Mitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. El-Wakeel M. Abdel Rahman and M. A. L.

Size: px
Start display at page:

Download "Mitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. El-Wakeel M. Abdel Rahman and M. A. L."

Transcription

1 Proceedings of the 14 th International Middle East Power Systems Conference (MEPCON 1), Cairo University, Egypt, December 19-21, 21, Paper ID 192. Mitigating Subsynchronous resonance torques using dynamic braking resistor S. Helmy and Amged S. El-Wakeel M. Abdel Rahman and M. A. L. Badr Armed forces Department of electric power and machines Egypt Faculty of engineering, Ain-Shams university Cairo, Egypt Abstract Series compensation has proven to increase stability in transmission of electric power. On the other hand insertion of series capacitor results in severe subsynchronous torques. The subsynchronous torque leads to generator-turbine shaft damage. Mitigation of subsynchronous transient torques is achieved through resistor bank connected to generator terminals. The insertion of resistor bank is controlled by fuzzy logic controller. The proposed controller has been tested on IEEE First Benchmark Model and it proved to have good damping for the torsional torques. Index Terms - Dynamic braking resistor, First Benchmark Model, fuzzy logic control, subsynchronous resonance. I. INTRODUCTION Since the two shaft failures at Mohave station at 197 and 1971, subsynchronous resonance has become topic of interest by utility industry. By definition, subsynchronous resonance is a case where the electric network exchanges significant amount of power with the mechanical network [1]. Intensive studies showed that insertion of series capacitor may result to SSR. When dealing with SSR, the main danger is the possibility of shaft damage. Several countermeasures have been reported to counteract SSR. The published countermeasures include excitation control, static VAR compensators as well as many other countermeasures [2-4]. Moreover, dynamic braking resistor is used as a powerful countermeasure for SSR [5, 6]. This countermeasure is used to control the power consumed by a resistor bank for the purpose of damping the torsional modes of turbo-generators. The proposed control technique for controlling the dynamic braking resistor is the fuzzy logic controller (FLC) [7]. The proposed fuzzy logic controller (FLC) is used to control the insertion of resistor bank to sustain the transient stability of the combined turbine-generator system under different SSR effects. The advantage of applying dynamic braking resistor as a countermeasure is its effectiveness in damping self-excitation SSR as well as transient torque SSR. However, ref. [7] showed only the application of FLC to control dynamic braking resistor to overcome self-excitation SSR. The severity of transient torques on turbine-generator shaft is much greater than that of self-excitation SSR. Hence, it is important to test the proposed controller behaviour on the case of transient torque. Therefore, this paper examines the application of FLC-driven dynamic braking resistor in mitigating transient torque SSR. The system under study is the well-known IEEE First Benchmark Model (IEEE FBM) [8]. The results show that the proposed controller is adequate for damping SSR. II. DYNAMIC BRAKING RESISTOR Dynamic braking resistor has previously been considered for augmenting system stability as well as for improving the transient response of power systems following major system disturbances [9]. The resistor bank is connected to the machine terminals. Fig. 1 shows a schematic of dynamically controlled resistor bank. Fig. 1 Dynamically controlled three-phase resistor bank During normal system operation, the resistor bank is disabled and no power is dissipated. Following a system disturbance, the power consumed by the resistor bank is controlled so as to damp the torsional oscillations of the turbogenerator. After the torsional oscillations decay to a small level, the resistor bank is again disabled from service. Bonneville Power Administration (BPA) has implemented dynamic braking resistor for enhancing transient stability[9]. The resistor is 14 MW, 24 KV. It consists of 45, ft of ½ inch stainless steel wire on three towers. Dynamic braking resistor has been reported to be used in different countries like: Japan, China, Russia and australia[1]. III. CASE STUDY The system under study is the IEEE First Benchmark Model (IEEE FBM) which is shown in Fig

