Unsupervised learning (part 1) Lecture 19

Size: px
Start display at page:

Download "Unsupervised learning (part 1) Lecture 19"

Transcription

1 Unsupervised learning (part 1) Lecture 19 David Sontag New York University Slides adapted from Carlos Guestrin, Dan Klein, Luke Dan Weld, Vibhav Gogate, and Andrew Moore

2 Bayesian networks enable use of domain knowledge Will my car start this morning? p(x 1,...x n )= Y i2v p(x i x Pa(i) ) Heckerman et al., Decision-TheoreMc TroubleshooMng, 1995

3 Bayesian networks enable use of domain knowledge p(x 1,...x n )= Y i2v What is the differenmal diagnosis? p(x i x Pa(i) ) Beinlich et al., The ALARM Monitoring System, 1989

4 Bayesian networks are genera*ve models Can sample from the joint distribumon, top-down Suppose Y can be spam or not spam, and X i is a binary indicator of whether word i is present in the Let s try generamng a few s! Label Y X 1 X 2 X 3... X n Features OZen helps to think about Bayesian networks as a generamve model when construcmng the structure and thinking about the model assumpmons

5 Inference in Bayesian networks CompuMng marginal probabilimes in tree structured Bayesian networks is easy The algorithm called belief propagamon generalizes what we showed for hidden Markov models to arbitrary trees X 1 X 2 X 3 X 4 X 5 X 6 Label Y X 1 X 2 X 3... X n Y 1 Y 2 Y 3 Y 4 Y 5 Y 6 Features Wait this isn t a tree! What can we do?

6 Inference in Bayesian networks In some cases (such as this) we can transform this into what is called a juncmon tree, and then run belief propagamon

7 Approximate inference There is also a wealth of approximate inference algorithms that can be applied to Bayesian networks such as these Markov chain Monte Carlo algorithms repeatedly sample assignments for esmmamng marginals Varia4onal inference algorithms (determinismc) find a simpler distribumon which is close to the original, then compute marginals using the simpler distribumon

8 Maximum likelihood esmmamon in Bayesian networks Suppose that we know the Bayesian network structure G Let xi x pa(i) be the parameter giving the value of the CPD p(x i x pa(i) ) Maximum likelihood estimation corresponds to solving: 1 MX max Xlog p(x M ; ) M m=1 subject to the non-negativity and normalization constraints This is equal to: 1 XMX max log p(x M ; ) = max M m=1 = max 1 M XNX i=1 X MX XNX m=1 1 M i=1 XMX m=1 log p(x M i x M pa(i) ; ) log p(x M i x M pa(i) ; ) The optimization problem decomposes into an independent optimization problem for each CPD! Has a simple closed-form solution.

9 Returning to clustering Clusters may overlap Some clusters may be wider than others Can we model this explicitly? With what probability is a point from a cluster?

10 ProbabilisMc Clustering Try a probabilismc model! allows overlaps, clusters of different size, etc. Can tell a genera*ve story for data P(Y)P(X Y) Challenge: we need to esmmate model parameters without labeled Ys Y X 1 X 2?? ?? ?? ?? ??

11 Gaussian Mixture Models P(Y): There are k components P(X Y): Each component generates data from a mul>variate Gaussian with mean μ i and covariance matrix Σ i Each data point assumed to have been sampled from a genera4ve process: 1. Choose component i with probability P(y=i) [Mul*nomial] 2. Generate datapoint ~ N(m i, Σ i ) P(X = x j Y = i) = 1 (2π) m / 2 Σ i exp 1 1/ 2 2 x j µ i ( ) T Σ 1 i ( x j µ i ) µ 1 µ 2 By fi:ng this model (unsupervised learning), we can learn new insights about the data µ 3

12 MulMvariate Gaussians P(X = P(X=x x j Y j )= = i) = 1 (2π ) m/2 Σ i exp # 1 1/2 2 x j µ i $ % ( ) T Σ 1 i ( x j µ i ) & ' ( Σ idenmty matrix

13 MulMvariate Gaussians P(X = P(X=x x j Y j )= = i) = 1 (2π ) m/2 Σ i exp # 1 1/2 2 x j µ i $ % ( ) T Σ 1 i ( x j µ i ) & ' ( Σ = diagonal matrix X i are independent ala Gaussian NB

14 MulMvariate Gaussians P(X = P(X=x x j Y j )= = i) = 1 (2π ) m/2 Σ i exp # 1 1/2 2 x j µ i $ % ( ) T Σ 1 i ( x j µ i ) & ' ( Σ = arbitrary (semidefinite) matrix: - specifies rotamon (change of basis) - eigenvalues specify relamve elongamon

15 Eigenvalue, λ, of Σ MulMvariate Gaussians Covariance matrix, Σ, = degree to which x i vary together 1 P(X = x j Y = i) = (2π ) m/2 Σ i exp # P(X=x 1 1/2 2 x j )= j µ i $ % ( ) T Σ 1 i ( x j µ i ) & ' (

