 16-17 Balance: nuclear repulsion, positive e-n attraction, neg. united atom AO ε i applies to all bonding, just more nuclei repulsion biggest at low

More information

Using Web-Based Computations in Organic Chemistry

Using Web-Based Computations in Organic Chemistry 10/30/2017 1 Using Web-Based Computations in Organic Chemistry John Keller UAF Department of Chemistry & Biochemistry The UAF WebMO site Practical aspects of computational chemistry theory and nomenclature

More information

E-VB satellite of the 16 th ICQC June 2018, Marseille, France. Content

E-VB satellite of the 16 th ICQC June 2018, Marseille, France. Content E-VB workshop @VALBO satellite of the 16 th ICQC 27-29 June 2018, Marseille, France VB with XMVB Content STARTING WITH XMVB 2 VB COMPUTER EXERCISES 5 Exercise 1. The HF molecule. 5 Exercise 2. Ozone and

More information

Molecular-Orbital Theory

Molecular-Orbital Theory Prof. Dr. I. Nasser atomic and molecular physics -551 (T-11) April 18, 01 Molecular-Orbital Theory You have to explain the following statements: 1- Helium is monatomic gas. - Oxygen molecule has a permanent

More information

CHEM-UA 127: Advanced General Chemistry I

CHEM-UA 127: Advanced General Chemistry I CHEM-UA 7: Advanced General Chemistry I I. LINEAR COMBINATION OF ATOMIC ORBITALS Linear combination of atomic orbitals (LCAO) is a simple method of quantum chemistry that yields a qualitative picture of

More information

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle:

EXAM INFORMATION. Radial Distribution Function: B is the normalization constant. d dx. p 2 Operator: Heisenberg Uncertainty Principle: EXAM INFORMATION Radial Distribution Function: P() r RDF() r Br R() r B is the normalization constant., p Operator: p ^ d dx Heisenberg Uncertainty Principle: n ax n! Integrals: xe dx n1 a x p Particle

More information

CHEMISTRY 112A FALL 2015 FINAL EXAM DECEMBER 16, 2015 NAME- WRITE BIG STUDENT ID: SECTION AND/OR GSI IF YOU ARE IN THE LABORATORY COURSE:

CHEMISTRY 112A FALL 2015 FINAL EXAM DECEMBER 16, 2015 NAME- WRITE BIG STUDENT ID: SECTION AND/OR GSI IF YOU ARE IN THE LABORATORY COURSE: CEMISTRY 112A FALL 2015 FINAL EXAM DECEMBER 16, 2015 NAME- WRITE BIG STUDENT ID: SECTIN AND/R GSI IF YU ARE IN TE LABRATRY CURSE: You will have 2 hours 45 minutes minutes in which to work. Problem Points

More information

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules

High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules High-level Quantum Chemistry Methods and Benchmark Datasets for Molecules Markus Schneider Fritz Haber Institute of the MPS, Berlin, Germany École Polytechnique Fédérale de Lausanne, Switzerland دانشگاه

More information

Molecular properties in quantum chemistry

Molecular properties in quantum chemistry Molecular properties in quantum chemistry Monika Musiał Department of Theoretical Chemistry Outline 1 Main computational schemes for correlated calculations 2 Developmentoftheabinitiomethodsforthe calculation

More information

use the backs of pages as needed

use the backs of pages as needed CHEMISTRY 4021/8021 Q1) Propose a simple, united-atom molecular mechanics force-field needed to generate a potential energy surface for an isolated molecule of acetone (Me 2 CO). I.e., provide an energy

More information

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann

Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Lecture 9-10 January 25-27, 2012 Rules for Chem. React. - Woodward-Hoffmann Nature of the Chemical Bond with applications to catalysis, materials science, nanotechnology, surface science, bioinorganic

More information

Density Functional Theory for Electrons in Materials

Density Functional Theory for Electrons in Materials Density Functional Theory for Electrons in Materials Richard M. Martin Department of Physics and Materials Research Laboratory University of Illinois at Urbana-Champaign 1 Density Functional Theory for

More information

Computational chemistry with GAMESS: a very brief overview with examples

Computational chemistry with GAMESS: a very brief overview with examples Computational chemistry with GAMESS: a very brief overview with examples PHY-6120 Molecular Physics (Spring 2015), UConn Phys. Dept. Feb 17 th 2015 H = ħ2 2μ i Intro: V(R) for diatomic molecules + k Z

More information

hand and delocalization on the other, can be instructively exemplified and extended

hand and delocalization on the other, can be instructively exemplified and extended Text Related to Segment 8.0 00 Claude E. Wintner The ideas developed up to this point, concerning stereochemistry on the one hand and delocalization on the other, can be instructively exemplified and extended

More information

AB INITIO METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY

AB INITIO METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY AB INITIO METHODS IN COMPUTATIONAL QUANTUM CHEMISTRY Aneesh. M.H A theoretical study on the regioselectivity of electrophilic reactions of heterosubstituted allyl systems Thesis. Department of Chemistry,

More information

We will use C1 symmetry and assume an RHF reference throughout. Index classes to be used include,

We will use C1 symmetry and assume an RHF reference throughout. Index classes to be used include, 1 Common Notation We will use C1 symmetry and assume an RHF reference throughout. Index classes to be used include, µ, ν, λ, σ: Primary basis functions, i.e., atomic orbitals (AOs) {φ µ ( r)}. The size

More information