2 The synchronous machine model is developed with threephase ac armature windings on the stator, one field winding on the rotor, and three damper windings on the rotor[11]. The parameters of the equivalent circuit of synchronous generator are calculated using Canay s conversion[12]. The parameters of the synchronous generator are stated in Reference [8]. These parameters are in the form of IEEE and IEC standards[13, 14]. Hence, Canay s conversion[12] is used to transform these parameters into equivalent circuit parameters. Fig. 2. IEEE First Benchmark Model with dynamic braking resistor The voltage equation is given by[15, 16]: V R i ψ d a d d V q Ra i q ψ q V Ra i ψ d Vf = - Rf if - ψf dt V g Rg i g ψ g VD RD id ψ D V Q R Q i Q ψ Q U d U q + (1) Where: V d, V q and V d-axis, q-axis, -axis voltages V f, V g, V D and V Q field and damper bars voltages R a armature resistance R f, R g, R D and R Q field and damper bars resistances I d, I q and I d-axis, q-axis, -axis currents I f, I g, I D and I Q field and damper bars currents Ψ d, Ψ q and Ψ d-axis, q-axis, -axis flux linkages Ψ f, Ψ g, Ψ D and Ψ Q field and damper bars flux linkages U d, U q d-axis and q-axis speed voltages The mechanical part of the system is described by the rotational form of Newton's second law: d d [ T ] = [ J] [ θ ] + 2 [ D] [ θ ] + [ K][ θ] (2) dt dt Where: [θ] [J] [D] [K] [T] Vector of angular positions Diagonal matrix of moments of inertia Tridiagonal matrix of damping coefficients Tridiagonal matrix of stiffness coefficients Vector of turbine and electromagnetic torques III. SIMULATION ALGORITHM The algorithm for the simulation is outlined as follows[11]: 1) The parameters of the synchronous machine are computed from the IEEE standard parameters using Canay s conversion[12]. This conversion is used to retrieve the generator parameters from standard IEEE tests. 2) Calculate the initial values of the electrical part (load angle δ, initial d,q axis currents, initial field voltage and current) and, mechanical part (masses angles, initial masses speeds and initial masses torques). 3) The trapezoidal rule of integration is applied to equation(1) which converts each inductance to a resistance and current source in parallel. 4) d-axis equivalent circuit is reduced to one resistance in series with one voltage source and the same is done for the q-axis. 5) The three Thevenin equivalent circuits are converted from dq to phase quantities. 6) The complete network is solved and hence the generator voltage is calculated in phase quantities. 7) The generator phase quantities are converted again to dq quantities and these values are used to calculate the armature current and field current and electromagnetic torque. 8) The calculated torque is used to compute the speeds of the rotor masses and the torques of the turbine stages by solving equation(2). 9) The computed generator speed is used as an input to the FLC. 1) The output of the FLC is obtained according to the generator speed. 11) Steps from (3) to (1) are repeated till t = t max IV. PROPOSED FUZZY LOGIC CONTROLLER A. FLC linguistic variables and membership functions The FLC has two inputs which are the speed error of the generator (E) and the change of the error (CE). It has one output that is braking power (P b ). The FLC has four linguistic variables for the two inputs. In addition, it has four linguistic variables for the output. These variables are: (ZE, PS, PM, and PB) Where ZE stands for Zero, PS stands for Positive Small, PM stands for Positive Medium, and PB stands for Positive Big Fig. 3 shows the membership functions of the speed error (E). It has three triangular membership functions and one trapezoidal membership functions. 417

3 The universe of discourse is normalized to be in the range of (-1 to 1). Fig. 4 shows the membership functions of the change of error (CE). These membership functions are similar to those of speed error (E). Furthermore, the universe of discourse is normalized to be in the range of (-1 to 1). Fig. 5 shows the membership functions of the braking power (Pb). The membership functions of (Pb) are similar to those of (E) and (CE). The universe of discourse is in the range of ( to 3). IF (E) is PB AND (CE) is PB THEN (P b ) is PB This rule is explained as follows: if the generator speed is much greater than reference speed (E is PB) AND the speed of the generator is getting away from the reference speed (CE is PB), then the control action taken must be PB to stabilize the generator speed. The rest of the rules are formulated as the above rule. For the case of 4 linguistic variables for (E) and 4 linguistic variables for (CE) the resulting rule table would have 16 rules. Table I shows rule table of the proposed fuzzy logic control. TABLE I RULE TABLE OF PROPOSED FLC E CE PB PM PS ZE PB PB PB PB PB PM PB PB PB PM PS PB PB PM PS ZE PB PM PS ZE Fig. 3. Membership function for the error (E) The output of the FLC (P b ) is limited to 1 PU. Therefore, the maximum output power is MW. This output power is feasible [9]. The dynamic braking resistor is connected if the generator speed exceeds predetermined value. For the given system the dynamic braking resistor is connected after the fault occurrence. As soon as the system is restabilised it will be disconnected. The proposed controller utilizes the dynamic braking resistor which is well-known of enhancing system stability. Therefore, the proposed controller is capable of suppression of different transients imposed on the system. Fig. 4. Membership function for the change of error (CE) Fig. 5. Membership function for the braking power (Pb) V. SIMULATION RESULTS The torsional interaction case is the IEEE FBM [8] with 3-phase short circuit located at point B at time and the fault is cleared at time.75 sec. The results of simulation are presented with and without controller. Fig. 6 shows the generator terminal voltage with and without control. The waveform of the voltage in case of no controller used is growing indicating unstable operation. In case of using FLC braking resistor the waveform of voltage indicates good damping of disturbance. Fig. 7 shows the generator terminal current in two cases (without and with control). Fig. 8 shows the capacitor voltage without control. Fig. 9 shows the capacitor voltage with control. Fig. 1 through Fig. 15 show the speed deviations for different masses. Fig. 16 through Fig. 2 show the torsional torques for different shaft sections. B. FLC rule table The rule table of fuzzy logic controller is a set of If-then statements. These statements are derived from experience about generator behavior and type of disturbance. To give an example for deriving rules: 418