16 Modelling erupmon of geysers Old Faithful Data Set Time to ErupMon DuraMon of Last ErupMon

17 Modelling erupmon of geysers Old Faithful Data Set Single Gaussian Mixture of two Gaussians

18 Marginal distribumon for mixtures of Gaussians Component Mixing coefficient K=3

19 Marginal distribumon for mixtures of Gaussians

20 Learning mixtures of Gaussians Original data (hypothesized) Observed data (y missing) Inferred y s (learned model) Shown is the posterior probability that a point was generated from i th Gaussian: Pr(Y = i x)

21 ML esmmamon in supervised setng Univariate Gaussian Mixture of Mul4variate Gaussians ML esmmate for each of the MulMvariate Gaussians is given by: n k x n Σ k ML = 1 n k k j=1 n j=1 µ ML = 1 n ( x j µ ) ML x j µ ML ( ) T Just sums over x generated from the k th Gaussian

22 What about with unobserved data? Maximize marginal likelihood: argmax θ j P(x j ) = argmax j k=1 P(Y j =k, x j ) Almost always a hard problem! Usually no closed form solumon Even when lgp(x,y) is convex, lgp(x) generally isn t Many local opmma K

23 1977: Dempster, Laird, & Rubin ExpectaMon MaximizaMon

24 The EM Algorithm A clever method for maximizing marginal likelihood: argmax θ j P(x j ) = argmax θ j k=1 K P(Y j =k, x j ) Based on coordinate descent. Easy to implement (eg, no line search, learning rates, etc.) Alternate between two steps: Compute an expectamon Compute a maximizamon Not magic: s4ll op4mizing a non-convex func4on with lots of local op4ma The computamons are just easier (ozen, significantly so)

25 EM: Two Easy Steps Objec>ve: argmax θ lg j k=1 K P(Y j =k, x j ; θ) = j lg k=1 K P(Y j =k, x j ; θ) Data: {x j j=1.. n} E-step: Compute expectamons to fill in missing y values according to current parameters, θ For all examples j and values k for Y j, compute: P(Y j =k x j ; θ) M-step: Re-esMmate the parameters with weighted MLE esmmates Set θ new = argmax θ j k P(Y j =k x j ;θ old ) log P(Y j =k, x j ; θ) Par>cularly useful when the E and M steps have closed form solu>ons

26 Gaussian Mixture Example: Start

27 AZer first iteramon

28 AZer 2nd iteramon

29 AZer 3rd iteramon

30 AZer 4th iteramon

31 AZer 5th iteramon

32 AZer 6th iteramon

33 AZer 20th iteramon

34 EM for GMMs: only learning means (1D) Iterate: On the t th iteramon let our esmmates be λ t = { μ 1 (t), μ 2 (t) μ K (t) } E-step Compute expected classes of all datapoints M-step ( ) exp 1 P Y j = k x j,µ 1...µ K Compute most likely new μs given class expectamons 2σ (x 2 j µ k ) 2 P Y j = k ( ) µ k = m j =1 m j =1 P( Y j = k x ) j P( Y j = k x ) j x j

35 What if we do hard assignments? Iterate: On the t th iteramon let our esmmates be λ t = { μ 1 (t), μ 2 (t) μ K (t) } E-step Compute expected classes of all datapoints P( Y j = k x j,µ 1...µ ) K exp 1 2σ (x 2 j µ k ) 2 P Y j = k M-step Compute most likely new μs given class expectamons µ k = m j =1 m j =1 P( Y j = k x ) j P( Y j = k x ) j x j µ k = m j =1 m j =1 δ( Y j = k, x ) j x j ( ) δ Y j = k, x j ( ) Equivalent to k-means clustering algorithm!!! δ represents hard assignment to most likely or nearest cluster

36 E.M. for General GMMs Iterate: On the t th iteramon let our esmmates be λ t = { μ 1 (t), μ 2 (t) μ K (t), Σ 1 (t), Σ 2 (t) Σ K (t), p 1 (t), p 2 (t) p K (t) } E-step Compute expected classes of all datapoints for each class M-step P( Y j = k x j ;λ ) (t t p ) k p( (t x j ;µ ) (t ) k,σ ) k Compute weighted MLE for μ given expected classes above ( t +1 µ ) k = P Y j = k x j ;λ t x j j j ( ) P( Y j = k x j ;λ ) t p k (t +1) = j ( t +1 Σ ) k = P( Y j = k x j ;λ ) t m t +1 P Y j = k x j ;λ t x j µ k j ( ) j p k (t) is shorthand for esmmate of P(y=k) on t th iteramon Evaluate probability of a mul*variate a Gaussian at x j ( ) ( t +1) [ ] x j µ k P( Y j = k x j ;λ ) t m = #training examples [ ] T

37 The general learning problem with missing data Marginal likelihood: X is observed, Z (e.g. the class labels Y) is missing: ObjecMve: Find argmax θ l(θ:data) Assuming hidden variables are missing completely at random (otherwise, we should explicitly model why the values are missing)

38 ProperMes of EM One can prove that: EM converges to a local maxima Each iteramon improves the log-likelihood How? (Same as k-means) Likelihood objecmve instead of k-means objecmve M-step can never decrease likelihood

39 EM pictorially L(θ n+1 ) l(θ n+1 θ n ) L(θ n )=l(θ n θ n ) L(θ) l(θ θ n ) Likelihood objecmve Lower bound at iter n L(θ) l(θ θ n ) θ n θ n+1 θ (Figure from tutorial by Sean Borman)

40 What you should know Mixture of Gaussians EM for mixture of Gaussians: How to learn maximum likelihood parameters in the case of unlabeled data RelaMon to K-means Two step algorithm, just like K-means Hard / soz clustering ProbabilisMc model Remember, EM can get stuck in local minima, And empirically it DOES

Mixture Models & EM algorithm Lecture 21

Mixture Models & EM algorithm Lecture 21 Mixture Models & EM algorithm Lecture 21 David Sontag New York University Slides adapted from Carlos Guestrin, Dan Klein, Luke Ze@lemoyer, Dan Weld, Vibhav Gogate, and Andrew Moore The Evils of Hard Assignments?

More information

Expectation Maximization Algorithm

Expectation Maximization Algorithm Expectation Maximization Algorithm Vibhav Gogate The University of Texas at Dallas Slides adapted from Carlos Guestrin, Dan Klein, Luke Zettlemoyer and Dan Weld The Evils of Hard Assignments? Clusters

More information

CSE446: Clustering and EM Spring 2017

CSE446: Clustering and EM Spring 2017 CSE446: Clustering and EM Spring 2017 Ali Farhadi Slides adapted from Carlos Guestrin, Dan Klein, and Luke Zettlemoyer Clustering systems: Unsupervised learning Clustering Detect patterns in unlabeled

More information

Bayesian networks Lecture 18. David Sontag New York University

Bayesian networks Lecture 18. David Sontag New York University Bayesian networks Lecture 18 David Sontag New York University Outline for today Modeling sequen&al data (e.g., =me series, speech processing) using hidden Markov models (HMMs) Bayesian networks Independence

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate

Mixture Models & EM. Nicholas Ruozzi University of Texas at Dallas. based on the slides of Vibhav Gogate Mixture Models & EM icholas Ruozzi University of Texas at Dallas based on the slides of Vibhav Gogate Previously We looed at -means and hierarchical clustering as mechanisms for unsupervised learning -means

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models Pradeep Ravikumar Co-instructor: Manuela Veloso Machine Learning 10-701 Some slides courtesy of Eric Xing, Carlos Guestrin (One) bad case for K- means Clusters may overlap Some

More information

Mixtures of Gaussians continued

Mixtures of Gaussians continued Mixtures of Gaussians continued Machine Learning CSE446 Carlos Guestrin University of Washington May 17, 2013 1 One) bad case for k-means n Clusters may overlap n Some clusters may be wider than others

More information

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014.

Clustering K-means. Clustering images. Machine Learning CSE546 Carlos Guestrin University of Washington. November 4, 2014. Clustering K-means Machine Learning CSE546 Carlos Guestrin University of Washington November 4, 2014 1 Clustering images Set of Images [Goldberger et al.] 2 1 K-means Randomly initialize k centers µ (0)

More information

Latent Variable Models

Latent Variable Models Latent Variable Models Stefano Ermon, Aditya Grover Stanford University Lecture 5 Stefano Ermon, Aditya Grover (AI Lab) Deep Generative Models Lecture 5 1 / 31 Recap of last lecture 1 Autoregressive models:

More information

K-Means and Gaussian Mixture Models

K-Means and Gaussian Mixture Models K-Means and Gaussian Mixture Models David Rosenberg New York University October 29, 2016 David Rosenberg (New York University) DS-GA 1003 October 29, 2016 1 / 42 K-Means Clustering K-Means Clustering David

More information

Gaussian Mixture Models, Expectation Maximization

Gaussian Mixture Models, Expectation Maximization Gaussian Mixture Models, Expectation Maximization Instructor: Jessica Wu Harvey Mudd College The instructor gratefully acknowledges Andrew Ng (Stanford), Andrew Moore (CMU), Eric Eaton (UPenn), David Kauchak

More information

Introduc)on to Bayesian methods (con)nued) - Lecture 16

Introduc)on to Bayesian methods (con)nued) - Lecture 16 Introduc)on to Bayesian methods (con)nued) - Lecture 16 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Vibhav Gogate Outline of lectures Review of

More information

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a

Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Parametric Unsupervised Learning Expectation Maximization (EM) Lecture 20.a Some slides are due to Christopher Bishop Limitations of K-means Hard assignments of data points to clusters small shift of a

More information

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning

Clustering K-means. Machine Learning CSE546. Sham Kakade University of Washington. November 15, Review: PCA Start: unsupervised learning Clustering K-means Machine Learning CSE546 Sham Kakade University of Washington November 15, 2016 1 Announcements: Project Milestones due date passed. HW3 due on Monday It ll be collaborative HW2 grades

More information

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1

K-means. Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University. November 19 th, Carlos Guestrin 1 EM Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 19 th, 2007 2005-2007 Carlos Guestrin 1 K-means 1. Ask user how many clusters they d like. e.g. k=5 2. Randomly guess

More information

Bayesian Networks Structure Learning (cont.)