4 Fig. 6. Generator terminal voltage deviation Fig. 9. Capacitor voltage with control Fig. 7. Generator terminal current Fig. 1. High Pressure turbine speed deviation Fig. 8. Capacitor voltage without control Fig. 11. Intermediate Pressure turbine speed deviation 419

5 Fig. 12. Low Pressure turbine stage A speed deviation Fig Exciter speed deviation Fig. 13. Low Pressure turbine stage B speed deviation Fig. 16. HPT-IPT shaft torque deviation Fig Generator speed deviation Fig. 17. IPT-LPTA shaft torque deviation 42

6 VI. CONCLUSIONS Application of fuzzy logic to control dynamic braking resistor for damping transient SSR has been tested in this paper. The proposed controller has proved to be effective in mitigating torsional torques in turbine-generator set. The studied system is the IEEE first benchmark model. The disturbance is 3-phase short circuit for 75 msec. Different waveforms show the suppression of torsional oscillations in the case of fuzzy logic control. REFERENCES Fig. 18. LPTA-LPTB shaft torque deviation) Fig. 19. LPTB-Gen shaft torque deviation Fig. 2. Gen-Exc Shaft torque deviation The results show good damping behavior for proposed controller. Both electrical and mechanical transients are mitigated down to acceptable range. [1] IEEE Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee, "Terms, Definitions And Symbols For Subsynchronous Oscillations," IEEE Transactions on Power Apparatus and Systems, vol. PAS-14, No. 6, pp , June [2] E. T. Ooi and M. M. Sartawi, "Concepts on field excitation control of subsynchronous resonance in synchronous machines," IEEE Transaction on Power Apparatus and Systems, vol. PAS-97, No. 5, pp , Sept. / Oct [3] IEEE Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee, "Countermeasures to subsynchronous resonance problem," IEEE Transactions on Power Apparatus and Systems, vol. PAS-99, No. 5, pp , Sept/Oct 198. [4] L. Wang and Y.-Y. Hsu, "Damping of subsynchronous resonance using excitation controllers ans static Var compensators: A comparative study," IEEE Transaction on Energy conversion, vol. 3, No.1, pp. 6-13, [5] M. K. Donnelly, et al., "Control of a dynamic brake to reduce turbine-generator shaft transient torques," IEEE Transactions on Power Systems, vol. 8, No. 1, pp , February [6] O. Wasynczuk, "Damping shaft torsional oscillations using a dynamically controlled resistor bank," IEEE Transactions on Power Apparatus and Systems, vol. PAS-1, No. 7, pp , July [7] A. H. M. A. Rahim, "A minimum-time based fuzzy logic dynamic braking resistor control for sub-synchronous resonance," Electrical Power and Energy Systems, vol. 26, pp , 24. [8] IEEE Subsynchronous Resonance Working Group of the System Dynamic Performance Subcommittee, "First Benchmark Model for computer simulation of Subsynchronous resonance," IEEE Transactions on Power Apparatus and Systems, vol. PAS-96, No. 5, pp , September/October [9] M. L. Shelton, W. A. Mittelstadt, P. F. Winkelman, and W. J. Bellerby, "Bonneville Power Administration 14-MW Braking Resistor," IEEE Transaction on Power Apparatus and Systems, vol. PAS-94, No. 2, pp , [1] CIGRE. (May 1988) State of the art in non classical means to improve power system stability. Electra [11] S. Helmy, Amged S. El-Wakeel, M. Abdel Rahman, and M. A. L. Badr, "Real-Time Modeling of Synchronous Generators based on PC," in 13 th International Middle East Power System Conference MEPCON '9, Assuit, Egypt, 29, pp. 337, 343. [12] I. M. Canay, "Determination of model parameters of synchronous machines," IEE Proceeding, vol. 13, Pt. B, No. 2, pp , March [13] IEEE, "Test procedures fo synchronous machines," in standard 115, ed, [14] IEC, "Recommecdations for rotating electric machinery," in Publ. 34-4A, ed, [15] P. Kundur, Power system stability and control. New York: McGraw-Hill Inc., [16] Y.-n. Yu, Electric Power System Dynamics: Academic Press,