Bayesian Networks Structure Learning (cont.) Koller & Friedman Chapters (handed out): Chapter 11 (short) Chapter 1: 1.1, 1., 1.3 (covered in the beginning of semester) 1.4 (Learning parameters for BNs) Chapter 13: 13.1, 13.3.1, 13.4.1, 13.4.3 (basic

More information

CSE546: Naïve Bayes Winter 2012

CSE546: Naïve Bayes Winter 2012 CSE546: Naïve Bayes Winter 2012 Luke Ze=lemoyer Slides adapted from Carlos Guestrin and Dan Klein Supervised Learning: find f Given: Training set {(x i, y i ) i = 1 n} Find: A good approximamon to f :

More information

Clustering and Gaussian Mixture Models

Clustering and Gaussian Mixture Models Clustering and Gaussian Mixture Models Piyush Rai IIT Kanpur Probabilistic Machine Learning (CS772A) Jan 25, 2016 Probabilistic Machine Learning (CS772A) Clustering and Gaussian Mixture Models 1 Recap

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 The Generative Model POV We think of the data as being generated from some process. We assume

More information

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project

Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Performance Comparison of K-Means and Expectation Maximization with Gaussian Mixture Models for Clustering EE6540 Final Project Devin Cornell & Sushruth Sastry May 2015 1 Abstract In this article, we explore

More information

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering

9/12/17. Types of learning. Modeling data. Supervised learning: Classification. Supervised learning: Regression. Unsupervised learning: Clustering Types of learning Modeling data Supervised: we know input and targets Goal is to learn a model that, given input data, accurately predicts target data Unsupervised: we know the input only and want to make

More information

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm

IEOR E4570: Machine Learning for OR&FE Spring 2015 c 2015 by Martin Haugh. The EM Algorithm IEOR E4570: Machine Learning for OR&FE Spring 205 c 205 by Martin Haugh The EM Algorithm The EM algorithm is used for obtaining maximum likelihood estimates of parameters when some of the data is missing.

More information

Naïve Bayes classification

Naïve Bayes classification Naïve Bayes classification 1 Probability theory Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. Examples: A person s height, the outcome of a coin toss

More information

CS 6140: Machine Learning Spring 2017

CS 6140: Machine Learning Spring 2017 CS 6140: Machine Learning Spring 2017 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis@cs Assignment

More information

Day 5: Generative models, structured classification

Day 5: Generative models, structured classification Day 5: Generative models, structured classification Introduction to Machine Learning Summer School June 18, 2018 - June 29, 2018, Chicago Instructor: Suriya Gunasekar, TTI Chicago 22 June 2018 Linear regression

More information

Density Estimation. Seungjin Choi

Density Estimation. Seungjin Choi Density Estimation Seungjin Choi Department of Computer Science and Engineering Pohang University of Science and Technology 77 Cheongam-ro, Nam-gu, Pohang 37673, Korea seungjin@postech.ac.kr http://mlg.postech.ac.kr/

More information

Statistical learning. Chapter 20, Sections 1 4 1

Statistical learning. Chapter 20, Sections 1 4 1 Statistical learning Chapter 20, Sections 1 4 Chapter 20, Sections 1 4 1 Outline Bayesian learning Maximum a posteriori and maximum likelihood learning Bayes net learning ML parameter learning with complete

More information

CSCI-567: Machine Learning (Spring 2019)

CSCI-567: Machine Learning (Spring 2019) CSCI-567: Machine Learning (Spring 2019) Prof. Victor Adamchik U of Southern California Mar. 19, 2019 March 19, 2019 1 / 43 Administration March 19, 2019 2 / 43 Administration TA3 is due this week March

More information

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16

CS 6140: Machine Learning Spring What We Learned Last Week 2/26/16 Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Sign

More information

Based on slides by Richard Zemel

Based on slides by Richard Zemel CSC 412/2506 Winter 2018 Probabilistic Learning and Reasoning Lecture 3: Directed Graphical Models and Latent Variables Based on slides by Richard Zemel Learning outcomes What aspects of a model can we

More information

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012

Parametric Models. Dr. Shuang LIANG. School of Software Engineering TongJi University Fall, 2012 Parametric Models Dr. Shuang LIANG School of Software Engineering TongJi University Fall, 2012 Today s Topics Maximum Likelihood Estimation Bayesian Density Estimation Today s Topics Maximum Likelihood

More information

Notes on Machine Learning for and

Notes on Machine Learning for and Notes on Machine Learning for 16.410 and 16.413 (Notes adapted from Tom Mitchell and Andrew Moore.) Choosing Hypotheses Generally want the most probable hypothesis given the training data Maximum a posteriori

More information

EM (cont.) November 26 th, Carlos Guestrin 1

EM (cont.) November 26 th, Carlos Guestrin 1 EM (cont.) Machine Learning 10701/15781 Carlos Guestrin Carnegie Mellon University November 26 th, 2007 1 Silly Example Let events be grades in a class w 1 = Gets an A P(A) = ½ w 2 = Gets a B P(B) = µ

More information

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability

Naïve Bayes classification. p ij 11/15/16. Probability theory. Probability theory. Probability theory. X P (X = x i )=1 i. Marginal Probability Probability theory Naïve Bayes classification Random variable: a variable whose possible values are numerical outcomes of a random phenomenon. s: A person s height, the outcome of a coin toss Distinguish

More information

But if z is conditioned on, we need to model it:

But if z is conditioned on, we need to model it: Partially Unobserved Variables Lecture 8: Unsupervised Learning & EM Algorithm Sam Roweis October 28, 2003 Certain variables q in our models may be unobserved, either at training time or at test time or

More information

Statistical Pattern Recognition

Statistical Pattern Recognition Statistical Pattern Recognition Expectation Maximization (EM) and Mixture Models Hamid R. Rabiee Jafar Muhammadi, Mohammad J. Hosseini Spring 2014 http://ce.sharif.edu/courses/92-93/2/ce725-2 Agenda Expectation-maximization

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Aaron C. Courville Université de Montréal Note: Material for the slides is taken directly from a presentation prepared by Christopher M. Bishop Learning in DAGs Two things could

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 3 Linear

More information

ECE 5984: Introduction to Machine Learning

ECE 5984: Introduction to Machine Learning ECE 5984: Introduction to Machine Learning Topics: (Finish) Expectation Maximization Principal Component Analysis (PCA) Readings: Barber 15.1-15.4 Dhruv Batra Virginia Tech Administrativia Poster Presentation:

More information

Point Estimation. Vibhav Gogate The University of Texas at Dallas

Point Estimation. Vibhav Gogate The University of Texas at Dallas Point Estimation Vibhav Gogate The University of Texas at Dallas Some slides courtesy of Carlos Guestrin, Chris Bishop, Dan Weld and Luke Zettlemoyer. Basics: Expectation and Variance Binary Variables

More information

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 6375: Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 6375: Machine Learning Vibhav Gogate The University of Texas at Dallas Machine Learning Supervised Learning Unsupervised Learning Reinforcement Learning Parametric Y Continuous Non-parametric

More information

Clustering, K-Means, EM Tutorial

Clustering, K-Means, EM Tutorial Clustering, K-Means, EM Tutorial Kamyar Ghasemipour Parts taken from Shikhar Sharma, Wenjie Luo, and Boris Ivanovic s tutorial slides, as well as lecture notes Organization: Clustering Motivation K-Means

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Machine Learning CSE546 Carlos Guestrin University of Washington November 13, 2014 1 E.M.: The General Case E.M. widely used beyond mixtures of Gaussians The recipe is the same

More information

Machine Learning for Signal Processing Bayes Classification and Regression

Machine Learning for Signal Processing Bayes Classification and Regression Machine Learning for Signal Processing Bayes Classification and Regression Instructor: Bhiksha Raj 11755/18797 1 Recap: KNN A very effective and simple way of performing classification Simple model: For

More information

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas

Midterm Review CS 7301: Advanced Machine Learning. Vibhav Gogate The University of Texas at Dallas Midterm Review CS 7301: Advanced Machine Learning Vibhav Gogate The University of Texas at Dallas Supervised Learning Issues in supervised learning What makes learning hard Point Estimation: MLE vs Bayesian

More information

CSC321 Lecture 18: Learning Probabilistic Models

CSC321 Lecture 18: Learning Probabilistic Models CSC321 Lecture 18: Learning Probabilistic Models Roger Grosse Roger Grosse CSC321 Lecture 18: Learning Probabilistic Models 1 / 25 Overview So far in this course: mainly supervised learning Language modeling

More information

Graphical Models for Collaborative Filtering

Graphical Models for Collaborative Filtering Graphical Models for Collaborative Filtering Le Song Machine Learning II: Advanced Topics CSE 8803ML, Spring 2012 Sequence modeling HMM, Kalman Filter, etc.: Similarity: the same graphical model topology,

More information

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall

Machine Learning. Gaussian Mixture Models. Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall Machine Learning Gaussian Mixture Models Zhiyao Duan & Bryan Pardo, Machine Learning: EECS 349 Fall 2012 1 Discriminative vs Generative Models Discriminative: Just learn a decision boundary between your

More information

CSE 473: Artificial Intelligence Autumn Topics

CSE 473: Artificial Intelligence Autumn Topics CSE 473: Artificial Intelligence Autumn 2014 Bayesian Networks Learning II Dan Weld Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer 1 473 Topics

More information

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization

Computer Vision Group Prof. Daniel Cremers. 6. Mixture Models and Expectation-Maximization Prof. Daniel Cremers 6. Mixture Models and Expectation-Maximization Motivation Often the introduction of latent (unobserved) random variables into a model can help to express complex (marginal) distributions