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER

ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER ANALYSIS OF SUBSYNCHRONOUS RESONANCE EFFECT IN SERIES COMPENSATED LINE WITH BOOSTER TRANSFORMER G.V.RAJASEKHAR, 2 GVSSNS SARMA,2 Department of Electrical Engineering, Aurora Engineering College, Hyderabad,

More information

Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering Communication Delay

Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering Communication Delay Proceedings of the 7th WSEAS International Conference on Power Systems, Beijing, China, September 15-17, 2007 174 Minimization of Shaft Torsional Oscillations by Fuzzy Controlled Braking Resistor Considering

More information

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS

DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS Journal of Engineering Science and Technology Vol. 1, No. 1 (26) 76-88 School of Engineering, Taylor s College DAMPING OF SUBSYNCHRONOUS MODES OF OSCILLATIONS JAGADEESH PASUPULETI School of Engineering,

More information

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems

Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Delayed Feedback Controller for Stabilizing Subsynchronous Oscillations in Power Systems Yaar Küçükefe 1 and Adnan Kaypmaz 2 1 National Power Enerji, Tekirda, Turkey yasar.kucukefe@ieee.org 2 stanbul Technical

More information

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System

The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System 1 The Effects of Machine Components on Bifurcation and Chaos as Applied to Multimachine System M. M. Alomari and B. S. Rodanski University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks

Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Electrical Networks Extension of the Complex Torque Coefficient Method for Synchronous Generators to Auxiliary Devices in Dr. SWISS FEDERAL INSTITUTE OF TECHNOLOGY Electrical Engineering Department, Laboratory of Electromechanics

More information

PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER

PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER PARAMETRIC ANALYSIS OF SHAFT TORQUE ESTIMATOR BASED ON OBSERVER Tetsuro Kakinoki, Ryuichi Yokoyama Tokyo Metropolitan University t.kakinoki@h4.dion.ne.jp Goro Fujita Shibaura Institute of Technology Kaoru

More information

ECE 585 Power System Stability

ECE 585 Power System Stability Homework 1, Due on January 29 ECE 585 Power System Stability Consider the power system below. The network frequency is 60 Hz. At the pre-fault steady state (a) the power generated by the machine is 400

More information

Computer Applications in Electrical Engineering

Computer Applications in Electrical Engineering Computer Applications in Electrical Engineering Influence of disturbances in power network on torsional torques in big power turbines-generator shafts Józef Wiśniewski Technical University of Lodz 9-94

More information

FOR REDUCE SUB-SYNCHRONOUS RESONANCE TORQUE BY USING TCSC

FOR REDUCE SUB-SYNCHRONOUS RESONANCE TORQUE BY USING TCSC FOR REDUCE SUB-SYNCHRONOUS RESONANCE TORQUE BY USING TCSC Shrikant patel 1, N.K.Singh 2, Tushar kumar 3 Department of Electrical Engineering, Scope College of Engineering Bhopal,(M.P.) Emil:Shrikantcseb@gmail.com

More information

Eigenvalue Analysis of Subsynchronous Resonance Study in Series Compensated Wind Farm

Eigenvalue Analysis of Subsynchronous Resonance Study in Series Compensated Wind Farm e-issn: 2349-9745 p-issn: 2393-8161 Scientific Journal Impact Factor (SJIF): 1.711 International Journal of Modern Trends in Engineering and Research www.ijmter.com Eigenvalue Analysis of Subsynchronous

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information

Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation

Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation 614 Damping SSR in Power Systems using Double Order SVS Auxiliary Controller with an Induction Machine Damping Unit and Controlled Series Compensation Sushil K Gupta, Narendra Kumar and A K Gupta Abstract--This

More information

POWER SYSTEM STABILITY

POWER SYSTEM STABILITY LESSON SUMMARY-1:- POWER SYSTEM STABILITY 1. Introduction 2. Classification of Power System Stability 3. Dynamic Equation of Synchronous Machine Power system stability involves the study of the dynamics

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP

Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Modeling of Hydraulic Turbine and Governor for Dynamic Studies of HPP Nanaware R. A. Department of Electronics, Shivaji University, Kolhapur Sawant S. R. Department of Technology, Shivaji University, Kolhapur

More information

POWER SYSTEM STABILITY AND CONTROL

POWER SYSTEM STABILITY AND CONTROL POWER SYSTEM STABILITY AND CONTROL P. KUNDUR Vice-President, Power Engineering Powertech Labs Inc., Surrey, British Columbia Formerly Manager Analytical Methods and Specialized Studies Department Power

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

DESIGN OF A HIERARCHICAL FUZZY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM

DESIGN OF A HIERARCHICAL FUZZY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM Proceedings of the 5th Mediterranean Conference on Control & Automation, July 27-29, 27, Athens - Greece T26-6 DESIGN OF A HIERARCHICAL FUY LOGIC PSS FOR A MULTI-MACHINE POWER SYSTEM T. Hussein, A. L.

More information

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator

Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Simulations and Control of Direct Driven Permanent Magnet Synchronous Generator Project Work Dmitry Svechkarenko Royal Institute of Technology Department of Electrical Engineering Electrical Machines and

More information

1 Unified Power Flow Controller (UPFC)

1 Unified Power Flow Controller (UPFC) Power flow control with UPFC Rusejla Sadikovic Internal report 1 Unified Power Flow Controller (UPFC) The UPFC can provide simultaneous control of all basic power system parameters ( transmission voltage,

More information

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS Journal of ELECTRICAL ENGINEERING, VOL. 64, NO. 6, 2013, 366 370 COMPARISON OF DAMPING PERFORMANCE OF CONVENTIONAL AND NEURO FUZZY BASED POWER SYSTEM STABILIZERS APPLIED IN MULTI MACHINE POWER SYSTEMS

More information

Performance Of Power System Stabilizerusing Fuzzy Logic Controller

Performance Of Power System Stabilizerusing Fuzzy Logic Controller IOSR Journal of Electrical and Electronics Engineering (IOSR-JEEE) e-issn: 2278-1676,p-ISSN: 2320-3331, Volume 9, Issue 3 Ver. I (May Jun. 2014), PP 42-49 Performance Of Power System Stabilizerusing Fuzzy

More information

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS

Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Comparative Study of Synchronous Machine, Model 1.0 and Model 1.1 in Transient Stability Studies with and without PSS Abhijit N Morab, Abhishek P Jinde, Jayakrishna Narra, Omkar Kokane Guide: Kiran R Patil

More information

Mitigation of Subsynchronous Resonance Oscillations Using Static Synchronous Series Compensator

Mitigation of Subsynchronous Resonance Oscillations Using Static Synchronous Series Compensator IJCTA Vol.8, No.1, Jan-June 2015, Pp.336-344 International Sciences Press, India Mitigation of Subsynchronous Resonance Oscillations Using Static Synchronous Series Compensator Mr.J.Sreeranganayakulu 1,

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

Synergetic Control for Electromechanical Systems

Synergetic Control for Electromechanical Systems Synergetic Control for Electromechanical Systems Anatoly A. Kolesnikov, Roger Dougal, Guennady E. Veselov, Andrey N. Popov, Alexander A. Kolesnikov Taganrog State University of Radio-Engineering Automatic

More information

Reciprocal Impacts of PSS and Line Compensation on Shaft Torsional Modes

Reciprocal Impacts of PSS and Line Compensation on Shaft Torsional Modes Reciprocal Impacts of PSS and Line Compensation on Shaft Torsional Modes H. Ahmadi, H. Ghasemi, H. Lesani, H. Abniki Electrical and Computer Engineering (ECE) Department University of Tehran Abstract In

More information

A New Scheme for Damping Torsional Modes in a Series Compensated Power System

A New Scheme for Damping Torsional Modes in a Series Compensated Power System International Journal of Recent Trends in Engineering, Vol, o. 7, ovember 009 A ew Scheme for amping Torsional odes in a Series Compensated Power System Abstract In the present paper, a new scheme for

More information

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods

Transient Stability Analysis of Single Machine Infinite Bus System by Numerical Methods International Journal of Electrical and Electronics Research ISSN 348-6988 (online) Vol., Issue 3, pp: (58-66), Month: July - September 04, Available at: www.researchpublish.com Transient Stability Analysis

More information

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability

ECE 422/522 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability ECE 4/5 Power System Operations & Planning/Power Systems Analysis II : 7 - Transient Stability Spring 014 Instructor: Kai Sun 1 Transient Stability The ability of the power system to maintain synchronism

More information

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients)

Behaviour of synchronous machine during a short-circuit (a simple example of electromagnetic transients) ELEC0047 - Power system dynamics, control and stability (a simple example of electromagnetic transients) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 25 Objectives

More information

Power System Stability GENERATOR CONTROL AND PROTECTION

Power System Stability GENERATOR CONTROL AND PROTECTION Power System Stability Outline Basis for Steady-State Stability Transient Stability Effect of Excitation System on Stability Small Signal Stability Power System Stabilizers Speed Based Integral of Accelerating

More information

Chapter 3 AUTOMATIC VOLTAGE CONTROL

Chapter 3 AUTOMATIC VOLTAGE CONTROL Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms Helwan University From the SelectedWorks of Omar H. Abdalla May, 2008 Coordinated Design of Power System Stabilizers and Static VAR Compensators in a Multimachine Power System using Genetic Algorithms

More information

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3

Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 Sensorless Speed Control for PMSM Based On the DTC Method with Adaptive System R. Balachandar 1, S. Vinoth kumar 2, C. Vignesh 3 P.G Scholar, Sri Subramanya College of Engg & Tech, Palani, Tamilnadu, India

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 12 : Sequence Modeling of Power Apparatus Objectives In this lecture we will discuss Per unit calculation and its advantages. Modeling aspects

More information

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A

EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A EE2351 POWER SYSTEM OPERATION AND CONTROL UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A 1. What are the advantages of an inter connected system? The advantages of an inter-connected system are

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

The synchronous machine (SM) in the power system (2) (Where does the electricity come from)?