More information

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015

Sequence Modelling with Features: Linear-Chain Conditional Random Fields. COMP-599 Oct 6, 2015 Sequence Modelling with Features: Linear-Chain Conditional Random Fields COMP-599 Oct 6, 2015 Announcement A2 is out. Due Oct 20 at 1pm. 2 Outline Hidden Markov models: shortcomings Generative vs. discriminative

More information

Machine Learning Techniques for Computer Vision

Machine Learning Techniques for Computer Vision Machine Learning Techniques for Computer Vision Part 2: Unsupervised Learning Microsoft Research Cambridge x 3 1 0.5 0.2 0 0.5 0.3 0 0.5 1 ECCV 2004, Prague x 2 x 1 Overview of Part 2 Mixture models EM

More information

COM336: Neural Computing

COM336: Neural Computing COM336: Neural Computing http://www.dcs.shef.ac.uk/ sjr/com336/ Lecture 2: Density Estimation Steve Renals Department of Computer Science University of Sheffield Sheffield S1 4DP UK email: s.renals@dcs.shef.ac.uk

More information

Mixture Models and Expectation-Maximization

Mixture Models and Expectation-Maximization Mixture Models and Expectation-Maximiation David M. Blei March 9, 2012 EM for mixtures of multinomials The graphical model for a mixture of multinomials π d x dn N D θ k K How should we fit the parameters?

More information

Lecture 3: Pattern Classification

Lecture 3: Pattern Classification EE E6820: Speech & Audio Processing & Recognition Lecture 3: Pattern Classification 1 2 3 4 5 The problem of classification Linear and nonlinear classifiers Probabilistic classification Gaussians, mixtures

More information

STA 4273H: Sta-s-cal Machine Learning

STA 4273H: Sta-s-cal Machine Learning STA 4273H: Sta-s-cal Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistical Sciences! rsalakhu@cs.toronto.edu! h0p://www.cs.utoronto.ca/~rsalakhu/ Lecture 2 In our

More information

Bayesian Machine Learning

Bayesian Machine Learning Bayesian Machine Learning Andrew Gordon Wilson ORIE 6741 Lecture 2: Bayesian Basics https://people.orie.cornell.edu/andrew/orie6741 Cornell University August 25, 2016 1 / 17 Canonical Machine Learning

More information

Lecture : Probabilistic Machine Learning

Lecture : Probabilistic Machine Learning Lecture : Probabilistic Machine Learning Riashat Islam Reasoning and Learning Lab McGill University September 11, 2018 ML : Many Methods with Many Links Modelling Views of Machine Learning Machine Learning

More information

Latent Variable Models and EM Algorithm

Latent Variable Models and EM Algorithm SC4/SM8 Advanced Topics in Statistical Machine Learning Latent Variable Models and EM Algorithm Dino Sejdinovic Department of Statistics Oxford Slides and other materials available at: http://www.stats.ox.ac.uk/~sejdinov/atsml/

More information

Unsupervised Learning: K-Means, Gaussian Mixture Models

Unsupervised Learning: K-Means, Gaussian Mixture Models Unsupervised Learning: K-Means, Gaussian Mixture Models These slides were assembled by Eric Eaton, with grateful acknowledgement of the many others who made their course materials freely available online.

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Lior Wolf 2014-15 We know that X ~ B(n,p), but we do not know p. We get a random sample from X, a

More information

UVA CS / Introduc8on to Machine Learning and Data Mining

UVA CS / Introduc8on to Machine Learning and Data Mining UVA CS 4501-001 / 6501 007 Introduc8on to Machine Learning and Data Mining Lecture 13: Probability and Sta3s3cs Review (cont.) + Naïve Bayes Classifier Yanjun Qi / Jane, PhD University of Virginia Department

More information

STA414/2104 Statistical Methods for Machine Learning II

STA414/2104 Statistical Methods for Machine Learning II STA414/2104 Statistical Methods for Machine Learning II Murat A. Erdogdu & David Duvenaud Department of Computer Science Department of Statistical Sciences Lecture 3 Slide credits: Russ Salakhutdinov Announcements

More information

CS 6375 Machine Learning

CS 6375 Machine Learning CS 6375 Machine Learning Nicholas Ruozzi University of Texas at Dallas Slides adapted from David Sontag and Vibhav Gogate Course Info. Instructor: Nicholas Ruozzi Office: ECSS 3.409 Office hours: Tues.