The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 1 The synchronous machine (SM) in the power system (2) (Where does the electricity come from)? 2 Lecture overview Synchronous machines with more than 2 magnetic poles The relation between the number of

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Stepping Motors. Chapter 11 L E L F L D

Stepping Motors. Chapter 11 L E L F L D Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

More information

A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops Australian Journal of Basic and Applied Sciences, 5(2): 258-263, 20 ISSN 99-878 A Study on Performance of Fuzzy And Fuzyy Model Reference Learning Pss In Presence of Interaction Between Lfc and avr Loops

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS S. S. Murthy Department of Electrical Engineering Indian Institute

More information

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System

Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System Modeling of Permanent Magnet Synchronous Generator for Wind Energy Conversion System T.SANTHANA KRISHNAN Assistant Professor (SG), Dept of Electrical & Electronics, Rajalakshmi Engineering College, Tamilnadu,

More information

Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds

Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds Zhangjun Tang Stryker Instruments Kalamazoo, MI 491 Phone: 269-323-77 Ext.363 Fax: 269-323-394

More information

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1

QUESTION BANK ENGINEERS ACADEMY. Power Systems Power System Stability 1 ower ystems ower ystem tability QUETION BANK. A cylindrical rotor generator delivers 0.5 pu power in the steady-state to an infinite bus through a transmission line of reactance 0.5 pu. The generator no-load

More information

INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS

INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS BY JAMES W. KOLODZIEJ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering

More information

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink ABSTRACT

More information

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID

DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Engineering Review Vol. 36 Issue 2 8-86 206. 8 DYNAMIC RESPONSE OF A GROUP OF SYNCHRONOUS GENERATORS FOLLOWING DISTURBANCES IN DISTRIBUTION GRID Samir Avdaković * Alija Jusić 2 BiH Electrical Utility Company

More information

Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator

Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator A.H.M.A. Rahim, M. Ahsanul Alam and M.F. Kandlawala King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia Abstract

More information

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.

3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque. Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question

More information

SMALL SIGNAL ANALYSIS OF LOAD ANGLE GOVERNING AND EXCITATION CONTROL OF AC GENERATORS

SMALL SIGNAL ANALYSIS OF LOAD ANGLE GOVERNING AND EXCITATION CONTROL OF AC GENERATORS Nigerian Journal of Technology, Vol. 24, No. 2, September 2005 Obe 1 SMALL SIGNAL ANALYSIS OF LOAD ANGLE GOVERNING AND EXCITATION CONTROL OF AC GENERATORS E. S. OBE, AMIEE Department of Electrical Engineering,

More information

Chapter 9: Transient Stability

Chapter 9: Transient Stability Chapter 9: Transient Stability 9.1 Introduction The first electric power system was a dc system built by Edison in 1882. The subsequent power systems that were constructed in the late 19 th century were

More information

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE

A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE A STUDY OF THE EIGENVALUE ANALYSIS CAPABILITIES OF POWER SYSTEM DYNAMICS SIMULATION SOFTWARE J.G. Slootweg 1, J. Persson 2, A.M. van Voorden 1, G.C. Paap 1, W.L. Kling 1 1 Electrical Power Systems Laboratory,

More information

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department

University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department University of Jordan Faculty of Engineering & Technology Electric Power Engineering Department EE471: Electrical Machines-II Tutorial # 2: 3-ph Induction Motor/Generator Question #1 A 100 hp, 60-Hz, three-phase

More information

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 26 CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 3.1. INTRODUCTION Recently increase in energy demand and limited energy sources in the world caused the researchers

More information

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER

DESIGNING POWER SYSTEM STABILIZER WITH PID CONTROLLER International Journal on Technical and Physical Problems of Engineering (IJTPE) Published by International Organization on TPE (IOTPE) ISSN 2077-3528 IJTPE Journal www.iotpe.com ijtpe@iotpe.com June 2010

More information

KINGS COLLEGE OF ENGINEERING Punalkulam

KINGS COLLEGE OF ENGINEERING Punalkulam KINGS COLLEGE OF ENGINEERING Punalkulam 613 303 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING POWER SYSTEM ANALYSIS QUESTION BANK UNIT I THE POWER SYSTEM AN OVERVIEW AND MODELLING PART A (TWO MARK

More information

Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks

Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks 3rd IASME/WSEAS Int. Conf. on Energy & Environment, University of Cambridge, UK, February 3-5, 008 Predicting, controlling and damping inter-area mode oscillations in Power Systems including Wind Parks

More information

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2)

Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration Photovoltaics (Part 2) Journal of Mechanics Engineering and Automation 5 (2015) 401-406 doi: 10.17265/2159-5275/2015.07.003 D DAVID PUBLISHING Transient Stability Assessment of Synchronous Generator in Power System with High-Penetration

More information

Transient Analysis of Doubly Fed Wind Power Induction Generator Using Coupled Field-Circuit Model

Transient Analysis of Doubly Fed Wind Power Induction Generator Using Coupled Field-Circuit Model Publication P2 Seman, S., Kanerva, S., Niiranen, J., Arkkio, A. 24. Transient Analysis of Wind Power Doubly Fed Induction Generator Using Coupled Field Circuit Model, Proceedings of ICEM 24, 5-8 September

More information

Fuzzy Applications in a Multi-Machine Power System Stabilizer

Fuzzy Applications in a Multi-Machine Power System Stabilizer Journal of Electrical Engineering & Technology Vol. 5, No. 3, pp. 503~510, 2010 503 D.K.Sambariya and Rajeev Gupta* Abstract - This paper proposes the use of fuzzy applications to a 4-machine and 10-bus

More information

ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS

ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS Journal of Al Azhar University Engineering Sector Vol. 13, No. 49, October, 2018, 1290-1299 ENHANCEMENT MAXIMUM POWER POINT TRACKING OF PV SYSTEMS USING DIFFERENT ALGORITHMS Yasmin Gharib 1, Wagdy R. Anis

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller

Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller Modeling and Simulation of Indirect Field Oriented Control of Three Phase Induction Motor using Fuzzy Logic Controller Gurmeet Singh Electrical Engineering Dept. DIT University Dehradun, India Gagan Singh

More information

Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization

Optimal tunning of lead-lag and fuzzy logic power system stabilizers using particle swarm optimization Available online at www.sciencedirect.com Expert Systems with Applications Expert Systems with Applications xxx (2008) xxx xxx www.elsevier.com/locate/eswa Optimal tunning of lead-lag and fuzzy logic power

More information

Synchronous Machines

Synchronous Machines Synchronous machine 1. Construction Generator Exciter View of a twopole round rotor generator and exciter. A Stator with laminated iron core C Slots with phase winding B A B Rotor with dc winding B N S

More information

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008]

Doubly salient reluctance machine or, as it is also called, switched reluctance machine. [Pyrhönen et al 2008] Doubly salient reluctance machine or, as it is also called, switched reluctance machine [Pyrhönen et al 2008] Pros and contras of a switched reluctance machine Advantages Simple robust rotor with a small

More information

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE

DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE DESIGN OF POWER SYSTEM STABILIZER USING FUZZY BASED SLIDING MODE CONTROL TECHNIQUE LATHA.R Department of Instrumentation and Control Systems Engineering, PSG College of Technology, Coimbatore, 641004,

More information

Modeling of DFIG-based Wind Farms for SSR Analysis

Modeling of DFIG-based Wind Farms for SSR Analysis 1 Modeling of DFIG-based Wind Farms for SSR Analysis Lingling Fan, Senior Member, IEEE, Rajesh Kavasseri, Senior Member, IEEE, Zhixin Miao, Senior Member, IEEE, Chanxia Zhu Abstract This paper presents

More information

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION

EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION EDEXCEL NATIONALS UNIT 5 - ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3 - ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted

More information

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer

Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer 772 NATIONAL POWER SYSTEMS CONFERENCE, NPSC 2002 Reduced Size Rule Set Based Fuzzy Logic Dual Input Power System Stabilizer Avdhesh Sharma and MLKothari Abstract-- The paper deals with design of fuzzy

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

θ α W Description of aero.m

θ α W Description of aero.m Description of aero.m Determination of the aerodynamic forces, moments and power by means of the blade element method; for known mean wind speed, induction factor etc. Simplifications: uniform flow (i.e.