More information

Lecture 6: Graphical Models: Learning

Lecture 6: Graphical Models: Learning Lecture 6: Graphical Models: Learning 4F13: Machine Learning Zoubin Ghahramani and Carl Edward Rasmussen Department of Engineering, University of Cambridge February 3rd, 2010 Ghahramani & Rasmussen (CUED)

More information

L11: Pattern recognition principles

L11: Pattern recognition principles L11: Pattern recognition principles Bayesian decision theory Statistical classifiers Dimensionality reduction Clustering This lecture is partly based on [Huang, Acero and Hon, 2001, ch. 4] Introduction

More information

Mixtures of Gaussians. Sargur Srihari

Mixtures of Gaussians. Sargur Srihari Mixtures of Gaussians Sargur srihari@cedar.buffalo.edu 1 9. Mixture Models and EM 0. Mixture Models Overview 1. K-Means Clustering 2. Mixtures of Gaussians 3. An Alternative View of EM 4. The EM Algorithm

More information

CS 6140: Machine Learning Spring 2016

CS 6140: Machine Learning Spring 2016 CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa?on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Logis?cs Assignment

More information

Machine Learning for Data Science (CS4786) Lecture 12

Machine Learning for Data Science (CS4786) Lecture 12 Machine Learning for Data Science (CS4786) Lecture 12 Gaussian Mixture Models Course Webpage : http://www.cs.cornell.edu/courses/cs4786/2016fa/ Back to K-means Single link is sensitive to outliners We

More information

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model

CS 6140: Machine Learning Spring What We Learned Last Week. Survey 2/26/16. VS. Model Logis@cs CS 6140: Machine Learning Spring 2016 Instructor: Lu Wang College of Computer and Informa@on Science Northeastern University Webpage: www.ccs.neu.edu/home/luwang Email: luwang@ccs.neu.edu Assignment

More information

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2

STATS 306B: Unsupervised Learning Spring Lecture 2 April 2 STATS 306B: Unsupervised Learning Spring 2014 Lecture 2 April 2 Lecturer: Lester Mackey Scribe: Junyang Qian, Minzhe Wang 2.1 Recap In the last lecture, we formulated our working definition of unsupervised

More information

Expectation maximization

Expectation maximization Expectation maximization Subhransu Maji CMSCI 689: Machine Learning 14 April 2015 Motivation Suppose you are building a naive Bayes spam classifier. After your are done your boss tells you that there is

More information

Variables which are always unobserved are called latent variables or sometimes hidden variables. e.g. given y,x fit the model p(y x) = z p(y x,z)p(z)

Variables which are always unobserved are called latent variables or sometimes hidden variables. e.g. given y,x fit the model p(y x) = z p(y x,z)p(z) CSC2515 Machine Learning Sam Roweis Lecture 8: Unsupervised Learning & EM Algorithm October 31, 2006 Partially Unobserved Variables 2 Certain variables q in our models may be unobserved, either at training

More information

Machine Learning Summer School

Machine Learning Summer School Machine Learning Summer School Lecture 3: Learning parameters and structure Zoubin Ghahramani zoubin@eng.cam.ac.uk http://learning.eng.cam.ac.uk/zoubin/ Department of Engineering University of Cambridge,

More information

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them

Sequence labeling. Taking collective a set of interrelated instances x 1,, x T and jointly labeling them HMM, MEMM and CRF 40-957 Special opics in Artificial Intelligence: Probabilistic Graphical Models Sharif University of echnology Soleymani Spring 2014 Sequence labeling aking collective a set of interrelated

More information

Mixture of Gaussians Models

Mixture of Gaussians Models Mixture of Gaussians Models Outline Inference, Learning, and Maximum Likelihood Why Mixtures? Why Gaussians? Building up to the Mixture of Gaussians Single Gaussians Fully-Observed Mixtures Hidden Mixtures

More information

Learning Parameters of Undirected Models. Sargur Srihari

Learning Parameters of Undirected Models. Sargur Srihari Learning Parameters of Undirected Models Sargur srihari@cedar.buffalo.edu 1 Topics Log-linear Parameterization Likelihood Function Maximum Likelihood Parameter Estimation Simple and Conjugate Gradient

More information

10-701/15-781, Machine Learning: Homework 4

10-701/15-781, Machine Learning: Homework 4 10-701/15-781, Machine Learning: Homewor 4 Aarti Singh Carnegie Mellon University ˆ The assignment is due at 10:30 am beginning of class on Mon, Nov 15, 2010. ˆ Separate you answers into five parts, one

More information

Data Preprocessing. Cluster Similarity

Data Preprocessing. Cluster Similarity 1 Cluster Similarity Similarity is most often measured with the help of a distance function. The smaller the distance, the more similar the data objects (points). A function d: M M R is a distance on M

More information

Naïve Bayes Lecture 17

Naïve Bayes Lecture 17 Naïve Bayes Lecture 17 David Sontag New York University Slides adapted from Luke Zettlemoyer, Carlos Guestrin, Dan Klein, and Mehryar Mohri Bayesian Learning Use Bayes rule! Data Likelihood Prior Posterior

More information

CS534 Machine Learning - Spring Final Exam

CS534 Machine Learning - Spring Final Exam CS534 Machine Learning - Spring 2013 Final Exam Name: You have 110 minutes. There are 6 questions (8 pages including cover page). If you get stuck on one question, move on to others and come back to the

More information

Review and Motivation

Review and Motivation Review and Motivation We can model and visualize multimodal datasets by using multiple unimodal (Gaussian-like) clusters. K-means gives us a way of partitioning points into N clusters. Once we know which

More information

Introduction: MLE, MAP, Bayesian reasoning (28/8/13)

Introduction: MLE, MAP, Bayesian reasoning (28/8/13) STA561: Probabilistic machine learning Introduction: MLE, MAP, Bayesian reasoning (28/8/13) Lecturer: Barbara Engelhardt Scribes: K. Ulrich, J. Subramanian, N. Raval, J. O Hollaren 1 Classifiers In this

More information

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels?

Machine Learning and Bayesian Inference. Unsupervised learning. Can we find regularity in data without the aid of labels? Machine Learning and Bayesian Inference Dr Sean Holden Computer Laboratory, Room FC6 Telephone extension 6372 Email: sbh11@cl.cam.ac.uk www.cl.cam.ac.uk/ sbh11/ Unsupervised learning Can we find regularity

More information

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf

Introduction to Machine Learning. Maximum Likelihood and Bayesian Inference. Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 1 Introduction to Machine Learning Maximum Likelihood and Bayesian Inference Lecturers: Eran Halperin, Yishay Mansour, Lior Wolf 2013-14 We know that X ~ B(n,p), but we do not know p. We get a random sample

More information

Logistic Regression. Machine Learning Fall 2018

Logistic Regression. Machine Learning Fall 2018 Logistic Regression Machine Learning Fall 2018 1 Where are e? We have seen the folloing ideas Linear models Learning as loss minimization Bayesian learning criteria (MAP and MLE estimation) The Naïve Bayes

More information

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun

MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun Y. LeCun: Machine Learning and Pattern Recognition p. 1/? MACHINE LEARNING AND PATTERN RECOGNITION Fall 2006, Lecture 8: Latent Variables, EM Yann LeCun The Courant Institute, New York University http://yann.lecun.com

More information

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas

CS839: Probabilistic Graphical Models. Lecture 7: Learning Fully Observed BNs. Theo Rekatsinas CS839: Probabilistic Graphical Models Lecture 7: Learning Fully Observed BNs Theo Rekatsinas 1 Exponential family: a basic building block For a numeric random variable X p(x ) =h(x)exp T T (x) A( ) = 1

More information

MIXTURE MODELS AND EM

MIXTURE MODELS AND EM Last updated: November 6, 212 MIXTURE MODELS AND EM Credits 2 Some of these slides were sourced and/or modified from: Christopher Bishop, Microsoft UK Simon Prince, University College London Sergios Theodoridis,

More information

Expectation Maximization

Expectation Maximization Expectation Maximization Bishop PRML Ch. 9 Alireza Ghane c Ghane/Mori 4 6 8 4 6 8 4 6 8 4 6 8 5 5 5 5 5 5 4 6 8 4 4 6 8 4 5 5 5 5 5 5 µ, Σ) α f Learningscale is slightly Parameters is slightly larger larger

More information

Probabilistic Graphical Models

Probabilistic Graphical Models Probabilistic Graphical Models Brown University CSCI 295-P, Spring 213 Prof. Erik Sudderth Lecture 11: Inference & Learning Overview, Gaussian Graphical Models Some figures courtesy Michael Jordan s draft

More information

Weighted Finite-State Transducers in Computational Biology

Weighted Finite-State Transducers in Computational Biology Weighted Finite-State Transducers in Computational Biology Mehryar Mohri Courant Institute of Mathematical Sciences mohri@cims.nyu.edu Joint work with Corinna Cortes (Google Research). 1 This Tutorial

More information

Introduction to Machine Learning Midterm, Tues April 8

Introduction to Machine Learning Midterm, Tues April 8 Introduction to Machine Learning 10-701 Midterm, Tues April 8 [1 point] Name: Andrew ID: Instructions: You are allowed a (two-sided) sheet of notes. Exam ends at 2:45pm Take a deep breath and don t spend

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning Expectation Maximization Mark Schmidt University of British Columbia Winter 2018 Last Time: Learning with MAR Values We discussed learning with missing at random values in data:

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 6220 - Section 2 - Spring 2017 Lecture 6 Jan-Willem van de Meent (credit: Yijun Zhao, Chris Bishop, Andrew Moore, Hastie et al.) Project Project Deadlines 3 Feb: Form teams of

More information

Probabilistic & Unsupervised Learning

Probabilistic & Unsupervised Learning Probabilistic & Unsupervised Learning Week 2: Latent Variable Models Maneesh Sahani maneesh@gatsby.ucl.ac.uk Gatsby Computational Neuroscience Unit, and MSc ML/CSML, Dept Computer Science University College

More information

Gaussian Mixture Models

Gaussian Mixture Models Gaussian Mixture Models David Rosenberg, Brett Bernstein New York University April 26, 2017 David Rosenberg, Brett Bernstein (New York University) DS-GA 1003 April 26, 2017 1 / 42 Intro Question Intro

More information

Latent Variable Models and EM algorithm

Latent Variable Models and EM algorithm Latent Variable Models and EM algorithm SC4/SM4 Data Mining and Machine Learning, Hilary Term 2017 Dino Sejdinovic 3.1 Clustering and Mixture Modelling K-means and hierarchical clustering are non-probabilistic

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information