More information

Subsynchronous torsional behaviour of a hydraulic turbine-generator unit connected to a HVDC system

Subsynchronous torsional behaviour of a hydraulic turbine-generator unit connected to a HVDC system University of Wollongong Research Online Faculty of Engineering - Papers (Archive) Faculty of Engineering and Information Sciences 2008 Subsynchronous torsional behaviour of a hydraulic turbine-generator

More information

Low Frequency Transients

Low Frequency Transients Page 1 IEEE Power Engineering Society Summer Meeting Edmonton, July 18-22, 1999 Tutorial: Power System Overvoltages Low Frequency Transients Presented by Bruce Mork Work Done by Slow Transients Task Force

More information

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015

ECE 325 Electric Energy System Components 7- Synchronous Machines. Instructor: Kai Sun Fall 2015 ECE 325 Electric Energy System Components 7- Synchronous Machines Instructor: Kai Sun Fall 2015 1 Content (Materials are from Chapters 16-17) Synchronous Generators Synchronous Motors 2 Synchronous Generators

More information

Dynamic simulation of a five-bus system

Dynamic simulation of a five-bus system ELEC0047 - Power system dynamics, control and stability Dynamic simulation of a five-bus system Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct November 2017 1 / 16 System modelling

More information

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b

Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Research Paper ANALYSIS OF POWER SYSTEM STABILITY FOR MULTIMACHINE SYSTEM D. Sabapathi a and Dr. R. Anita b Address for Correspondence a Research Scholar, Department of Electrical & Electronics Engineering,

More information

Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems

Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems Bifurcation Control for Mitigating Subsynchronous Oscillations in Power Systems A. M. Harb A. H. Nayfeh L. Mili Bradley Department of Electrical and Computer Engineering Department of Engineering Science

More information

The Influence of Machine Saturation on Bifurcation and Chaos in Multimachine Power Systems

The Influence of Machine Saturation on Bifurcation and Chaos in Multimachine Power Systems The Influence of Machine Saturation on Bifurcation and Chaos in Multimachine Power Systems Majdi M. Alomari and Jian Gue Zhu University of Technology, Sydney (UTS) P.O. Box 123, Broadway NSW 2007, Australia

More information

Simulation study on operating chara. Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003), 13(2): 18

Simulation study on operating chara. Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003), 13(2): 18 Simulation study on operating chara Titlesuperconducting fault current limit bus power system Author(s) Shirai, Y; Taguchi, M; Shiotsu, M; Citation IEEE TRANSACTIONS ON APPLIED SUPERCONDUCTIVITY (2003),

More information

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL B. MOULI CHANDRA 1 & S.TARA KALYANI 2 1 Electrical and Electronics Department,

More information

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF

Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF Sensorless Control for High-Speed BLDC Motors With Low Inductance and Nonideal Back EMF P.Suganya Assistant Professor, Department of EEE, Bharathiyar Institute of Engineering for Women Salem (DT). Abstract

More information

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator

Use of the finite element method for parameter estimation of the circuit model of a high power synchronous generator BULLETIN OF THE POLISH ACADEMY OF SCIENCES TECHNICAL SCIENCES, Vol. 63, No. 3, 2015 DOI: 10.1515/bpasts-2015-0067 Use of the finite element method for parameter estimation of the circuit model of a high

More information

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Philadelphia University Faculty of Engineering Student Name Student No: Serial No Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Course Title: Power II Date: 21 st June 2016 Course

More information

The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line

The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line American Journal of Applied Sciences 9 (6): 846-850, 01 ISSN 1546-939 01 Science Publications The Mathematical Model of Power System with Static Var Compensator in Long Transmission Line Prechanon Kumkratug

More information

DC motors. 1. Parallel (shunt) excited DC motor

DC motors. 1. Parallel (shunt) excited DC motor DC motors 1. Parallel (shunt) excited DC motor A shunt excited DC motor s terminal voltage is 500 V. The armature resistance is 0,5 Ω, field resistance is 250 Ω. On a certain load it takes 20 A current

More information

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES

LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES ET 332b Ac Motors, Generators and Power Systems LESSON 20 ALTERNATOR OPERATION OF SYNCHRONOUS MACHINES 1 LEARNING OBJECTIVES After this presentation you will be able to: Interpret alternator phasor diagrams

More information

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System

Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System Unified Power Flow Controller (UPFC) Based Damping Controllers for Damping Low Frequency Oscillations in a Power System (Ms) N Tambey, Non-member Prof M L Kothari, Member This paper presents a systematic

More information

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD Nigerian Journal of Technology, Vol. 22, No. 1, March 2003, Okoro 46 STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD O. I. Okoro Department of Electrical Engineering, University

More information

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System Nonlinear Electrical FEA Simulation of 1MW High Power Synchronous Generator System Jie Chen Jay G Vaidya Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 Shaohua Lin Thomas Wu ABSTRACT

More information

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T.

FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T. FUZZY LOGIC CONTROL of SRM 1 KIRAN SRIVASTAVA, 2 B.K.SINGH 1 RajKumar Goel Institute of Technology, Ghaziabad 2 B.T.K.I.T., Dwarhat E-mail: 1 2001.kiran@gmail.com,, 2 bksapkec@yahoo.com ABSTRACT The fuzzy

More information